O}

invent
Proportional Service Allocation in Distributed Storage Systems
Yin Wang, Arif Merchant
Information Services and Process Innovation Laboratory
HP Laboratories Palo Alto
HPL-2006-184
December 13, 2006*
storage Fully distributed storage systems have gained popularity in the past few
virtualization, years because of their ability to use cheap commodity hardware and their
performance high scalability. While there are a number of algorithms for providing
isolation, differentiated quality of service to clients of a centralized storage system,
differentiated the problem has not been solved for distributed storage systems.
service, Providing performance guarantees in distributed storage systems is more
proportional complex because clients may have different data layouts and access their
sharing, fair data through different coordinators (access nodes), yet the performance

queueing guarantees required are global.

This paper presents a distributed scheduling framework. It is an
adaptation of fair queuing algorithms for distributed servers. Specifically,
upon scheduling each request, it enforces an extra delay (possibly zero)
that corresponds to the amount of service the client gets on other servers.
Different performance guarantees, e.g., per storage node proportional
sharing, total service proportional sharing or mixed, can be met by
different delay functions. The delay functions can be calculated at
coordinators locally so excess communication is avoided. The analysis
and experimental results show that these new algorithms can enforce
performance goals under different data layouts and workloads.

* Internal Accession Date Only

This is an extended version of a paper to appear in the USENIX Conference on File and Storage Technologies, 13-
16 February 2007, San Jose, CA, USA Approved for External Publication
© Copyright 2006 Hewlett-Packard Development Company, L.P.

Proportional Service Allocation in Distributed
Storage Systems

Yin Wang' Arif Merchant
University of Michigan HP Laboratories
yinw@eecs.umich.edu arif@hpl.hp.com

Abstract

Fully distributed storage systems have gained popularnithe past few years
because of their ability to use cheap commodity hardwarelzaid high scalabil-
ity. While there are a number of algorithms for providingfeliéntiated quality of
service to clients of a centralized storage system, thel@mbas not been solved
for distributed storage systems. Providing performanaanutees in distributed
storage systems is more complex because clients may hdeeedifdata layouts
and access their data through different coordinators ésaoedes), yet the perfor-
mance guarantees required are global.

This paper presents a distributed scheduling frameworik. dh adaptation of
fair queuing algorithms for distributed servers. Speclficapon scheduling each
request, it enforces an extra delay (possibly zero) thaksponds to the amount
of service the client gets on other servers. Different peréoce guarantees, e.g.,
per storage node proportional sharing, total service ptap@l sharing or mixed,
can be met by different delay functions. The delay functicers be calculated at
coordinators locally so excess communication is avoideke dnalysis and ex-
perimental results show that these new algorithms can enfogrformance goals
under different data layouts and workloads.

1 Introduction

The storage requirements of commercial and institutiongduwizations are growing
rapidly. A popular approach for reducing the resulting @rst complexity of manage-
ment is to consolidate the separate computing and storaganaes of various applica-
tions into a common pool. The common resources can then bagedriogether and
shared more efficiently. Distributed storage systems, agEkderated Array of Bricks

(FAB) [21], Petal [17], and IceCube [12], are designed toses large storage pools.
They are built from a number of individual storage nodes,raks, but present a sin-
gle, highly-available store to users. High scalabilityn®tner advantage of distributed

*This is an extended version of a paper to appear at the USENIe@ence on File and Storage Tech-
nologies, San Jose, February, 2007
This work was done during an internship at HP Laboratories.

RAN
g e i

Figure 1:A distributed storage system

storage systems. The system can grow smoothly from smaltge{scale installations
because it is not limited by the capacity of an array or maimi chassis. This satisfies
the needs of service providers to continuously add appicatorkloads onto storage
resources.

