

Distributed authorization using delegation with acyclic paths♦

Antonio Lain, Miranda Mowbray
Enterprise Systems and Software Laboratory
HP Laboratories Bristol
HPL-2006-30(R.1)
September 10, 2007*

trust management,
SmartFrog

We present a new trust management scheme for distributed authorization which
can be easily implemented using X.509-based certificate chains, but does not
require globally unique role names. A principal proves that he has authorization
for a particular action by demonstrating the existence of an acyclic chain of
bindings from a specified principal to himself, where the sequence of labels in
the chain matches a template. This template is in an easily-computed subset of
regular path expressions. Our restrictions to acyclic paths and to a subset of path
expressions enable us to permit controlled delegation, relax the requirement of
global agreement on role names, and provide an intuitive abstraction. We show
that some useful security properties can be determined in polynomial time. Our
scheme has been used in practice to secure a management framework for
distributed components: we give an overview of the implementation.

* Internal Accession Date Only
♦Proceedings 19th IEEE Computer Security Foundations Workshop, 5-7 July 2006, Venice, Italy
 Approved for External Publication
© Copyright 2006 IEEE

Distributed Authorization Using Delegation with Acyclic Paths∗

Antonio Lain and Miranda Mowbray

HP Laboratories Bristol, Filton Rd, Stoke Gifford, Bristol BS34 8QZ, UK

{antonio.lain,miranda.mowbray}@hp.com

Abstract

We present a new trust management scheme for dis-

tributed authorization which can be easily implemented us-

ing X.509-based certificate chains, but does not require

globally unique role names. A principal proves that he has

authorization for a particular action by demonstrating the

existence of an acyclic chain of bindings from a specified

principal to himself, where the sequence of labels in the

chain matches a template. This template is in an easily-

computed subset of regular path expressions. Our restric-

tions to acyclic paths and to a subset of path expressions

enable us to permit controlled delegation, relax the require-

ment of global agreement on role names, and provide an in-

tuitive abstraction. We show that some useful security prop-

erties can be determined in polynomial time. Our scheme

has been used in practice to secure a management frame-

work for distributed components: we give an overview of

the implementation.

1. Introduction

Distributed authorization schemes allow enforcement of

consistent security policies at end-points, without assum-

ing that the end-points always have connectivity to a cen-

tral server. These access control decisions are not neces-

sarily based on the identity of the requester, but on prop-

erties about him that can be derived from his credentials,

thus allowing anonymous interactions and role-based mod-

els. Built-in delegation mechanisms are also critical for

minimizing the amount of information that end-points need

∗Copyright (c) 2006 IEEE. Reprinted from 19th IEEE Computer

Security Foundations Workshop (Venice, Italy, 5-7 July 2006), pp.

257-269, ISBN 0-7695-2615-2. This material is posted here with the

permission of the IEEE. Such permission of the IEEE does not in any

way imply IEEE endorsement of any of HP Labs Bristol’s products or

services. Internal or personal use of this material is permitted. How-

ever, permission to reprint/republish this material for advertising or

promotional purposes or for creating new collective works for resale

or redistribution must be obtained from the IEEE by writing to pubs-

permissions@ieee.org. By choosing to view this document, you agree

to all provisions of the copyright laws protecting it.

in order to take policy decisions. Moreover, since a central

server is not necessary, federated systems can be supported

in which client credentials can be obtained from sources that

do not fully trust each other. Real life applications, such as

distributed firewall management [11], benefit greatly by us-

ing a distributed authorization model, in terms of scalability

and resistance to denial-of service attacks. There are cur-

rently many options available for implementing distributed

authorization mechanisms, some of them reasonably ma-

ture, as we will see in Section 2.

Given all these advantages, why are distributed au-

thorization schemes not more widely used today? Most

schemes either rely on authentication based on a hierar-

chical naming scheme, e.g., X.509 Distinguished Names

(DNs) [3], or they rely on a powerful but complex way

of linking local name spaces, e.g., SDSI [19]. Clearly, the

first approach is limited by the same problems that limit the

adoption of X.509-based PKI solutions beyond a single or-

ganization [6]. Our personal experience with the second

approach is that we found a lot of resistance to using any

scheme not based on standard X.509 certificates, and also,

as soon as a few local name spaces were linked, it was dif-

ficult to reason about the overall system.

Our new scheme for distributed authorization came from

a compromise between the two approaches. We designed

it to be easily implementable using existing X.509-based

certificates, but retaining some of the flexibility of local

name spaces, in particular not to require globally unique

names. This led to a design in which principals are as-

sociated with nodes of a graph, local names (for instance

“gold_member”) are labels of directed edges between the

naming principal and the named principal, and each prop-

erty that one principal proves to another corresponds to the

existence of an acyclic directed path from a specified anchor

node to the principal proving the property, whose sequence

of labels is one of a specified set of sequences. We will see

in Section 5 that the existence of such a path can be trivially

mapped to an X.509 certificate chain that, since we guaran-

tee it has no cycles, can be validated with standard X.509

certificate chain tools [5]. Since the property is associated

with the sequence of labels in a path from a particular an-

chor node, rather than with a single label, we do not need

to have a global agreement on the meaning of individual la-

bels. The matching of label sequences also helps to control

delegation, as we will see in Section 3.

It may be cumbersome to list all the sequences of labels

for which the end-node of the path starting at a particular

anchor node would be allowed a particular type of access

to a resource. We therefore specify Access Control Lists

(ACLs) [13] by using templates which provide a compact

representation of a set of valid sequences. The set of tem-

plates that we allow is an easily-computable subset of regu-

lar path expressions.

Experience of using our scheme for securing a

distributed component management framework (Smart-

Frog [10], see Section 5) led us to look for a higher-level

abstraction for distributed access control which would al-

low us to reason about sets of principals with similar access

control behaviour, rather than having to consider each prin-

cipal separately. This abstraction, the domain, is described

in Section 4.

The rest of this paper is organized as follows: Section 2

gives a brief overview of existing distributed authorization

schemes. Section 3 describes our own in more detail. Sec-

tion 4 presents it in a more formal way and derives tractabil-

ity properties. Section 5 is an overview of our first imple-

mentation in SmartFrog. Section 6 summarizes our conclu-

sions and describes future work. Finally, we give a usage

example in the Appendix.

2. Related Work

Traditional access control typically relies on authen-

tication, i.e., ensuring the identity of the requester, and

then mapping that identity to a set of access rights for the

protected resource. Following that model, authorization

schemes based on X.509 [3] try to map the requester to

a globally unique Distinguished Name (DN) derived from

a hierarchical Certificate Authority (CA) structure. Some

refinements that are currently being proposed include at-

tribute certificates that can associate roles to identities [8],

and proxy certificates for delegation that do not require a

fresh DN [9]. Unfortunately, it is very difficult to agree

on globally-unique and human-understandable names that

could guide authorization decisions. This is even more dif-

ficult across federated organizations which are not mutually

trusting [6].

