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Abstract

Complex systemsoftenbehavein unexpectedwaysthat arenoteasily predictable
from thebehavior of theircomponents; this is known asemergentbehavior. Assoft-
ware systemsgrow in complexity, interconnectedness, and geographic distribution,
wewil l increasingly faceunwantedemergentbehavior.

Unpredictable softwaresystemsarehardto debugandhardto manage.Weneed
better tools andmethodsfor anticipating, detecting, diagnosing, andameliorating
emergentmisbehavior. Thesetoolsandmethodswil l require researchinto thecauses
andnatureof emergentmisbehavior in softwaresystems.

1 Intr oduction

Most systemsresearchpapers describe new or better waysto do things. This should not
besurprising;computerscienceis primarily anengineering science,notanaturalscience,
andso our focusis usuallyon innovation,not onunderstanding theworld asit is.

Some OSresearchershave, however, lookedat understanding andpredicting system
behavior, ratherthandesigningandoptimizing it. Why thisshift in emphasis? Onecould
arguethat we have perhapsinnovatedtoo freely; the world seems not to urgently need
anotherOS kernel, or anotherdistributed shared memory protocol. And most of our
optimizationsare eithertoo minoror toodisruptive to influencewidespreadpractice.

But anotherexplanation for theshift lies in thecomplexity of thesystems we build.
Thebehavior of asimplesystemis ofteneasyto understandasthesumof thebehavior of
its componentparts;goodengineering practiceisto designcomponentswith well-defined
andreliable behaviors for precisely this reason.As systemsbecomemorecomplex, this
reductionistwayof understanding themfails; they behave in waysthat cannotfeasibly be
predictedfromunderstandingof theindividualparts,or were notexpectedby thesystem
designerwhoassembledtheparts,or both.

Theterm“emergentbehavior” (or sometimes“emergence”or “ensemble behavior”)
hasbeenusedto describe how complexbehaviors ariseout of simpler ones:

Emergent behavioris that which cannot be predicted through analysis
at any level simpler than that of the systemas a whole. Explanations of
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emergence,likesimplifications of complexity, are inherentlyillusory andcan
only be achieved by sleightof hand. This doesnot meanthat emergenceis
not real. Emergentbehavior, bydefinition,is what's left after everything else
hasbeen explained.– George Dyson[12,p. 9]

Dyson's definition is not the only one, andit oversimplifies; for example, how does
onedefinethe boundaries of “the systemasa whole,” whennetworks connect virtually
all of oursystems at somelevel? However, this definition capturesthecentral concept.

Emergent behavior can be beneficial. (Individual antsare dumb; ant colonies are
smarter.) But it is not alwaysbeneficial. For example,stock market panicsarea form of
unwantedemergentbehavior in whichtheirrationalbehavior of many individualinvestors
makes thingsworse for everyone. London's newish Millennium Footbridge had to be
closedafter “unexpectedexcessive lateralvibrations” on itsopeningday, whichweredue
to an unexpectedsynchronizationthat built up betweenthe footfalls of pedestriansand
themotion of thebridge[11].

I will usetheterm “emergentmisbehavior” 1 to focuson problematic behavior. I ex-
cludetheproblem of intentionally maliciousmisbehavior from this definition; although
attackerscould exploit emergentbehavior, thatshould beconsideredasa separateprob-
lem. Thispaperalsowil l alsoavoid discussingsituationsinvolving gametheory, in which
multiple non-maliciousactors are trying to exploit their knowledgeof eachother's beha-
vior; this is a topic for futureconsideration.

Evenwhen emergentbehavior is not inherentlybad,it is (by Dyson's definition) un-
predictable,andunpredictability is bad in manycomputersystemcontexts – especially
whenit comes to performance.If onecannotpredicttheusefulbandwidth of a network,
or thenumberof transactionspersecondfrom a server, this makesit hardto designand
managecomputersystems. While emergentbehavior is not theonly cause of unpredict-
ability, it is a central challenge for systemsresearchers.We are responsiblefor designing
many of themechanismsthatmaintaintheperformance“of thesystemasa whole,” both
onsinglecomputersandin distributedsystems.

This paper will also argue that we needbetter tools andmethodsfor anticipating,
detecting,diagnosing,andameliorating emergentbehavior. AlthoughDyson's definition
suggeststhat suchtools andmethodswill alwaysbe imperfect, that should not stopus
fromtrying.

2 Examplesof emergent misbehavior

To motivatetherest of this paper, this sectionpresents a few examplesof emergentmis-
behavior, in both non-computerand computer systems. Other examples are scattered
throughoutthepaper.

1Theterm hasbeenused beforeby others; for example, Nisley [30].
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2.1 Non-computer examples

On the first day that the Millennium Footbridge was opened to significant pedestrian
traffic, “unexpectedexcessive lateralvibrationsoccurred,” causing“a significantnumber
of pedestrians ... to have difficulty in walking.” [11] The bridge hadbe closed until
theengineersanalyzedandfixedtheproblem. The designers hadfailed to anticipatean
effect thatcould causethe synchronization of individual footfalls, both with each other
andwith thebridge's naturalswayingfrequency:pedestrianson a swayingsurfacetend
to synchronizetheir footstepswith thesway, evenif theamplitude is initially quitesmall.
Thebridgewould not have behaved in an unexpectedway hadnot the pedestriansalso
shown unexpectedbehavior.

TheMillennium Footbridgeproblemis somewhatsurprising,sincewe expectbridge
designersto understandthis generalkind of problem. In particular, the infamousfailure
of theTacomaNarrowsBridge,four monthsafter it openedin 1940, mustsurelybewell
known to every bridgedesignerin theworld [36]. Thatbridgefailed not becauseit was
too heavy, but becausein high winds its shapegeneratedenoughlift to inducemajor
oscillations, andit wasinsufficiently resistantto torsionalforces.