A data center serving a large enterprise may support thagsafrapplications. In-
evitably, some of these applications will have higher sienaerformance requirements
than others. Traditionally, these requirements have beenby allocating separate
storage for such applications; for example, applicatioitb Wigh write rates may be
allocated storage on high-end disk arrays with large cachklete other applications
live on less expensive, lower-end storage. However, maintaseparate storage hard-
ware in a data center can be a management nightmare. It weplceEerable to provide
each application with the service level it requires whilarstg storage. However, stor-
age systems typically treat all I/O requests equally, winietkes differentiated service
difficult. Additionally, a bursty I/O workload from one apghtion can cause other
applications sharing the same storage to suffer.

One solution to this problem is to specify the performanapirement of each
application’s storage workload and enable the storagesyst ensure that it is met.
Thus applications are insulated from the impact of worklsadyes in other appli-
cations. This can be achieved by ordering the requests fremapplications appro-
priately, usually through a centralized scheduler, to dvate access to the shared
resources [5, 6, 25]. The scheduler can be implemented iseihver or as a separate
interposed request schedul@r 13, 18, 28] that treats the storage server as a black box
and applies the resource control externally.

Centralized scheduling methods, however, fit poorly witktrihuted storage sys-
tems. To see this, consider the typical distributed stosygéem shown in Figure 1.
The system is composed of bricks; each brick is a computdr &i€CPU, memory,
networking, and storage. In a symmetric system, each buok the same software.
Data stored by the system is distributed across the bricksically, a client accesses
the data through aoordinator, which locates the bricks where the data resides and
performs the 1/0O operation. A brick may act both as a storagkerand a coordina-
tor. Different requests, even from the same client, may ledinated by different
bricks. Two features in this distributed architecture praws from applying any ex-

isting request scheduling algorithm directly. First, tl@inators are distributed. A
coordinator schedules requests possibly without the kedgé of requests processed
by other coordinators. Second, the data correspondingjieesgs from a client could
be distributed over many bricks, since a logical volume instridbuted storage system
may be striped, replicated, or erasure-coded across makgpr]. Our goal is to de-
sign a distributed scheduler that can provide service giees regardless of the data
layout.

This paper proposes a distributed algorithm to enfproportional sharingf stor-
age resources amosgyeamf requests. Each stream has an assigmeight and the
algorithm reserves for it a minimum share of the system dgpgacoportional to its
weight. Surplus resources are shared among streams witanding requests, also in
proportion to their weights. System capacity, in this cattean be defined in a variety
of ways: for example, the number of I/Os per second, the nuofigy/tes read or writ-
ten per second, etc. The algorithm is work-conserving: souece is left idle if there
is any request waiting for it. However, it can be shown eaift a work-conserving
scheduling algorithm for multiple resources (bricks in system) cannot achieve pro-
portional sharing in all cases. We present an extensiondd#sic algorithm that
allows per-brick proportional sharing in such cases, or thogethat provides a hybrid
between system-wide proportional sharing and per-bricpg@rtional sharing. This
method allows total proportional sharing when possiblelevensuring a minimum
level of service on each brick for all streams.

The contribution of this paper includes a novel distribusetieduling framework
that can incorporate many existing centralized fair qugudlgorithms. Within the
framework, several algorithms that are extensions to -Htad Fair Queuing [8] are
developed for different system settings and performanasgoTo the best of our
knowledge, this is the first algorithm that can achieve te¢aVice proportional sharing
for distributed storage resources with distributed sclerduWe evaluate the proposed
algorithms both analytically and experimentally on a FABtsyn, but the results are
applicable to most distributed storage systems. The mesattfirm that the algorithms
allocate resources fairly under various settings — diffedata layouts, clients access-
ing the data through multiple coordinators, and fluctuasieryice demands.

This paper is organized as follows. Section 2 presents avieveof the problem,
the background, and the related work. Section 3 describediswibuted fair queue-
ing framework, two instantiations of it, and their propesti Section 4 presents the
experimental evaluation of the algorithms. Section 5 cares.

2 Overview and background

We describe here the distributed storage system that canitlgns are designed for, the
proportional sharing properties they are intended to eefahe centralized algorithm
that we base our work upon, and other related work.