Trust management schemes (PolicyMaker [2],

KeyNote [1], and SPKI/SDSI [7, 19]) solve the global

naming problem by dropping the requirement that the

globally-unique identifier is easily understandable to

humans, and using instead a public key. This allows direct

authorization based on keys and security credentials that

associate local names or attributes to them. Typically, they

K2

K1

K2 K3

K4

stu
prof stu

Node 1

owner

gold

Node 2

owner

friend

Node 3

boss

Node 4

silver

K1 K1

K3

K3

K3

K3

K4

K4

Figure 1. An example with local bindings.

also support delegation by expressing the delegation target

explicitly, by its public key, or implicitly, by declaring

some of its required attributes. A generic policy engine

can then combine these assertions about the requesting

principal, together with a local policy, to enforce access

control on a particular resource. Using SDSI local names as

roles was more explicitly introduced in a trust management

system in [14]. New trust management schemes [17] add an

XML-like flavour to the previous ideas but, unfortunately,

allow non-monotonic policies in some cases.

Our approach can be described as a minimalist role-

based trust management framework, in which all the roles

correspond to the existence of an acyclic path from a given

anchor principal to the requester with an specified sequence

of labels. Since the role is defined by the sequence of labels

and the existence of such a path, not just on the existence

of a single label, the individual labels do not have to have a

unique global interpretation. The requirement that the path

be acyclic allows us to reuse existing security mechanisms

conforming with [5] and (as we will see) makes delegation

more intuitive. Also, we do not allow attribute-based del-

egation in the traditional sense [19], and this enables the

policy engine to be very simple, and makes it much easier

for clients to figure out which credentials are required [15].

However, if we define a role by simple enumeration of all

the relevant sequences of labels, this could lead to unman-

ageably complex ACLs. Therefore, we introduce a notation,

based on an easily-computable subset of regular path ex-

pressions [16], that allows us a compact expression of ACLs

based on path label sequences.

K1

K2

K4

K3

stu

stu

prof

gold

silver

owner
owner

friend

boss

issuer: K1

label: prof

subject: K3

issuer: K2

label: owner

subject: K1

(SELF:owner:prof)

Figure 2. Graph representation of Figure 1.

3. Overview

In this section we will give an indication of how our dis-

tributed authorization framework works, delaying to Sec-

tion 4 a more formal presentation. Figure 1 shows a typi-

cal set-up with four principals K1, K2, K3 and K4, repre-

sented by their public keys. Each principal has a set of local

bindings that associate labels to other principals. These la-

bels may describe properties of the principals. Labels are

not necessary locally unique, for instance K1 binds both

K2 and K4 with label stu. A principal can have more than

one local binding, for instance K2 binds K3 both with label

silver and with label gold. Therefore, to identify a princi-

pal uniquely we should rely on its public key, not on labels.

Figure 2 shows how we implement distributed authoriza-

tion in this framework. The graph shown is just a simple ab-

straction of Figure 1 where principals become nodes in the

graphs and directed labelled edges represent local bindings

between the principals. In this context, a node makes a local

binding visible to the world by issuing a certificate that con-

tains his public key, the target’s public key, and the label of

that binding. Note that similarly we can make a path in the

graph visible by forming a certificate chain with one certifi-

cate per edge in the traversed sequence. For example, since

there is a directed path from K2 to K3 traversing edges

(K2, owner, K1) and (K1, prof, K3), K3 could obtain

the certificates associated with these edges to form a chain,

and by presenting this chain and demonstrating knowledge

of the private key matching K3, could prove that there is

a path with labels owner : prof from K2 to K3. The

path can be seen to be acyclic since the keys K1, K2, K3

in the certificate chain are all different. Now K2 could

allow access to a local resource to requesting principals

who can prove the existence of an acyclic path with labels

owner : prof from K2 to the requester.

Instead of directly listing valid label sequences in an

ACL [13] associated with a resource, we use a more com-

pact representation of sets of paths whose existence will

permit the end node to access the resource. This represen-

tation, which we call a Simple Path Constraint (SPC) uses a

subset of regular path expressions [16] that is easy to com-

pute. An SPC starts with the anchor for the path, which is

either SELF if the path starts at the principal that is en-

forcing access control for the resource, or is the public key

of a principal from whom the path will begin. After the

anchor, an SPC has a sequence of patterns, where each pat-

tern is matched against single edge labels. (We could, for

instance, use Perl patterns over the set of labels. If a is

a label we write a also for the pattern that matches a and

no other labels.) The SPC optionally terminates with . . .,
which matches an arbitrary sequence of labels. In addition

there is a special SPC ANY BODY which allows any prin-

cipal to access a resource, and an operator ∨ for combining

SPCs, which allows the condition to be expressed that ac-

cess is allowed to those principals who can prove the exis-

tence of a path corresponding to any one of a finite number

of SPCs.

An SPC stands for the set of paths which start at the spec-

ified anchor node and whose sequence of labels matches an

initial subsequence of the sequence of patterns given in the

SPC. For example, in Figure 3, K5 is the dean of a univer-

sity college with a secretary K6, and K7 is a professor in

that school with university students K8 and K9. We also

assume that a high-school student K10 is doing a part-time

job helping the secretary with paperwork. Using prof, stu
as labels, the SPC (SELF : prof : stu) is associated with

university student status and can be proved by K8 and K9
to K5 since there are acyclic paths from K5 to K8 and to

K9 whose sequence of labels is prof : stu. K7 can also

prove the SPC (SELF : prof : stu) to K5 by proving the

subsequence (SELF : prof). The dean K5 can prove any

SPC to himself. Similarly, the SPC (SELF : admin : stu)
is associated with high-school student worker status, and the

principals K10, K6 and K5 can prove it to K5.

We allow the matching of initial subsequences, rather

than requiring a match to the full sequence, because of an

attack called the “sock-puppet attack”. To understand this

attack, look again at Figure 3. Suppose the dean required a

full match to the sequence (SELF : prof : stu) to iden-

tify students. Then the professor K7 could pretend to be a

student, by creating a fictitious student (the “sock-puppet”)

with public and private keys under her control, and creating

a binding from herself to the sock-puppet with label stu.

The dean could not differentiate between real students and

K5

K7

prof

stu stu

admin

dean

dean

K6

K10

stu

K8 K9

Figure 3. University example with SPCs.

the sock-puppet. We make this fact explicit in the model by

allowing the matching of initial subsequences, so that any-

one who can prove (SELF : prof) to K5 can also prove

(SELF : prof : stu) to K5. We also assume that any

principal can prove any SPC to himself.

In our framework only acyclic paths can be used to prove

any role. This requirement is needed if we want smooth in-

tegration with X.509 certificate chains (see [5]), since they

do not handle cycles well. Also, if paths containing cycles

were allowed, this could sometimes make the access control

rules less intuitive. In Figure 3, the dean probably wants

to specify different access controls for administrative tasks

than for dealing with the academic members of the school,

i.e., his professor and her students. If he identifies academic

members with (SELF : prof : ...), that is, professors and

anyone to whom professors have a binding, and cycles are

allowed in paths, then his secretary can prove academic sta-

tus to him! This is done using the path from K5 to K7
with label prof , then back to K5 with label dean, and fi-

nally, from K5 to K6 with label admin, which satisfies

(SELF : prof : ...).