Soeven in a well-regulated engineering professionwith decadesor centuriesof ex-
periencewith unexpecteddynamic failures,and with regular useof computermodelling,
modern designssuchastheMillennium Footbridgestill suffer from emergentmisbeha-
vior. Thatshouldkeepushumble.

The civil engineeringliterature shows an awareness of the possibility of emergent
behavior onthepartof peoplewhousetheirsystems. Forexample,“[automotivetraffic] is
emergent behavior, i.e. theresult of theindividualdecisionsof drivers, pedestrians,traffic
controllers andother individuals.” [13]. Many traffic jams areemergent misbehavior;
traffic slowsor stopsevenwhenthereis no inherentimpedimentto its flow.

2.2 Computer hardware examples

We tendto treatdisk drives ascomponents that interactwith eachother, if at all, through
storagecontrollers andstorage protocolssuchasSCSI. In large installations, however,
large numbers of disk drivesaremountedonracks.It turns out thattheperformanceof a
drive canbeadverselyaffectedby thevibrations causedby seekactivity on neighboring
drives[2]. Disk drivemanufacturershave learnedto engineer“enterprise”drivesto resist
this behavior, which is onereasonwhy they costmorethanconsumer-marketdrives.

2.3 Examples fr om computer networking

The“Ethernet capture effect” is a clearcaseof emergentmisbehavior [33]. Thecapture
effectcreatessignificantunfairnessin certainCSMA/CDenvironments.

Considerthe case of a short LAN with exactly two hosts A andB, both with a lot
of packets to send,when a third host sendsits last packet for a while. A and B will
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simultaneously detectthat thechannelis now free,bothwill send,andthecollision will
causebothto calculatearandombackoff.

Suppose that A chooses a smallerbackoff than B. Then A will send, after which
bothhosts againseethechannelbecomefree,andboth sendagain, resultingin another
collision. However, sinceA “won” thefirst collision, its collision counterhasbeenreset,
andtheexpectedvalueof B's randombackoff is largerthanA's. SoA will probablywin
again,and B's chancesgetprogressively worse.

Thisproblemwasnot seenuntil Ethernethardwarehadbeen in significantcommercial
usefor many years. It only appearedonceEthernetchipswerefastenoughto fully exploit
thetiming allowedby thespecification.Thus,thecapture effect appearednot becauseof
a “problem” with any of the components,but becausethey wereimproved(in this local
sense) to anoptimal point. Thesolution wasto require a hostto insert a litt le extra delay
if it might bethewinninghostin acapture-effectsituation[33].

Routersperiodically exchangerouting protocol messages.Onewould hopethat, in
a large network, thereis a fairly constantbackground level of routing protocol message
traffic. However, Floyd andJacobsonshowedthat in a network with “manyapparently-
independentperiodic processes... these processes caninadvertentlybecome synchron-
ized.” [14] The transitionis not gradualbut abrupt,andis therefore hardto anticipateif
oneis notcarefully lookingfor it.

Two hosts exchangingdata using TCP canexperiencea badinteractionbetweenthe
TCPsender'sNaglealgorithm andthereceiver'sdelayed-acknowledgmentalgorithm; the
interactionis exacerbatedby thetraditional design of thenetwork stack[28]. Theprob-
lem is not just academic;usersregularly encounter this, especially whenusingnetworks
whosemaximumpacketsizeis largerthanthatof Ethernet.

2.4 Examples fr om distrib uted systemsand operati ng systems

Figure1 shows the structure of a simplemulti-tiereddistributed application, with nu-
merousclientsspreadthroughout the Internet,a front-endserver, a load-balancer, two
application servers,andtwo databaseservers.Theoverall applicationinvolvescollecting
periodic measurementreports from theclients, doingsome processing at theapplication
servers,andthenstoring theprocessedreportsin thereplicated database.

The loadbalancerin this systemhastwo jobs: it spreadtheworkloadevenly among
the available application servers, andit detectsthe failure of an applicationserver and
stopssending it work. Theloadbalancerdetectsfailure when anapplicationserver fails
to respondto a requestwithin a certain threshold latency(timeout).

Suppose that thesystemappearsto beworking perfectly whenit is first put into ser-
vice. However, asmonths go by, thedatabase latency increases; perhapsthe index effi-
ciency getsworseasit gets larger, or perhapstheworking set startsto exceedthesizeof
the database's cache.Supposealso that the load balancerhasbeen configuredto usea
relatively timeoutfor detecting thatoneof theapplicationservers hasfailed.

At somepoint, the systemstopsrespondingto requests.The databaselatencyhas
increasedto thepoint wheretheapplication serversare no longerrespondingto theload
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Figure1: Example multi-tiered distributedsystem

balancerwithin its configuredtimeout, andtheloadbalancer endsup declaringboth ap-
plication serversdead.In a variant of this problem,the loadbalanceralternatesbetween
applicationservers;aseachserver is forcedto handle thefull load,its latency exceedsthe
timeout,while theother, now unloadedserverappearsto recover.

Clearlythesystem asawholeis misbehaving. However, noneof thecomponentshave
failed,per se. Onecould arguethatthedatabaseserversshouldnotslow down over time,
but this couldbe hardto guarantee.Or onecouldarguethat someonechosethe wrong
timeoutfor theload balancer, but thaterror might nothavebeenobviouswhenthesystem
wasfirst tested.

Notethatthisexample is simplifiedandhasbeenconstructedfrom severalreal-world
examples(which cannot befurtherdescribedfor reasonsof confidentiality).

Readers shouldbeableto seeotherwell-known operatingsystem problems,suchas
priority inversion anddataraces,asexamplesof emergentbehavior.