[R s N

Brick Brick Brick

Figure 2: Data access model of a distributed storage system. Different clients may have
different data layouts spreading across different setsiok& However, coordinators are fully
symmetric. They know all data layouts and can handle requiesh any client.

2.1 Distributed Storage Systems

Figure 2 shows the configuration of a typical distributedage system. The system
includes a collection of storagwicks which might be built from commodity disks,
CPUs, and NVRAM. Bricks are connected by a standard netwaek as gigabit Eth-
ernet. Access to the data on the bricks is handled by the twdods, which present
avirtual diskor logical volumeinterface to the clients. In the FAB distributed storage
system [21], a client may access data through an arbitrargdawator or a set of coor-
dinators at the same time to balance its load. Coordinalsodendle data layout and
volume management tasks, such as volume creation, delettamsion and migration.
In FAB, the coordinators reside on the bricks, but this isrequired.

The data layout for a volume is usually designed to optimizgerties such as
load balance, availability, and reliability. In FAB, a legi volume is divided into a
large number oegmentsvhich may be distributed across bricks using a replicated o
erasure-coded layout. The choice of brick-set for each satjis determined by the
storage system. Generally, the layout is opaque to thetslien

The scheduling algorithm we present is designed for suclstailaited system,
making a minimum of assumptions. The data for a client maglakedut in an arbitrary
manner. Clients may request data located on an arbitraf eicks at arbitrary and
even fluctuating rates, possibly through an arbitrary sebofdinators.

2.2 Proportional Sharing

The algorithms in this paper support proportional sharifuigsources for clients with
queued requests. Each client is assigned a weight by thendem every time inter-
val, the algorithms try to ensure that clients with requestsding during that interval
receive service proportional to their weight. It is easyhow that a perfectly propor-
tional resource sharing is not always possible in a disteithgtorage system; in these
cases, the algorithms attempt to come as close as possihieitteal.

More precisely, 1/0 requests are grouped into service etasalledstreams each
with a weight assigned. For example, all requests from atceuld form a single
stream. A stream ibackloggedf it has requests queued.

A streamf consists a sequence of requq@ts.p’}'. Each request has an associated

Stream 1 Stream g

‘Coord‘ "’,C/é/(’) d‘

Brick A Brick B

Figure 3: Digtributed data. Streamf sends requests to brick only while streamg sends
requests to bottl andB; ¢y = ¢4 = 1.

service cost:ost(p}). For example, with bandwidth performance goals, the coghimi
be the size of the requested data; with service time goalsegsing time of a request
might be its cost. The maximum request cost of strgamm denotedcost’?***. The
weight assigned to strearfiis denotedys; only the relative values of the weights
matter for proportional sharing. (Note: the notation we isseummarized in Table 1
for convenient reference.)

Formally, if W (1, t2) is the aggregate cost of the requests from str¢esarved
in the time intervalty, t2], then the unfairness between two continuously backlogged
streamsf andg is defined to be:

Wit ta) Wyt to)
¢f ‘bg

A fair proportional sharing algorithm should guarantee i3 is bounded by a
constant. The constant usually depends on the stream téi@stcs, e.g.cost’;""".

The time intervallt, 2] in (1) may be any time duration. This corresponds to
a “use it or lose it” policy, i.e., a stream will not suffer dhug one time interval for
consuming surplus resources in another interval, nor wilenefit later from under-
utilizing resources.

In the case of distributed data storage, we need to defineisuebe proportionally
shared. Let us look at the following example.