We could use SDSI extended names to represent the

previous example, as shown in Figure 4, but it is more

difficult to scope the meaning of local name stu. The

dean could create the local names HighSchoolStu mapped

to extended name (K5 admin stu) and UniversityStu
mapped to (K5 prof stu), and assign different access con-

trol roles to each of them. Unfortunately, the flexibility of

extended names makes this fragile: if we have a new pro-

fessor K11 in the department, he might assume that the

secretary is maintaining the list of university students and

just define his local name stu to map to the extended name

(K5 admin stu). This completely defeats the access con-

trol measures of the dean, since now any high school stu-

dent working for his secretary can prove UniversityStu.

K5

K7

prof

stu stu

admin

K6

K10

stu

K8 K9

HighSchoolStu UniversityStu

K11

prof

K5 admin stu

K5 prof stuK5 admin stu

stu

Figure 4. University example with SDSI.

Note that the dean cannot control the length (or nature)

of the delegation chain, and that syntactically-similar local

names with different semantics are difficult to scope inside

an extended name, because SDSI’s name inference rules

can produce non-explicit dependencies. The result is that

most practical uses of SDSI extended names as authoriza-

tion roles require a global agreement on each identifier they

contain.

Let us compare our model with SDSI for this example.

First, in our model the dean has tighter control of the del-

egation chain, because there are no name inference rules

and every certificate in the chain must have a label match-

ing a pattern in the SPC. This makes it easier to scope the

meaning of local names in roles. Second, even though a

professor could easily claim university student status to the

dean, this is not explicit in SDSI. Third, the restriction to

acyclic paths makes it very easy to implement our model

on top of existing X.509 certificate path checkers/builders,

whereas SDSI requires a completely new security infras-

tructure. However, in a more generic context the flexibility

of SDSI names could be more important than the benefits

of our approach.

When we started using SmartFrog for deploying a large

number of components (see Section 5), we quickly realized

that we needed a higher abstraction to represent sets of prin-

cipals with consistent access control policies, rather than

reasoning about each principal separately. For this purpose,

we grouped principals into domains so that principals in the

same domain have a common understanding on how to pro-

tect their critical resources. This common understanding

relies on sharing an SPC that can consistently be proven to

members of the domain. Typically, this SPC protects criti-

cal resources, allowing strong access to these only to prin-

cipals who can prove the SPC. Note that a principal cannot

in general change the local bindings of other members of

the domain; to do that requires permission for a different

type of access, which we call meta access. Two principals

in the same domain may allow meta access to different sets

of principals. Also, we want to designate special principals

in a domain with resources that act as gateways to other do-

mains, and to do that, we relax the access control policies

to these resources, allowing a weak type of access, since

gateways are designed in such a way that they cannot affect

critical resources. Note that we could express every access

control in terms of SPCs, allowing a fully distributed autho-

rization model, but in this paper we de-couple how we form

the domains from the authorization technology used.

To finish this section, we list some advantages and dis-

advantages of our new authorization framework. On the

positive side, our authorization requirements are based on

roles which do not need to be globally unique, and this

avoids the creation of a complex parallel naming structure

(as in X.509) or agreement on the global meaning of special

names or tags (as in SDSI/SPKI).

There are also some limitations of this approach. The

absence of name inference rules makes it more difficult

to change authorization behaviour, and although by using

SPCs we can express a large set of conditions on acyclic

paths, we cannot allow access control specifications to

contain arbitrary regular path expressions without access

control computation becoming intractable (see Section 4).

Also, our delegation is not composable: for example if

K2 can prove (SELF : a : b) to K1 and K3 can prove

(SELF : c) to K2, it is not necessarily true that K3 can

prove (SELF : a : b : c) to K1. Whether our scheme’s

limitations outweigh its benefits will depend on the appli-

cation domain: but we had a good fit with the SmartFrog

framework, since SmartFrog provides an easy way for a de-

signer to set up and change access control lists, and tools

help with the lack of composability.

4. System Model

In this section we give a system model. We show that it

can be deduced in polynomial time whether one principal

has access of a given type to another principal. We then dis-

cuss the domains, which are sets of principals with similar

behaviour with respect to a specified type of access.

To define the system model, we start with a finite set

A of labels used in bindings, and a set P of patterns over

A. We require that the set of patterns P that will be used

in the system model has the properties that (i) each pattern

matches at least one a ∈ A, (ii) for a ∈ A, p ∈ P there

is a bound on the time it takes to determine whether or not

a matches p, and (iii) for each a ∈ A there is an element

of P that is matched by a′ ∈ A if and only if a′ = a. We

let a (ambiguously) denote this element of P as well as the

original element in A.

The system model will contain a finite nonempty set X
of principals, identified by their public keys.

Now we use X and P to construct the set of expres-

sions L. Elements of L are ∨-combinations of the simple

path constraints mentioned in Section 3, and will be used to

specify access control lists.

Definition

L is the set of expressions whose syntax is given by

L ::= ANY BODY | L0 | L0 : . . . | L0 ∨ L

L0 ::= SELF | x | L0 : p

for L ∈ L\{ANY BODY }, L0 ∈ L0, x ∈ X, p ∈ P

(In order to ensure that there is no ambiguity between

different elements of L, we assume that SELF and ANY-

BODY are not members of P , and that the symbols “:", “∨"

and “. . ." do not occur as part of any element of P .)

In practice it is unrealistic to allow access control to be

specified using elements of L containing arbitrarily many

symbols. We assume that there is a fixed positive integer b
such that only elements of L with b or fewer symbols can

be used in access control specifications.

Definition The system model consists of a finite nonempty

set X of principals, represented by their public keys; a set

of patterns P over a finite set of labels A; a subset B of

(X × A × X) with (x, a, y) ∈ B ⇒ x 6= y which will rep-

resent the bindings; a finite set AT of access types includ-

ing two distinguished elements META and STRONG;

and a function AccessControl:X × AT → {L : L ∈
L, L has at most b symbols}.

Any access type in AT other than META and

STRONG is referred to generically as WEAK . Some

shorthand which we will use in the rest of this section is

L1, SELF : s for s ∈ P ∗, and L[x/SELF]. These are

defined as follows.

Definition We write L1 for the set of elements of L which

are of the form SELF : s for some s ∈ A∗.

If s = p1.p2 . . . pn ∈ A∗ we write SELF : s to mean

SELF : p1 : . . . : pn. (If s is the empty string, SELF : s
just means SELF.) We say that a1 . . . an matches s iff ai

matches pi for all 1 ≤ i ≤ n.

If L ∈ L and x ∈ X , we write L[x/SELF] for the

elements of L obtained from L by substituting each

appearance of SELF in L by x.

The interpretation of B, the set of bindings, is that

(x, a, y) ∈ B iff the principal y can prove it satisfies a to x,

using a binding.

4.1. Meanings of AccessControl expressions

The interpretation of AccessControl is that x gives per-

mission to y for type t access iff either x = y, or y can prove

to x that y satisfies AccessControl(x, t), using a chain of

bindings. In detail:

If AccessControl(x, t) = y for some y ∈ X , this means

that the only nodes permitted type t access to x are x itself

and y.

If AccessControl(x, t) = SELF , this means that no

node other than x itself is permitted t-level access to x.

If AccessControl(x, t) = ANY BODY this means that

x grants type t access to all principals.