2.5 Complex behavior in morecomplex systems

While the focusof this paperis on emergentmisbehavior in complex systems,many of
theexamplesshow thatemergentmisbehavior can happenin extremelysimple systems.
For example, the Ethernet capture effect andthe interactionbetween TCP's Nagleand
delayed-ACK algorithms both can arisein two-computersystemswith trivial applica-
tions. Perhapsthebestexampleof a simplesystemexhibiting complex behavior is John
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Conway's gameof Lif e [16], in which threesimple rulesgovern cellular automataon
a grid. It is nearly impossible to predict the long-termbehavior of even a small initial
configurationin Life.

If wecannotavoid unexpected behavior in suchsimple systems,we are veryunlikely
to avoid it in complex computersystems. And while emergentbehavior might be“f ascin-
ating” in thegameof Life, it is usually undesirable in computer systems.

3 Relatedwork

In 2001, StevenGribble argued“against a seemingly commondesign paradigmthatat-
tempts to achieve robustnessby predicting theconditionsin which asystemwill operate,
andthencarefully architecting thesystemto operatewell in those(andonly those) con-
ditions” [17]. Gribble's observationsandconclusionsoverlap considerably with mine,
but his proposedsolutionsfocussedon“designstrategiesthathelpto makesystemsmore
robust in the faceof the unexpected.” My focus(in the following sections)is on gain-
ing betterunderstanding of emergent misbehavior in complex software systems, which I
believe is a prerequisitefor improveddesign strategiesas well asimproved systemman-
agementtoolsand techniques.

Gribble specificallyidentified the problemof “unpredictablebehavior in the faceof
small perturbation,” or, more concisely, the “butterfly effect.” (The term is generally
ascribedto EdwardLorenz.) However, emergentbehavior neednotnecessarilyarisefrom
a smallperturbation;it might be inherent in theunperturbedbehavior of the systemasit
is designedor implemented.For example,bothof usreferto theexample of livelock(see
Section 5.1), but it is hardto seethis asanexampleof the“butterfly effect” (althoughit
doeshavea suddenonset).

Anotherwayto lookatthisis thatthebutterfly effectappliesto chaotic systems,where
even if onecandeduce the cause of oneinstanceof misbehavior, onestill hasno more
ability to predict thenextinstance. In many casesof emergentbehavior (including most
of the examplesin Gribble's paper), it might well be possible to gain sufficient insight
into a past unexpectedbehavior to beableto predictor prevent it in thefuture. (In fact,
while manycomplex systemsmisbehave, it is hard to argue thatall of thesesystemsare
actuallychaotic.)Therefore, I believe theissueof “small perturbations”is a redherring,
leadingto excessive pessimism.

Others have certainly lookedat theissueof emergentbehavior in enterprisesystems.
For example, the emphasis on self-management in IBM's autonomic computing vision
clearly leadsto emergentbehavior, aspointedout by KephartandChess[22], although
they focussedmoreon how to encourage(“design”)emergentgoodbehavior, ratherthan
to detect,diagnose,or prevent emergentmisbehavior.
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4 What is/isnot emergentmisbehavior?

A conceptsuchas“emergentmisbehavior” runstherisk of beingappliedbothtoobroadly
(“everything canbeseenasemergentbehavior” ) andtoo narrowly (“that's not emergent
behavior, because I canexplain it asa simple, deterministic process”). So in order for it
to beuseful, weneedsometestfor what constitutesemergentmisbehavior andwhatdoes
not.

Given thedefinition of emergentbehavior asthat “cannotbe predictedthroughana-
lysis at any level simpler than that of the system as a whole,” we can easily describe
certainkinds of misbehavior thatareclearly not emergent:

� Single-component bugs that break the whole system: If a critical component
of the system simply stopsworking, one expectsthe systemto fail, unless it is
designedto survive componentfailure.

� Inherently inefficient algorithms: Some algorithmic choicesare predictablyin-
efficient. For example,a replicatedfile systemthatcontactsreplicas seriallyrather
than in parallel will likely have sub-optimal performance. Onecould make this
predictionwithoutknowing how thereplicasbehave.

� Insufficient resources: The primitive resources (e.g., CPU, memory, network
latency andbandwidth, storagecapacity, latency, andbandwidth) inherentlypre-
vent the systemfrom performing at the required level. For example,you cannot
sendagigabyte of dataovera56 Kbit/sec dialupin 1 minute.

While Dyson wrote that “emergent behavior, by definition, is what's left after
everything elsehasbeen explained,” it seems unsatisfactory to defineemergent misbe-
havior simply asthatwhich doesnot fit into oneof thecategoriesof predictable misbe-
havior. Approachingthe question from the otherdirection,we cantry to list properties
common to someor all instancesof emergentmisbehavior2:

1. Inherentlyhard-to-predictbehavior: Evenwhen therulesgoverning a system's be-
havior arefully known anddeterministic, it canbehard to predicthow it behaves
asa whole; if the systemalsoincludesprobabilistic or non-linearcomponents,or
its scaleis quitelarge,the prediction problembecomesmuchharder.

2. Suddenchangesin behavior: If a system's behavior canchangerapidly between
modes with greatly differentperformancecharacteristics,its behavior will be hard
to predict when the parametersthat control this modeswitch areneartheir crit-
ical point. For example,the Ethernet capture effect arose“suddenly” whenchip
designersmanagedto reducethe inter-packetgap to the minimum allowed by the
specification.

3. Amplification of seemingly minor behaviors: Prediction is easierwhen we canig-
nore minor deviationsfrom expectedbehaviors, especially in larger-scale systems
where we hopetheseindividual deviationsareswampedby the law of largenum-
bers. If, however, theseminor deviations canbe amplified through effects such

2StevenGribble suggestedthis approach[18]
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asresonancesor coincidences, they canleadto unpredictablebehavior unlessthe
amplificationmechanismsareunderstood.