The functions : p, for p ∈ P , model single-step delega-

tion. If

AccessControl(x, t) = y : p1 : . . . : pn

for some n > 0, this means that x grants type t access to

z if and only if either x = z, or (there is a chain of bind-

ings of length m ≤ n from y to z such that no principal

appears more than once in the chain, and for 1 ≤ i ≤ m,

the label of the ith binding in the chain matches pi). For

s ∈ P ∗, AccessControl(x, t) = SELF : s means the

same as AccessControl(x, t) = x : s. Note that we al-

low the specification of either a fixed or a relative anchor

of the chain of bindings, the relative anchor being SELF .

Note also that if z can prove an access condition SELF : s′

to x for some initial substring s′ of s ∈ P ∗, then z can also

prove access condition SELF : s to x. (The same property

holds if the relative anchor specification SELF is replaced

by a fixed anchor specification y).

In the examples so far a maximum depth of delegation is

specified, but we are able to express certain types of require-

ments which allow unbounded delegation using expressions

in L which contain the symbol “. . .". If

AccessControl(x, t) = y : s : . . .

for some s ∈ A∗, this means that x grants type t access to z
if and only if either x = z, or (there is a chain of bindings

from y to z in which no principal appears more than once,

such that the labels in the chain match an initial substring

of s), or (for some z′ ∈ X there is a chain of bindings from

y to z via z′ in which no principal appears more than once,

such that the labels in the chain from y to z′ match the string

s). The meaning of AccessControl(x, t) = SELF : s : . . .
is the same as AccessControl(x, t) = x : s : . . . Thus in

these access conditions the anchor and patterns for the la-

bels for the first length(s) levels of delegation are speci-

fied, but there is no restriction on the labels for subsequent

delegation levels or the number of such levels.

Finally, ∨ has the usual logical-or semantics. We allow

finite ∨-combinations of elements of L to be in L because in

practice it is useful to increase the expressivity in this way.

For our applications we sometimes would like x to allow

type t access to y if y can satisfy one of a finite number of

different specified conditions.

Note that for all permitted values of

AccessControl(x, t), x is allowed type t access to

itself. It is a property of the systems that we model that a

principal always has type t access to itself, for all access

types t.

4.2. Access changes

If y has META access to x then y can change the values

of B(x, _, _) and AccessControl(x, _). If y has STRONG
access to x then y can perform sensitive operations on x,

but cannot perform the changes allowed by META access.

The other access types describe different types of WEAK
access to x, including access to a gateway component in x.

Notice that if for some principal x, AccessControl(x, t)
= SELF for all access types t other than META and

STRONG, then only x itself is allowed WEAK access

to x, and hence x does not contain a gateway component.

Since x has META access to itself, x can change its

own access controls and bindings. However, in our appli-

cation, principals are typically not allowed to decide au-

tonomously which META-level changes (if any) to carry

out. Instead, there is a system designer with a global view

who understands the system and delegates the carrying out

of these operations to the principals.

A malicious principal might autonomously decide to

carry out changes at the STRONG or META level. An-

alyzing the general effects of a malicious principal is out-

side the scope of this paper. However, the way that access

control is specified takes into account one particular mali-

cious behaviour, which is the sock-puppet attack mentioned

in Section 3. In a sock-puppet attack, a principal z creates

another principal (the sock-puppet) completely under the

control of z, creates bindings from z to the sock-puppet, and

exploits the fact that any access permissions granted to the

sock-puppet are effectively granted to z. Suppose principal

z uses a sock-puppet to gain access of a particular type, by

exhibiting a chain of bindings which match a string s ∈ P ∗

from a specified anchor principal to the sock-puppet. Since

the sock-puppet can only have bindings to it from z or from

another sock-puppet of z, this chain of bindings must pass

through z. Therefore there is a chain of bindings from the

anchor principal to z which matches an initial substring of

s. But this means that z could use this chain of bindings

to gain access, without having to use the sock-puppet. So

our method of specifying access control ensures that z can-

not use sock-puppets to gain any access permissions that z
would not have without using a sock-puppet.

4.3. Definition of →L

The purpose of this subsection is to set up definitions

which we will use later on, in particular the definition of

the relation →L for L ∈ L, which will be used to model

the access control for the system. We will show later (in

Lemmas 1 and 3) that the set of bindings B is characterized

by the formulae x →L y that it models, and y has type t
access to x if and only if B models x →AccessControl(x,t) y.

The relation →L is easier to define in the case L ∈ L1

than in general. If L = SELF : p1 : . . . : pn, and x 6= y,

then B models x →L iff there is an acyclic chain of bind-

ings from x to y whose labels match patterns p1, . . . , pn in

order. We begin our construction of →L by defining a sim-

pler relation, →֒L1,Y for L1 ∈ L1, Y ⊆ X , where if x 6= y
and LI ∈ L1 then x →L1 y is equivalent to (x →֒L1,Y y for

some Y), and the subscript Y records the set of principals

through which the chain passes.

Given B, x, y ∈ X, Y ⊆ X , and L1 ∈ L1, we define

B |= (x →֒L1,Y y) if and only if this can be derived using

the following derivation rules.

SELF: (x ∈ X) ⇒ (B |= x →֒SELF,{x} x)
Binding: (B |= x →֒L1,Y y, (y, a, z) ∈ B,

a matches p ∈ P, z 6∈ Y)
⇒ (B |= x →֒L1:p,Y ∪{z} z)

It is straightforward to check by induction on n that

(B |= x →֒SELF :p1:...:pd,Y y) ⇔ (there are some

x = x1, x2, . . . xd+1 = y ∈ X , all distinct, such that

Y ={x1 . . . , xd+1}, and for all 1 ≤ i ≤ d, (xi, ai, xi+1) ∈
B for some ai ∈ A matching pi.)

Now we use →֒L1,Y to define the relation →L for each

L ∈ L. If L ∈ L and x, y ∈ X , define B |= x →L y if

and only if it this can be derived using the two rules above,

together with following additional rules.

Drop-the-set: (B |= x →֒L1,Y y)

⇒ (B |= x →L1
y)

Sock-puppet: (L1 ∈ L1, p ∈ P, B |= x →L1
y)

⇒ (B |= x →L1:p y)

Dots-initial: (L1 ∈ L1, B |= x →L1
y)

⇒ (B |= x →L1:... y)

Dots-substring: (L1 ∈ L1, p ∈ P, B |= x →L1:p... y)

⇒ (x →L1... y)

Identity: (x ∈ X, L ∈ L) ⇒ (B |= x →L x)
Public-key: (B |= x →L y, L = L1 or

L = L1 : . . ., L1 ∈ L1, z ∈ X)

⇒ (B |= z →L[x/SELF] y)
Anybody: x, y ∈ X

⇒ (B |= x →ANY BODY y)
Or: (L1 ∨ L2 ∈ L, B |= x →L1

y
or B |= x →L2

y)
⇒ (B |= x →L1∨L2

y)

We now show that B is characterized by the set of for-

mulae x →L y that it models. If B is a binding, write

formulae(B) for the set of functions x →L y with x, y ∈
X, L ∈ L such that B |= x →L y.

Lemma 1 If B, B′ are bindings, i.e., they are subsets of

X × A × X such that ((x, a, y) ∈ B or ∈ B′) ⇒ x 6= y,

then

B = B′ ⇔ formulae(B) = formulae(B′)

Proof ⇐ is trivial. To prove ⇒, consider the formula

x →SELF :a y, where x 6= y ∈ X, a ∈ A. Suppose that

B |= x →SELF :a y. (Recall that a refers ambiguously to

the element of A and the element of P which is matched

by only this element of A.) Then there is a derivation of

B |= x →SELF :a y using the derivation rules. The final

step of the derivation must use the Drop-the-set rule or the

Sock-puppet rule. If it uses the Sock-puppet rule, the deriva-

tion must have previously proved x →SELF y; but it is not

possible to prove this, since x 6= y. Therefore, the final

step must have used the Drop-the-set rule, and the deriva-

tion must have previously proved B |= x →֒SELF :a,Y y
for some Y ⊆ X . In turn, the final step of the deriva-

tion of B |= x →֒SELF :a,Y y must use the Binding

rule and the fact that ((x, a, y) ∈ B); if (x, a, y) 6∈ B
then there is no way to derive B |= x →֒SELF :a,Y y.

Conversely, if (x, a, y) ∈ B then there is a derivation of

B |= x →SELF :a y using the derivation rules SELF, Bind-

ing and Drop-the-set. Therefore we have B = {(x, a, y) :
x 6= y ∈ X, a ∈ A, (B |= x →SELF :a y)}, and the result

follows. ⊓⊔

4.4. Graph interpretation of |=

We now give a description of |= in terms of finding

acyclic paths in a labelled directed graph.

Lemma 2 Suppose s = p1, . . . , pd ∈ P ∗. Let G(B, s)
be the directed graph whose set of nodes is X , with edges

labelled with elements of {p1, . . . pd}, such that for all

x1, x2 ∈ X and 1 ≤ i ≤ d there is a (unique) directed edge

from x1 to x2 labelled pi if and only if ((x1, a, x2) ∈ B for

some a matching pi). Suppose x 6= y ∈ X . Then:

(i) B |= x →֒SELF :s,Y y for some Y ⊆ X ⇔ (there is an

acyclic directed path from x to y in G(B, s) whose labels

in order form the string s).
(ii) B |= x →SELF :s y ⇔ (there is an acyclic directed path

from x to y in G(B, s) whose labels in order form an initial

substring of s).
(iii) B |= x →SELF :s:... y ⇔ (there is an acyclic directed

path from x to y in G(B, s) whose labels in order form a

string which is either an initial substring or an initial super-

string of s).
(iv) For all z ∈ X , B |= x →z:s y ⇔ (there is an acyclic

directed path from z to y in G(B, s) whose labels in order

form an initial substring of s).
(v) For all z ∈ X , B |= x →z:s:... y ⇔ (there is an acyclic

directed path from z to y in G(B, s) whose labels in order

form a string which is either an initial substring or an initial

superstring of s).
(vi) B |= x →ANY BODY y.

(vii) If L1∨L2 ∈ L, then B |= x →L1∨L2
⇔ (B |= x →L1

y or B |= x →L2
y)

Proof It is easy to prove parts (i), (ii) by induction on the

length of s. For part (iii), observe that the final steps in any

derivation of B |= x →SELF :s:... y must be an application

of Dots-initial rule followed by zero or more applications of

the Dots-substring rule. Therefore B |= x →SELF :s:... y
⇔ (B |= x →SELF :s′ y for some initial superstring s′ of

s). Notice that a string s′′ is an initial substring of an initial

superstring of s iff s′′ is either an initial substring of s or

an initial superstring of s. Hence part (iii) follows from part

(ii). To prove parts (iv), (v), observe that B |= x →z:s y
⇔ (x = y or B |= z →z:s y) and that B |= x →z:s:... y
⇔ (x = y or B |= z →z:s:... y). Therefore parts (iv),

(v) follow from parts (ii), (iii). Parts (vi),(vii) are trivial to

prove. ⊓⊔

It follows directly from Lemma 2 and Subsection 4.1 that

→L correctly models the access control, in the sense that the

following holds:

Lemma 3 For all x, y ∈ T, t ∈ AT , y has type t access to

x if and only if B |= (x →AccessControl(x,t) y).

4.5. Tractability

We have shown that given x, y ∈ X and t ∈ AT , the

question of whether or not y has type t access to x depends

on whether there is an acyclic directed path from x to y with

a particular property in a particular labelled directed graph.

Mendelzon and Wood show in [16] that for some proper-

ties that can be expressed as regular expressions on the set

of labels, (for instance, the property that the path has an

even length), the problem of determining in a labelled di-

rected graph whether there is an acyclic directed path with

the property is NP-complete. Mendelzon and Wood’s ap-

proach to this issue is to restrict the set of properties and/or

the set of graphs considered, to ensure that if there is any

path containing cycles with this property then there is an

acyclic path with the property, and then use polynomial-

time algorithms to find a path (possibly containing cycles)

with the property. However, this approach is not useful for

us, because for example in Figure 3 there is a path con-

taining a cycle from the dean to the secretary whose first

label is prof , but we do not want the secretary to have the

same permissions as the department members at the end of

an acyclic path from the dean whose first label is prof . In

this subsection we prove that provided the access condition

AccessControl(x, t) is in the restricted set of expressions L,

the problem of deciding whether y has type t access to x
can be decided in polynomial time.

In [4] there is a polynomial-time algorithm for deciding

whether there is a SPKI/SDSI certificate chain authorizing

a client to access a resource. Unfortunately the certificate

chain found may contain cycles, and as a result it is not

possible to use a direct analogy of the algorithm in [4] in

our context.

Our proof will use the following two general Lemmas

showing that certain kinds of acyclic paths in a directed

graph can be found in polynomial time. It is not difficult

to prove them by induction on d.

Lemma 4 For fixed d ≥ 0 there is an O(nmax{d,1})
algorithm to solve the following problem. Given a di-

rected graph G with node set X = {x1, . . . xn}, labelled

using a finite label set in such a way that there are no two

edges with the same label between the same ordered pair

of nodes, and a string s of labels with length(s) = d,

construct the Boolean function Sub(G, xi, s) on X , where

Sub(G, xi, s)[xj]=T iff there is an acyclic directed path in

G from xi to xj such that the labels of the edges of the path

in order form an initial substring of s.

Lemma 5 As Lemma 4, but with “O(nmax{d,1})"
replaced by “O(nd+2)", “Sub(G, xi, s)" replaced by

“Super(G, xi, s)", and “an initial substring of s" replaced

by “an initial substring or an initial superstring of s".

The following definition will be handy for stating the re-

sults of this subsection.

Definition For L ∈ L, the explicit delegation depth d(L) of

L is given by the following equations:

1. d(ANY BODY) = 0
2. If L = L1 ∨ L2 then d(L) =max{d(L1), d(L2)}
3. If s ∈ Pn, n ≥ 0, x ∈ X then d(SELF : s) =

d(SELF : s : . . .) = n
4. If L = L′[x/SELF], L′ ∈ L1 then d(L) = d(L′)

Now we can state a result from which the main result

of this subsection follows immediately. Note that in our

applications our graphs are generally sparse, and the order

of the time necessary to calculate the functions described is

considerably lower than the upper bound given in Lemma 6.