Onehard-to-resolve question is whetherchaotic misbehavior is bestunderstood as
emergent or not. If onedefinesa chaotic systemasonewhose global behavior, while
deterministic, is sosensitive to initial conditionsthat it appearsto beunpredictable,then
it hassomeof the same characteristics as emergence. This might seemto clash with
Dyson's definition, which suggests that emergent behavior is ultimately predictable if
understood at theright scale. However, another definition of emergence:

I'll not call a phenomenonemergentunless it is recognizableand re-
curring: whenthis is the case,I'll say the phenomenon is regular. That a
phenomenon is regular doesnot meanthat it is easyto recognizeor explain.
– John Holland[20]

doesseem to includechaoticbehavior, if it is recurring. Also, Parunakand Vander-
Bok [31] explicitly separate“emergentchaos” from truerandomness.

4.1 Inductive vs. deductive understanding

Perhapsa convenientway to draw the line is to look at the bestapproachavailable to
understanding the connectionbetweensystemdesign andsystemperformance. If one
canstartwith a description of a system's componentsandconfigurationandreason for-
ward (inductively) to accuratelypredictthe system's behavior, thenthis behavior is not
emergent.

If onecannotuse induction,onemight still beable to work from observations of the
system's behavior andreasonin reverse(deductively) to infer what actuallyhappened,
oncesomethingdoesgo wrong. Thesesystemsexhibit emergentbehavior, andgiventhe
deductive inference,there might be some hopeof directly removing the causesof their
emergent misbehaviors.

Finally, there aresystems(for example,chaoticsystems)whereevenin principle it is
impossibleto explain eitherinductively or deductively exactly whatcausesmisbehavior.
These systemsalso exhibit emergentbehavior, but attempts to fix their emergentmisbe-
haviors might be limited to finding ways to constrain the system or to nudgeit out of
misbehavior, ratherthan directly fixing theunderlyingcause.

Deductively-understandableemergentmisbehavior is the most interesting kind, be-
causeoncewe understandwhatcausesaparticularmisbehavior, wecanusuallyfix it.

5 A research agenda

Themainpointof thispaperis to proposearesearchagendato dealwith emergentmisbe-
havior in complex softwaresystems,with aninitial focuson theoperating system aspects
of theproblem.
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This agenda parallelsonethathas beenproposedin thecontextof distributedcontrol
systems for manufacturing systems,in a paperby ParunakandVanderBok [31]. Their
paperdescribedexamplesof emergentmisbehavior in a specific domain, theuseof auto-
matedwelding systems.Several of the ideaspresented here are basedon their paper,
somewhattransposedfor thedifferentproblem domain.

Major issueson theproposedagendainclude:

1. Creating a taxonomy of emergentmisbehavior : Whatgeneralkindsof emergent
misbehavior do we seein software systems?Experiencesuggests thatmany, if not
most, kinds of emergentmisbehavior could indeedbeput into a reasonablysmall
number of categories, although it is not yet clearwhether thereis a large setof
possibleidiosyncraticemergentmisbehaviors thatare hard to categorize.

2. Creating a taxonomy of typical causes: We alsoneeda taxonomyof frequent
causesof emergentmisbehavior, tied to specificinstancesof thetaxonomyof mis-
behaviors.

3. Developing detection and diagnosis techniques: Given that emergentmisbeha-
vior is, almostby definition, unexpected,perhapsthe key stepin dealing with it
is to detectit. We should develop techniquesbothto detectgenerickinds of mis-
behavior, basedon the taxonomyof misbehaviors,andto allow programmersand
systemmaintainersto look for application-specific misbehaviors.

4. Develop prediction techniques: Evenif emergentmisbehavior is inherently hard
to predict from first principles, that shouldnot keepus developingtechniques to
predict it wheneverpossible,perhapsfrom advancesymptoms.

5. Develop amelioration techniques: While it mightbeimpossible to fully eliminate
emergent misbehavior, it is certainly possibleto reducethechancesthatit will oc-
cur, boththroughcareful systemdesign and throughgeneric techniquesthataddress
well-known causes.

6. Develop testing techniques: While improveddetection mechanisms areusefulin
debugging an undeployed application and in monitoring a deployed application,
most significantsystemsgo througha testing phase betweendebuggingandde-
ployment.Onegoalof testingis to exposeproblemssoonerthanthey wouldappear
in real-life use; we needtechniquesto probefor plausibleemergentmisbehaviors
during testing.

Each of thesestepsis coveredin moredetailbelow.

5.1 Create an emergent misbehavior taxonomy

As a first step,we need to understand generalcategoriesof emergent misbehavior in
softwaresystems.Thelist couldinclude:

� Thrashing: Competition over a multiplexed scarce resource in which the costs
of switching between the sharingpartiesdominatesthe useful work that can be
performed. It is useful to distinguishthisform of thrashing,whichcould beavoided
throughbetterscheduling or coordination,from unavoidablecaseswherea system
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is simply underprovisioned for thetaskathand.
� Unwantedsynchronization: A setof systemswhosetime-varyingbehavior should

be uncorrelatedinsteadendsup correlated. This meansthat resourceallocations
basedon statisticalmultiplexing can fail. (The routing-messagesynchronization
describedby Floyd andJacobson[14] andtheMillenniumFootbridgeproblem[11]
both into this category, asdoesthe possibly apocryphal story of municipal water
systemsfailing whentoomanypeopleflushtheir toiletsduringacommercialbreak
in a popularTV program.)

� Unwanted oscillati on or periodicity: A systemoscillatesbetweenstatesbecause
of anaccidentalor poorly-designedfeedbackloop betweenmultiple components.
Parunak and VanderBok describe an example from a collection of spot-welding
robots[31].

� Deadlock: Progressstallsbecauseof a circularsetof dependencies. Deadlockcan
clearly resultin a systemwhereeachcomponentfunctions “correctly” except with
respectto anarbitrary protocolfor avoiding deadlocks, andthey only result from
theinteractionsbetweencomponents.