In this paper we are not trying to obtain the best bounds

possible, only to obtain polynomial bounds.

Lemma 6 For fixed integers d, d′, there is an O(|X |d+2)
algorithm for constructing the function Mx,L : X →{T,F}

such that Mx,L(y)=T iff x ⇒L y, for any x ∈ X and any

expression L in L such that the explicit delegation depth of

L is at most d and L contains at most d′ instances of the

symbol ∨.

Proof If d = 0 then L is either ANY BODY , SELF , or x
for some x ∈ X , and the result follows easily. So assume

d > 0; in particular, d(L) = d implies L 6= ANY BODY .

Any L ∈ L such that d(L) = d and L contains at most

d′ instances of the symbol ∨ can be expressed in the form

L1 ∨ L2 ∨ . . . Le for some 1 ≤ e ≤ d′ + 1, such that

d(Li) ≤ d for all i, and each Li is either in L1 or is equal to

L′
i[zi/SELF] for some zi ∈ X, L′

i ∈ L1. By part (vii) of

Lemma 2, ML = ML1
∨ . . . ∨ MLe

, so it suffices to prove

the case e = 1.

If L = L′[z/SELF] for some L′ ∈ L1, z ∈ X we

have Mx,L(x, y)=T ⇔ x →L′[z/SELF] y ⇔ z →L′ y ⇔
Mz,L′(y)=T. So it suffices to prove the case where L is re-

stricted to be in L1, i.e., to show that there is an O(|X |d+2)
algorithm to construct Mx,L for any x ∈ X and any L of

the form L = SELF : s or SELF : s : . . ., s ∈ P ∗. By

induction on d we can assume that d(L) = d, i.e., s ∈ P d.

Let s = p1 . . . pd ∈ P d. Let G(B, s) be the graph

with nodes X and a (unique) edge from x to y labelled

pi (1 ≤ i ≤ d) if and only if (x, a, y) ∈ B for some

a ∈ A matching pi. Since A is a fixed finite set and there

is an O(1) bound on the length of time it takes to deter-

mine whether a matches pi, there is an O(|X |2) bound on

the length of time it takes to construct G(B, s). Part (ii) of

Lemma 2 implies that determining whether B |= x →L y is

equivalent to determining whether there is an acyclic graph

from x to y in G(B, s) whose labels in order match an ini-

tial substring of s. It follows by Lemma 4 that once G(B, s)
has been constructed, there is an O(|X |max{d,1}) algorithm

for determining Mx,SELF :s

Similarly, it can be shown using part (iii) of Lemma 2

and Lemma 5 that given G(B, s), there is an O(|X |d+2)
algorithm for determining MSELF :s:..., and the result fol-

lows. ⊓⊔
The main result of this subsection follows immediately

from Lemmas 6 and 3.

Theorem Given principals x, y and access-type t, it can be

decided in polynomial time whether y has access of type t
to x.

4.6. Domains

When reasoning about the security of the system, it is

useful to have an abstraction level which allows reasoning

about sets of principals with similar behaviour, instead of

having to consider each principal separately. In this section

we define the domains, which are sets of elements all of

whom behave in a similar way with respect to a specified

type of access.

For t ∈ AT, x, y ∈ X , write Acc(x, t, y) for the

Boolean which is equal to T iff x permits access type t
to y. Lemma 3 expresses Acc(x, t, y) in terms of B, |=.

However, for all the definitions and lemmas in this subsec-

tion other than Lemma 8, we will not use B or |= directly;

we will only use Acc. So these definitions and lemmas can

still be used if different derivation rules are used, or B is

changed, or indeed an arbitrary semantics is given to Acc -

provided that Acc satisfies Acc(x, t, x) =T for all x and t.
(Recall that for every x ∈ X, t ∈ AT , x permits access of

type t to itself.)

For t ∈ AT , we define the relation ∼t on X as follows.

Definition If x, y ∈ X, t ∈ AT , then x ∼t y if and only if

the following three properties all hold:

(In-edge consistency)

∀z ∈ X, Acc(z, t, x) = Acc(z, t, y)

(Out-edge consistency)

∀z ∈ X, Acc(x, t, z)} = Acc(y, t, z)

(Scope consistency)

AccessControl(x, t) = AccessControl(y, t)

In-edge consistency means that for all z, x has type t
access to some z if and only if y has type t access to z. Out-

edge consistency means that for all z, z has type t access to

x if and only if z has type t access to y. Scope consistency

means that x and y use a syntactically identical simple path

constraint to specify which principals have type t access to

them. We impose the scope consistency requirement for

x ∼t y because it assists with the visualization of the access

properties of the system, making them easier for a system

designer to understand, and because (except in worst cases)

it allows pruning of some search spaces involved in finding

domains and checking security properties.

It is easy to check that the relation ∼t on X satisfies

reflexivity, symmetry and transitivity, that is, it is an equiv-

alence relation. Now we can define the t-domains.

Definition The t-domains are the equivalence classes of X
under ∼t.

Clearly, each principal is in exactly one t-domain. More-

over, the t-domains are consistent, in the following way:

Lemma 7 If x ∼t y then x, y will agree about the members

of their t-domain, in the sense that x ∼t y, z ∈ X implies

(x ∼t z iff y ∼t z).

Proof Follows immediately from the fact that ∼t is an

equivalence relation.

Since Acc(x, t, x) holds for all x and all t, it follows by

in-edge consistency that if x and y are in the same t-domain

then Acc(x, t, y).
We can think of a t-domain as a set of principals which

all behave in the same way with respect to access of type

t. This abstraction can be useful to visualize and rea-

son about the behaviour of the system with respect to this

type of access. (For use in our implementations, we are

particularly interested in the STRONG-domains and the

META-domains). Principals in the same t-domain will in

general have different behaviour with respect to other types

of access. For example, a web server may allow low-level

access to entities outside the STRONG-domain of the web

server, but these entities in general will not be able to ac-

cess web pages from other nodes in the same STRONG-

domain as the web server.

We now show, using Lemma 3, that given t it can be

decided in polynomial time what the t-domains are. We as-

sume that AT , A and b remain fixed as X grows. Once

again we note that for our applications, the order of time

necessary to do these calculations is considerably lower

than the upper bound given here.

Lemma 8 Let t ∈ AT . Set d = max{d(L) : L =
AccessControl(x, t′), x ∈ X, t′ ∈ AT }. There is an

O(|X |d+3) algorithm to calculate the t-domains.

Proof Recall that there is a fixed bound b on the num-

ber of symbols in an expression L such that L =
AccessControl(x, t′) for some x ∈ X, t′ ∈ AT . The ex-

plicit delegation depth of an expression is never greater than

the number of symbols in the expression, and it follows that

d is well-defined. For x, y ∈ X, t′ ∈ AT , checking whether

or not AccessControl(x, t) = AccessControl(y, t) in-

volves checking identity of at most b pairs of symbols, and

since |AT | is fixed it follows that there is an O(|X |2) algo-

rithm to check this for all x, y ∈ X . By Lemmas 3,6, there

is an O(|X |d+3) algorithm to calculate Acc(x, t, y) for all

x, y ∈ X .

Once all the values Acc(x, t, y) have been calculated, de-

termine the t-domain containing x for each x ∈ X , and the

set of unique t-domains, as follows. Order the elements of

X as x1, . . . x|X|. Set Reps, a list of t-domain represen-

tatives, to be (initially) equal to the string just containing

some x1, and set Domain(x1) = 1. Do the following for

1 ≤ i ≤ |X |: (Check whether there is j ∈ Reps such

that (xi, xj) satisfy the three conditions for xi ∼t xj given

in Definition 4.6. If so, set Domain(xi) = j. If not, set

Domain(i) = i and append i to Reps.) The t-domains are

the sets {xj : Domain(j) = i} for i ∈ Reps.

Everything after the calculation of the values of

Acc(x, t, y) can be done in O(|X |2) time. The result fol-

lows. ⊓⊔

5. Implementation Issues

We have implemented the authorization model described

in this paper and used it successfully to secure Smart-

Frog [10]. SmartFrog is an open source framework, writ-

ten in Java, for managing the life-cycle of distributed com-

ponents. SmartFrog provides a language, with powerful

templating and linking capabilities, to describe name/value

pairs associated with attributes of these components. (If you

do not like the default description language, it is very easy

to plug another description language, for example XML,

into the framework.) SmartFrog also provides a component

model that defines a simple life-cycle for individual com-

ponents, and describes how they compose to produce dis-

tributed work-flows that might, for example, coordinate the

starting or stopping of a complex distributed application.

Moreover, it also provides a fully-distributed deployment

engine, in which a peer creates local components according

to descriptions, and forwards to other peers partial descrip-

tions that detail other components that need to be deployed

Node Node Node A Node B

Node C Node D

Node A Node B

Node CNode D

Deploy

Figure 5. SmartFrog deployment example.

somewhere else. There is no centralized control; any peer

could deploy or forward any description. When a hierarchy

of components is created, possibly across multiple nodes, an

implicit directory-based service is created that allows users

to navigate the hierarchy, regardless of where the compo-

nents are deployed. The framework also provides mecha-

nisms to link these hierarchies, and these mechanisms are

independent of the implementation of the components.

Figure 5 shows how the authorization model fits into the

SmartFrog context. We start with a set of nodes, each run-

ning an instance of the deployment engine, and identified

by its public key. These correspond to the principals in the

system model. Note that these principals do not have any

trust relationship between themselves, but they each have

an owner, which is another principal not shown in Figure 5

that has META access to them. This owner will write and

sign a description that annotates components to be deployed

with security attributes expressed as SPCs, and the result is

that STRONG-domains will be formed dynamically. For

example, in Figure 5 after deployment of the signed de-

scription there are two STRONG-domains, one containing

nodes A and C and the other one nodes B and D. These do-

mains could use existing local bindings that have been pre-

configured statically, or some of the deployed components

could create new bindings.

So what do META, STRONG and WEAK access

correspond to in SmartFrog? All locally-deployed compo-

nents are allowed to interact between themselves freely, so

they should all have the same STRONG and META ac-

cess control lists governing access from the outside world.

There are four main types of controlled external interac-

tions. The first two types are that a component can ex-

port remote methods that can be called by external com-

ponents (using RMI [18]); and that a component can call

remote methods invoked on external components that have

exported them. These two types of interactions have the po-

tential to carry out sensitive operations on the components,

but not to remotely change local bindings, so they are al-

lowed if the external and local components have permission

for STRONG access to each other. However, we can cre-

ate gateways between STRONG-domains which are set

up by identifying a special component that will play that

role, and this allows these interactions if the participating

principals have WEAK access to each other, and one of

them contains a gateway component. This component ex-

ports a subset of its remote methods to principals in other

STRONG-domains, and it can also make controlled ex-

ternal calls to components in other STRONG-domains.

Extra care is taken in ensuring that these remote methods

will not give access to critical resources or carry out sensi-

tive operations on the components. The second two types

of controlled external interactions are that a component can

load external code or files; and that a component can lo-

cally deploy a SmartFrog description, which can have the

effect of creating new components or changing local bind-

ings. These may change the set of local bindings, and so

are allowed only if the code, files or description (respec-

tively) are signed with the key of a principal which is al-

lowed META access to the local component.

The signing of SmartFrog descriptions relies on a recur-

sive canonicalization process that allows a sub-description

to be replaced by its hash without affecting signature val-

idation. This allows intermediate peers to forward partial

descriptions without re-signing them. SmartFrog also pro-

vides mechanisms to allow trusted third parties to make

controlled changes to sub-descriptions, with their own self-

contained signature. The trusted third parties are specified

in immutable parts of the description; there is language sup-

port for specifying which parts are immutable, and who can

change the customizable parts. See [12] for details.

The mapping of exported local bindings onto X.509 cer-

tificates is straightforward. We do not use X.509 Distin-

guished Names (DNs) for authorization. In the place of the

DN in the certificate we put a string derived from a hash

of the appropriate principal’s public key. We add the edge

label to one of the standard fields available in the X.509

certificate format. We always validate the certificates first

using a standard X.509 certificate chain checker (this allow

us to use standard revocation methods), then we check there

are no cycles in the path, and we extract in order the labels

from the certificate chain to form a sequence of labels for

the path which are matched to the access control lists as de-

scribed in Section 4. We have customized Java SSL, class

loaders, and jar file verification libraries to perform these

extra checks.

6. Conclusions

In this paper we have presented a new trust management

scheme, which uses delegation with acyclic paths. We have

given a formal definition for the scheme and for a higher-

level abstraction, the domains. We have also described our

implementation in the context of SmartFrog, a management

framework for distributed components.

Our future plans are to build tools based on the formal

definition in order to analyse the effects of different security

policies, and to assist the design of a system satisfying a

given security requirement.

Acknowledgements

We would like to thank the other members of the Serrano

team for critical support in the development of this research.

In particular, Patrick Goldsack, as a technical lead for the

Serrano team, heavily influenced most aspects of this work.

We also would like to thank Brian Monahan from HPL-TSL

for earlier discussions on formal modelling and tool support

for SmartFrog security.

References

[1] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis.

The KeyNote trust-management system, version 2. IETF

RFC 2704, Sept. 1999.
[2] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust

management. In Proc. 17th Symposium on Security and Pri-

vacy, pages 164–173, Los Alamitos, 1996. IEEE Computer

Society Press.
[3] CCITT (Consultative Committee on International Teleg-

raphy and Telephony). Recommendation X.509: The

Directory—Authentication Framework, 1988.
[4] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos,

and R. L. Rivest. Certificate Chain Discovery in SPKI/SDSI.

Journal of Computer Security, 9(4):285–322, November

2001.
[5] M. Cooper, Y. Dzambasow, P. Hesse, S. Joseph, and

R. Nicholas. Internet X.509 Public Key Infrastructure: Cer-

tification Path Building. RFC 4158, Sept. 2005.
[6] C. Ellison and B. Schneier. Ten Risks of PKI:

What You’re Not Being Told About Public Key In-

frastructure. Computer Security Journal, 16(1), 2000.

http://www.schneier.com/paper-pki.pdf.
[7] C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M.