� Li velock: Thethroughput of a systemdecreases, perhapsto zero, astheinput rate
increasespast a certain point. Livelock differs from deadlockin that throughput
is restored if the input rate decreases. Livelock can result when a systemwith
multiple components, eachof which is necessaryfor the completeprocessingof
a request, gives too much priority to one of the componentsandhencesstarves
anothercomponentas thesystembecomessaturated[29].

� Phasechange: Thebehavior of a systemchanges radically asthe result of anin-
cremental changein somevariable. In otherfields,such asphysics, such sudden
changescanoftenbemodelledasphasechanges. Somecomputersystems canalso
exhibit phasechange.For example, ad-hoc wireless networks often have critical
thresholds, for local parameterssuchas per-nodepower levels, that control cer-
tainglobalproperties,suchaswhetherthenetwork is mostly-connectedor mostly-
disconnected[24].
As wedevelopsystemsof largenumbersof relatively simple nodes(suchasDHTs,
sensor networks, in addition to ad-hocwirelessnetworks) wherethe nodesinter-
actwith eachother, ratherthanwith a global coordinator (e.g., a Webserver), we
mightseeadditionalexamplesof critical thresholdsand densitiesthatleadto phase
changes.

� Chaotic behavior : asdiscussed in Section4.

This taxonomydoesnot include“f aults” or “componentfailures.” In fact, noneof the
misbehavior examplesin this paperstemfrom componentfailures. Their causesare in-
herentin the designor implementation of the system. Of course,a componentfailure
couldtriggera manifestation of system-level designfailure.

It might beuseful to arrangethis taxonomyinto a hierarchy. ParunakandVanderBok
categorizethreekindsof emergentbehavior [31]:

1. Systemsattractedto afixed,stablepoint (perhapsnot thedesiredoperating point)
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2. Oscillation
3. Chaoticoperation

but these meta-categoriesmight bespecificto control systems, andinsufficient for com-
plex distributed systems. For example,we couldadd“suddenchangesin behavior.”

5.2 Create a taxonomyof causes

Recognizingan instanceof emergentmisbehavior asa memberof oneof thecategories
listedabove is simply a first step towardssolving theproblem. Wealso needa taxonomy
of frequentcausesof emergentmisbehavior, tied to specific instancesof thetaxonomy of
misbehaviors.

For example, the ultimate cause of a thrashingproblem might be as simple as a
memory leak (causinga program's address space to grow in a way that destroys loc-
ality). It might be failure to perform admissioncontrol, allowing too many otherwise
well-behaved jobs into a system with limi ted resources. It might bean implementation
bug in a schedulingalgorithm, which in attemptingto avoid poor scheduling decisions
doesexactly theopposite.

For each category from Section5.1, it should be possible to build up a list of
commonly-occurring genericcauses. That list thencanbe appliedin thesearchfor the
cause(s) of a specificemergentmisbehavior problem. Such a list probablycannot be ex-
haustive – many systemsmight exhibit sui generisemergent misbehavior – but it could
still coveraconsiderablenumberof cases.

Notethatbecauseemergentmisbehavior is anaspect of anentiresystem,not of just
onecomponent,many or most of thecausesin this list will themselvesinvolve multiple
components. Forexample, thecauseof thereceivelivelockproblemin aninterrupt-driven
network stack[29] wastracedto theuseof multiple, finite-length queuesin thenetwork
protocolstack,along with thedecisionto give processingpriority to thewrong queue.

In the context of control systems,Parunakand VanderBokstatethat nonlinearity
causes emergentbehavior, andthat“[three] of themostcommon sourcesof nonlinearity
arecapacitylimits, feedbackloops, andtemporal delays” [31]. All of thesecausesapply
to software systemsmore generally, but there areothercausesof emergentmisbehavior,
suchas:

� Unexpectedresource sharing: Thesystemdesignerassumedthatseparatecom-
ponents hadaccess to separateresources, whenin fact theresourcesare sharedand
insufficient.

� Massive scale: Thenumberof communicatingcomponentsin thesystemis large
enoughto giveriseto complex globalbehavior, evenif individualcomponentshave
simplebehaviors.

� Decentralized control: We generally value decentralized system designs over
centralized ones, even as we recognize that centralization often makesit easier
to implementand managea system. HubermanandHogg [21] have provided a
theoreticalanalysis of how distributed systemsthatlackcentral controls,andhence
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suffer from incompleteknowledgeanddelayedinformation,canexhibit oscillations
andchaos.

� Unexpectedinputs or loads: Manysystems reactbadly to unexpectedinputs[27]
or unexpectedloads [7]. Not all such misbehavior is emergent. Remember,
however, the point raisedin Section 1 that it might be hard to definethe bound-
ariesof “the systemasa whole,” andsometimesimplementorsdraw it too close to
whatthey are responsiblefor implementing.

Both Parunak andVanderBokandHubermanandHogg point out that delay is one
of the principle contributorsof emergent misbehavior. Delay is inherentin distributed
andnetworkedsystems. While it might seemthat theprimaryundesiredconsequenceof
latency is simply thatthesystemwill run slower, latency might beevenmorepernicious
in how it makesa systemharder to understandandharderto control. As Hubermanand
Hogg point out, delay (possibly aggravatedby incompleteknowledgeas the result of
messageloss)meansthatno singleviewpoint canhave a fully consistentandup-to-date
view of global systemstate;this is whatleadsto oscillationsandchaos.

Delay also createsemergentmisbehavior for more mundanereasons. For example,
system implementorsoftenusetimeouts to detectfailure. Choosing the right timeoutis
seldomeasy; static choicesalmost alwaysfail sooneror later, andadaptive schemesare
hardto designevenfor relatively simplecasessuchasTCPretransmissions.

5.3 Develop detection and diagnosistechniques

Giventaxonomiesof emergentmisbehaviors and their causes,we canthendevelop tech-
niques to detectemergentmisbehavior, andperhaps even to diagnose their causes. In
many cases, this might be thebest thatwe cando, if emergentbehavior is thatwhich is
inherentlyunpredictable.

To supportdetection,anoperatingsystemor distributedsystems infrastructure could
monitor its applications for generic patternsof behavior consistentwith thrashing,live-
lock, unwantedperiodicity, etc. This approachhasshown success, with techniquessuch
astheonedescribed by Romeret al. for dynamic pagemapping[35].

ParunakandVanderBok describea numberof general-purpose techniquesfor detect-
ing emergentbehavior in control systems, based on their division of causes [31]. For
example,periodic behavior canbedetected throughFourier analysis;similar techniques
couldbeemployed by operating systemsandtheirassociatedmanagementsystems.

The diagnosis problem will be harderto solve. One approachmight be to expose
thesystemdesigner's expectationsto thediagnosissystem.Patrick Reynolds (with Janet
Wiener, Amin Vahdat,myself, andseveral others)hasdevelopeda system,calledPip,
for diagnosingbehavior problems in distributedsystems [34]. In the Pip approach, the
programmer expressesexpectationsabout systemperformanceandcausal structure, in-
cluding both local andpath-basedglobalexpectations. A middlewarelayerthenmonitors
applicationbehavior (includingcommunicationbetweennodes)to detectviolatedexpect-
ations.Thisapproach buildsonPerlandWeihl' s “performanceassertion checking”tech-
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nique for parallel applications[32].
Note that the Pip approachdoesnot dependon the ability of programmersto write

formal (and correct) specifications, nor doesit result in any proof of correctness. We
expect programmers to initially createincorrectexpectations, and then to evolve both
theseandthedistributedsystemimplementation, until thebehavior seemscorrectandno
violations remain. Pip does not attempt to eliminatethe trial-and-error approach,only
to make it less painful, andto gently force programmers to confront the possibility of
unexpectedbehavior.

Systemsdesignerscanhelpthediagnosiseffort by includingenoughmonitoring and
logging thatdiagnosistoolscould construct aglobal view of systembehavior, and atlevels
of detail sothatunanticipatedbehavior canbecaptured. Systemdesigners tendto resist
addingsuch“superfluous” monitoring becauseof its added runtime cost, but the costs
of system failure canbe even larger andcertainly less predictable. (The SpaceShuttle
programprovidesan illuminatingexample: the Shuttle was deployed for two decades
before NASA decidedto useon-board camerasto seethatfoamwasbreaking off. 3

Recent researchaimed at the developmentof playback tools (for example, Re-
Virt [23]) andanalysistools (for example, Pinpoint [6], Cohenet al. [8], andPip) in-
creasesthe benefit of ubiquitouslogging. Perhapsasthe benefits becomemorebroadly
acceptedas way to reducethe overall costs of managing complex systems, the minor
operationalcosts of loggingwill becomemoreacceptable.

5.4 Develop prediction techniques

In many contexts, it canbemoreimportantto have predictableperformance thanto have
optimal performance. If performance is predictable but suboptimal, onecanbudgetfor
theanticipatedinefficiency(especiallygiventhathardwarecostsare increasinglydomin-
atedby system administrationcosts). However, if performanceis normally optimalbut
sometimes unpredictablybad,thesystemownermight beforcedto planfor anarbitrary
worstcase.This, for example, wouldmake it hardto seta competitivepricefor a service
offering. Predictiontherefore complementsdetection;presumably onewould prefer to
know aboutapotentialproblem in advance,not justafterit hasstarted.

Performanceprediction covers manyareas. For example,if there are no controls on
theload imposed on thesystem (e.g.,a Webserver on thepublic Internet)thenit might
sufficeto predict thepatternsof load. But in many cases, the ability to predictemergent
misbehavior could bequiteuseful.

Thevery conceptof “predictingemergentbehavior” might seemoxymoronic, given

3It is unclear whether the prior decision not to usecamerasto look for foam problems was because
NASA wastrying to avoid the extra weight of 1980s-vintage cameras,or whether they were alreadyin
placebut therewas insufficientdownlink bandwidth. Thelatterhypothesis is supportedby a news report
that theColumbia AccidentInvestigation Boardrecommended that thatNASA “maketheshuttle'son-board
cameras,which captureimagesof theexternaltankafter separation,availableduring theascent,rather than
justpost-flight. That way, data may beusedto assessdebris strikesor other ascentanomaliesearlier in the
process.” [25].
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Dyson'sdefinitionof emergentbehavior asinherentlyunpredictable.Thisapparentpara-
dox hastwo possible resolutions. First, Dyson's definition describesbehavior “unpre-
dictable throughanalysisat any level simplerthanthat of the systemasa whole.” This
leavesopenthepossibilityof prediction techniquesthatoperateat thewhole-system level.
Second,while it might not bepossible to predictspecificemergentmisbehavior, it might
still bepossible to predictthatasystemcould beproneto someunspecifiedform of emer-
gentmisbehavior. Third, it might be possible to predict the onset of seriousemergent
misbehavior fromadvancesymptoms.

Giventhatemergentmisbehavior might oftennot betheresult of componentfailure,
traditional failure predictiontechniques,suchas those basedon Mean Times Between
Failures(MTBFs) or fault trees,mightbeinapplicable. MTBF datawouldonly beuseful
if system-wide failureswereprimarily causedby componentfailures.Onecannotbuild
a fault treethat incorporatestheprobability of anunanticipatedevent. JohnWilkessug-
gests, however, thatit might bepossibleto work backwardsfromabound onmisbehavior,
perhaps asimposedby a detectionmechanism,to derive limits on the eventsthatcould
provokesuchmisbehavior [37].