Thomas, and T. Ylonen. Simple public key certificate. In-

ternet Engineering Task Force Draft IETF, July 1997.
[8] S. Farrell and R. Housley. An Internet Attribute Certificate

Profile for Authorization. RFC 3281 (Proposed Standard),

Apr. 2002.
[9] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A secu-

rity architecture for computational grids. In Proceedings of

the 5th ACM Conference on Computer and Communications

Security (CCS-98), pages 83–92, New York, Nov. 3–5 1998.

ACM Press.
[10] Hewlett-Packard. The SmartFrog Reference Manual, July

2005. http://www.smartfrog.org.
[11] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M.

Smith. Implementing a distributed firewall. In S. Jajodia

and P. Samarati, editors, Proceedings of the 7th ACM Con-

ference on Computer and Communications Security (CCS-

00), pages 190–199, N.Y., Nov. 1–4 2000. ACM Press.

[12] A. Lain. Using the new SmartFrog Security. Hewlett-

Packard, Jan. 2006. http://www.smartfrog.org.

[13] B. W. Lampson. Protection. In 5th Princeton Symposium

on Information Sciences and Systems,. Princeton University,

Mar. 1971. Reprinted in Operating Systems Review 8,1 Jan-

uary 74.

[14] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of

a role-based trust-management framework. In Proceedings

of the IEEE Symposium on Research in Security and Pri-

vacy, pages 114–130, Oakland, CA, May 2002. IEEE Com-

puter Society, Technical Committee on Security and Privacy,

IEEE Computer Society Press.
[15] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed

credential chain discovery in trust management: extended

abstract. In P. Samarati, editor, Proceedings of the 8th

ACM Conference on Computer and Communications Secu-

rity, pages 156–165, Philadelphia, PA, USA, Nov. 2001.

ACM Press.

[16] A. O. Mendelzon and P. T. Wood. Finding regular simple

paths in graph databases. SIAM J. Comput., 24(6):1235–

1258, 1995.
[17] OASIS Open. OASIS eXtensible Access Control Markup

Language (XACML) TC, 2006.

[18] R. Oberg. Mastering RMI: Developing Enterprise Applica-

tions in Java and EJB. John Wiley & Sons, Inc., New York,

NY, USA, 2001.

[19] R. L. Rivest and B. Lampson. SDSI – A simple distributed

security infrastructure. Presented at CRYPTO’96 Rumpses-

sion, Apr. 1996. SDSI Version 1.0.

Appendix: Yet Another University Example

Figure 6 shows a simplified example of how we could

manage interactions between professors, university stu-

dents, teaching assistants (TAs) and the dean in a univer-

sity department. The dean P1 is in a STRONG-domain

defined by the SPC (SELF : dean), and can prove this

SPC to all other principals since they all have a local bind-

ing with label dean to P1. The dean defines who are valid

professors, (P2, P3 and P4 in the Figure), by creating lo-

cal bindings with label prof . The professors form another

STRONG-domain with scope (SELF : dean : prof).
Professors define who are their students (P5 and P6), and

TAs (P7 and P8), by creating local bindings with labels

stu and ta_course_, respectively. Note how professors

use a simple convention to generate local bindings for the

TAs that allows customization based on the course they are

teaching while respecting a pattern that is easy to match for

all TAs. For example, if TA P7 teaches course 101 and TA

P8 teaches course 211, and their corresponding professors

assigned them labels ta_101_ and ta_211_, respectively,

which are both easily matched by the pattern ta_ ∗ _. The

students form a STRONG-domain with scope (SELF :
dean : prof : stu) and the TAs form another STRONG-

domain with scope (SELF : dean : prof : ta_ ∗ _). Note

that a student or a TA has STRONG access to any other

P1

P3 P4P2

P7

P8

P5

P6

prof

ta_101_
stu

profprof

stu
ta_211_

dean

dean

dean

dean

dean

dean
dean

 (SELF:dean)

 (SELF:dean:prof)

 (SELF:dean:prof:ta_*_)

 (SELF:dean:prof:stu)

Interaction between STRONG-domains

WEAK via (SELF:dean:prof:ta_*_)

WEAK via (SELF:dean:prof:stu)

WEAK via (SELF:dean:prof:ta_*_)

WEAK via (SELF:dean:prof:stu)

Figure 6. Extended university example.

principal with the same role, regardless of who is her pro-

fessor. We assume that the professors have META access

to the students and TAs, and that the dean has META ac-

cess to everyone. The natural hierarchy of STRONG ac-

cess between STRONG-domains is implicitly derived in

this example by our choice of SPCs for STRONG access

control.

So what WEAK interactions are allowed between prin-

cipals? The dean is too busy to be interrupted by anybody.

The professors have designated one special gateway profes-

sor, P2, to deal with student issues, and another, P4, to deal

with TA issues. The students and TAs are allowed WEAK
access to the relevant gateway professor, for example by

submitting requests using a safe interface. All students al-

low all TAs WEAK access to send them assignments and

similarly, all TAs allow all students WEAK access to re-

ceive completed assignments from them.

Table 1 lists AccessControl(x, t) for all principals x
and access types t. Note that WEAK access restricted to

(SELF) means that a principal is not acting as a gateway.

Students could further refine the WEAK interactions

that they have with TAs by using the previously-ignored

course fields in the labels. For example, students may want

to ensure that they only receive assignments from TAs that

are teaching the courses that they are attending. This can

be easily implemented by using the complete label to de-

fine a new WEAK access control enforced by students,

Table 1. Access controls in the university department example.
Principal Description STRONG META WEAK

P1 Dean (SELF:dean) (SELF) (SELF)

P2 Professor (SELF:dean:prof) (SELF:dean) (SELF:dean:prof:stu)

P3 Professor (SELF:dean:prof) (SELF:dean) (SELF)

P4 Professor (SELF:dean:prof) (SELF:dean) (SELF:dean:prof:ta_*_)

P5 Student (SELF:dean:prof:stu) (SELF:dean:prof) (SELF:dean:prof:ta_*_)

P6 Student (SELF:dean:prof:stu) (SELF:dean:prof) (SELF:dean:prof:ta_*_)

P7 TA (SELF:dean:prof:ta_*_) (SELF:dean:prof) (SELF:dean:prof:stu)

P8 TA (SELF:dean:prof:ta_*_) (SELF:dean:prof) (SELF:dean:prof:stu)

for example a student x attending only course 101 could

set AccessControl(x, WEAK) to be (SELF : dean :
prof : ta_101_). The TAs always have certificates contain-

ing a fully specified label, so they do not need to be aware of

this refinement in the access control imposed by the student.

It can be argued that this simple example is just a hier-

archical structure that does not require the handling of arbi-

trary graphs. However, note how the fact that labels do not

need to be locally unique decouples knowledge that a prin-

cipal is a student from knowledge of who their professor is,

and how the substring rule implicitly models the department

hierarchy. Using syntactic conventions on the labels allows

us an alternative mechanism for describing the structure of

the trust relationships between principals. Moreover, if stu-

dents limit META access to themselves, they can overlay

a completely independent friends-and-family web of secu-

rity relationships that use the same public/private pair, but

cannot be affected by professors (or the dean!). Achieving

these properties in other security frameworks is not simple.

In particular, if the students want an overlay independent

of the dean in a framework using X.509-style Distinguished

Names (DNs), they will probably have to acquire different

DNs from the ones provided by the school.