Onepossibleapproach to onsetprediction would bethe creationof a corpus of “sig-
natures” basedon observed eventsleadingup to detectedemergent misbehavior in real
systems. Whenoneor more such signatures are recognizedin a running system,this
couldserveasanindicatorthatmisbehavior is aboutto appear. For example,supposeone
doesa spectralanalysisof responsetimesat regular intervals. If the spectrumstartsto
include strongerfrequency componentsthanin the past, this could indicatetheonset of
oscillationbefore it becomesharmful.

Thecreation of suchsignaturescould beguidedby ataxonomyof causes,asdescribed
in Section5.2. Of course, this approach cannotpredictall misbehavior, andmight not
alwaysgeneratepredictionsfar in advanceof realproblems.

Cohenet al. [9] described a technique,basedon statisticalmodellingandinference,
that automatically extractssignaturesfrom systemmetrics, especiallyduring problem
events.Thesesignaturesareconstructedsothatthey canbematchedagainst signaturesfor
similar previous events;if thepreviousevents arelabelledwith diagnoses,thematching
eventscan suggestadiagnosis for acurrentproblem.Sofar, they haveonly experimented
with detectionof component failure or overload, notwith emergentmisbehavior.

5.5 Develop amelioration techniques

In somecases,an emergentmisbehavior mighteitherbeimpossibleto diagnose,or avalid
diagnosis might point to a cause thatcannot befixeddirectly. In thesecases,techniques
for ameliorating or working aroundemergentmisbehavior might benecessary.

For example, Floyd andJacobsonshow how theinjectionof someextrarandomnessin
thetimingof routing updatescanbreakupunwantedsynchronization; theyeven“quantify
how muchrandomization is necessary” [14]. Interestingly, ParunakandVanderBokalso
describehow randomizationin timingcansolveproblemswith defectiveweldsfromauto-
matedspot-welding guns[31].
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Similarly, although it is possible in theory to modify a network stackto avoid live-
lock [29], in practiceonemight not have accessto thesourcecode. In this case, livelock
canstill bepreventedby placinga rate-limiting boxupstreamfrom thesystem(s)subject
to livelock; this box candiscardexcessive traffic soonenoughthat the remaindercanbe
processedappropriately by theprotectedsystem.

Mary Baker[3] haspointedout thatcivil, structural, andmechanicalengineersstrive
to avoid suddenfailures.Theirdesignsoftensacrifice efficiency in favor of guaranteeing
gradual failure, which gives time to react, and in favor of making it possibleto regu-
larly inspectfor signsof impending failures. In ananalogous distributed-systemcontext,
Maniatiset al. describedhow their peer-to-peersystemexplicitly usesrate-limiting “to
prevent our adversary's unlimited resourcesfrom overwhelming the systemquickly, and
integratedintrusiondetectionto preemptunrecoverablefailure” [26].

Gribble[17] suggested severaldesignstrategies,including theuseof systematicover-
provisioning, admissioncontrol, introspection, andclosedcontrol loopsfor adaptation.
(However, experiencesuchasreported by Parunak andVanderBoksuggest that adding
control loopsmight notsolvetheemergentbehavior problem.Further, Brown andHeller-
steinpoint out thatadding automation, suchasfeedbackcontrol, to asimpler systemcan
itself leadto unexpectedbehavior [4].) Gribblealsosuggesteddesigningsystemsthatex-
pectfailures andrecover rapidly from them,rather thansimply trying to designsystems
thatnever fail.

George Candea[5] pointsout that overall system dependability canbe reducedby
components that behave unpredictably, especiallywhen buggy, stressed, or comprom-
ised. He suggeststhat system predictability can be improved by eitherby preventing
unpredictedcomponent behavior from propagatingthroughout the system,or by pro-
tectingcomponentsagainstunexpectedinputs. For example,“softwarefuses” (suchas
firewalls) dropout-of-boundsinputsbefore they reacha vulnerablecomponent; “output
guards” detectapparent componentfailure andstop thesuspectmodule,“thus coercing
Byzantineinto fail-stop behavior.” However, Candea's proposal assumesthat misbeha-
vior is apparentateithertheinputor theoutputof acomponent;system-wide (emergent)
misbehavior might eitherbeinvisible at this level, or might besopervasive thatsoftware
fusesor guardswould effectively shut down theentiresystem.A defense againstemer-
gentmisbehavior is more likely to takethe form of “damping” (to slow the propagation
of problems)or “clamping” (to limi t the amountof damagethey cancause).

Thegoal of muchdistributedsystems researchhasbeen thecreationof complex sys-
temsthatalwayswork, both throughfundamental design principles(e.g.,two-phasecom-
mit andreplication) andthroughbetterengineering (e.g., modelchecking andtype-safe
languages).However, thechallengeof emergentmisbehavior is that this “correctby con-
struction” goal, while a worthy pursuit, probably will never be achieved, and we will
alwaysneedameliorationtechniques.
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5.6 Develop testing techniques

No matterhow good we are at developing techniques to avoid, diagnose, repair, and
ameliorateemergentmisbehavior, thecomplexity of any givensituation could well con-
foundtheseefforts. Onemight believe thatanemergentmisbehavior problemhasbeen
solved,whenit hasonly beendriventemporarily into hiding.

Therefore we will needtechniquesto testsystemsfor emergentmisbehavior. Testing
for complex systemsalwaysposeschallenges.For example,ArmandoFox [15] suggests
thattheconditionsthatleadto emergentmisbehavior arenotalwaysknowableor anticip-
atedduring testing.

A solutioncouldincludetechniquesfor reproducingpreviouslyencounteredemergent
misbehavior, or ratherthe stimuli andconfigurationsthat led to them. It might also be
possibleto generatetheconditionsfor emergentmisbehavior automatically, basedon the
taxonomy of causesdescribedin Section5.2.

Otherchallenges includethe needfor automatic detectionof emergent misbehavior
(see Section 5.3),becauseextensive testingprotocolsmustbeautomatedandcannotrely
onhumansto detectif a testhasfailed.

6 Potholeson the roads to the futur e

Several computercompanieshavearticulatedambitiousvisionsfor thefutureof complex
computing systems, motivated by the increasinginability of unassistedhumans to man-
ageor comprehendthesesystems. These visions will have to confront the problem of
emergent misbehavior. This is notaninsurmountable problem,but it is aninevitableone.

For example, IBM hasarticulated a vision of autonomic computing, in which sys-
temsself-configure, self-optimize, and self-heal [22]. HP hasarticulatedan Adaptive
Enterprisevision, in which theIT environmentsupports rapidchangesin business-level
strategies and tactics[19]. In many ways, thesetwo initiatives (and thosefrom other
companies)overlap,but they differ somewhatin emphasis.

Onepotentialconcernaboutself-optimizing andself-healing systemsis thattheyadd
additional automatedcontrol loops to existing systemswith complex behavior. These
extra control loops might themselves lead to emergent misbehavior, especiallyduring
self-healing actions, which might notbeaseasily testedasthoseused in normalsituations.
(Conversely, ArmandoFox pointsout[15] thattheuseof control loopsinherentlyexposes
measurements of importantaspects of systemstate,which could beusedboth to detect
controller saturationandaspartialinput to a detector for system-widemisbehavior.)

6.1 Service-Ori ented Architectures

Many companies(includingHP, IBM, Microsoft, andothers) areeagerly adopting the
conceptof Service-OrientedArchitectures (SOAs), in which a set of potentially inter-
changeablecomponentservices(self-containedsoftwareagentsthat interactvia network
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communication)canbecomposedrapidly to address novel IT requirements.Thevision
assumes that implementation detailsof the individual servicesare irrelevant to theuser,
andthusSOAs reducethe explicit complexity of a composed application. However, as
Gribble points out, “low-level interactionbetweenindependentlybuilt componentscan
have profound implicationson the overall behavior of thesystem.” As a result,an SOA
application might stil l exhibit unexpectedcomplex behavior.

TheSOA vision of thefutureseemsto bebasedon threeconcepts:
� Construction by composition: Complex systemscanbeconstructedbycomposing

well-defined,well-documented,andwell-tested components (services).
� Correctnessby construction: Eachcompositionstepis simple enoughthat it is

easyto besure thatthestepmeets itsspecification,eitherby informal inspectionor
by formalverification.

� Loosecoupling via networks: componentservicescan bein administratively and
geographicallydistinctplaces.

These conceptshave obvious benefits, which is why SOAs areattractive. However, the
“correctness by construction” propertymight be valid only locally, rather thanglobally
throughouta complex system,oncethe systemhasbeencomposedout of independent
pieces.The“compositionassumption” – thatonecanbuild asystem with adesiredbeha-
vior knowing only the behaviors of the components– ignoresthepossibility of emergent
behavior.

In the Millennium Footbridge case, for example, the bridge itself was a carefully
designed“component” (andthe implementationdid, in fact, meet the design specifica-
tion). The peoplewho walk on it werealso thought to be reasonablywell-understood
components. The interaction between the bridgedesignandlittle-known aspectsof hu-
manbehavior wasnot expected,however. (The tendency of peopleto synchronizetheir
footstepswith small lateral motions hadbeen reported before, but without any useful
quantification[11].)

SOAs will probably introducedistribution into many applications that arecurrently
relatively integrated.As discussedin Section5.2, the useof networks,especiallywhen
they spansignificantdistances,mayincrease thelikelihoodof emergentmisbehavior, by
addinglatency to the inter-serviceinteractions.

6.2 Declarativeapproaches

ColemanandThompson[10] describe the useof Model-Based Automation(MBA) for
themanagementandconstructionof IT services. Also, see[19, page9] for a description
of theuse of MBA for for application construction. In contrastto theuseof imperative
scriptsfor managingsystems, MBA usesdeclarative modelsfor componentsand their
composition. Theexpectedadvantageof a declarative approach,asopposedto the tradi-
tional procedural approach,is thatdesignersin theory needspecifyonly what theywant
done,not how to do it.

Theparadoxof thedeclarative approachis that, while it shouldbea moredirectway
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to expressthe desired goals,it canbequitehardto predict the result of a large number
of rules. This canleadto the declarative analogof “spaghetticode,” wherethe declar-
ative programmer haslayered rule uponrule in anattempt to elicit thedesiredbehavior,
whereasaprocedural programmerwould moredirectly tell thesystem“do it thisway.”

Thusthe declarative approachrunsthe risk of allowing theconstruction of complex
model-driven systemswhosebehavior is both unpredictableandopaque.Anyonewho
hastried to debug a setof sendmail [1] rulesshouldunderstand this problem. This is not
to say thatdeclarative programming or MBA is a badidea,but we will have to anticipate
andreactto the potential for emergentmisbehavior in suchsystems.

Onemightspeculatethatthereisacritical level of behavioral complexity below which
it is feasibleto program declaratively, but above which the attemptto do so becomes,
in effect, an increasinglychaoticprocessof “programmingby emergentbehavior;” that
is, an attemptto reachthe desiredresults by manipulating declarative rules,without a
predictableconnectionbetweenrulesandresults.In otherwords,theremightbe limits to
system design techniquesthatattempt to hide thecomplexity of theunderlyingproblem.

7 Summary

We will never beableto solve all emergentmisbehavior problems, especially assystem
complexity increases. However, wecanandshouldbeableto recognizerecurring patterns
of misbehavior, andto learnenoughfrom past experienceto be ableto avoid or repair
many of thecommon patterns. Computer systemsresearch hasan importantrole to play,
especially in the detection anddiagnosis of emergentmisbehavior, because of the need
for and difficulty of constructinga global view.
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