(1)

Example 1 Figure 3 shows a storage system of two bridkand B, with equal service
capacities. If both streamgandg are backlogged afl, how should we allocate the
service capacity of bricld? [|

There are two alternatives for the above example, whichdadwo different mean-
ings for proportional sharing. The firststgle brick proportional sharing.e., service
capacity of brickA will be proportionally shared. Many existing proportiosakring
algorithms fall into this category. However, stregralso receives service at brid,
thus receiving higher overall service. While this appeaisbiecause streamdoes a
better job of balancing its load over the bricks than str¢amote that the data layout
may be managed by the storage system and opaque to the;diergthe quality of
load balancing is merely an accident. From the clients’ poiiriew, streamy unfairly
receives less service than stream

SYMBOLS DESCRIPTION

o Weight of streamy

Py Streamf’s i-th request

Pra Streamf’s i-th request to brickd

cost(-) Cost of a single request

cost’y'*" Max request cost of streaih

cost’y 4" Max cost on brick4 of f

Wi (t1,t2) Aggregate cost of requests served
from f during intervallty, t2]

batchcost Total cost of requests in between

(P%4) p}_4 andp ,, includingp’ ,

batchcost’?4* | Max value ofbatchcost(p)

A(Y) Arrival time of a request

S(+) Start tag of a request

F(") Finish tag of a request

v(t) Virtual time at timet

delay(+) Delay value of a request

Table 1:Some symbols used in this paper.

The other alternative itotal service proportional sharingln this case, the share
of the service streanf receives on brickd can be increased to compensate for the
fact that streang receives service on brick, while f does not. This problem is more
intricate and little work has been done on it.

Itis not always possible to guarantee total service promaeat sharing with a work-
conserving scheduler, i.e., where the server is neverdedtwhen there is a request
gueued. Consider the following extreme case.

Example 2 Streamf requests service only from brick, but equally weighted stream

g is sending requests t4 and many other bricks, which are otherwise not loaded. The
amount of servicegy obtained from the other bricks is larger than the capacityl of
With work-conserving schedulers, it is impossible to equeathe total service of the
two streams by adjusting the service allocatiodlat |

If the scheduler tries to make the total service received bpdg as close to equal
as possibleg will be blocked at brick4, which may not be desirable. Inspired by the
example, we would like to guarantee some minimum serviceaah &rick for each
stream, yet satisfy total service proportional sharingmwaver possible.

In this paper, we propose a distributed algorithm frameworler which single
brick proportional sharing, total service proportionashg, and total service propor-
tional sharing with a minimum service guarantee are all iptess

2.3 Thecentralized approach

In selecting an approach towards a distributed proportisimering scheduler, we must
take four requirements into account: i) the scheduler masivbrk-conserving: re-

sources that backlogged streams are waiting for shouldrrevédle; ii) “use it or
lose it", as described in the previous section; iii) the sther should accommodate
fluctuating service capacity since the service times of 1@swary unpredictably due
to the effects of caching, sequentiality, and interferemg@ther streams, as well as
characteristics such as request type (read or write) anuestgize; and iv) reason-
able computational complexity — there might be thousandwricks and clients in a
distributed storage system, hence the computational amdnemication costs must be
considered.

There are many centralized scheduling algorithms thatdcbalextended to dis-
tributed systems [3, 4, 8, 27, 29, 18, 15, 9]. We chose to focuthe Start-time Fair
Queuing (SFQ) [8] and its extension SHQ)([13] because they come closest to meet-
ing the requirements above. We present a brief discussitheo§FQ and SFQY)
algorithms in the remainder of this section.

SFQ is a proportional sharing scheduler for a single semritively, it works as
follows. SFQ assignsstart timetag and dinish timetag to each request corresponding
to the normalized times at which the request should starcantplete according to a
system notion oWirtual time. A new request is assigned a start time based on the
assigned finish time of the previous request from that streanthe current virtual
time, whichever is greater. The finish time is then assigresgt on the cost of the
request and the weight attached to its stream. The virtoed t5 set to be the start
time of the currently executing request, or the finish timéheflast completed request
if there is none currently executing. Requests are schddulthe order of their start
tags. It can be shown that, in any time interval, the sendceirved by two backlogged
workloads is approximately proportionate to their weights

More formally, the requegﬁ? is assigned thatart tag S(pjc) and thefinish tag

F(p) as follows:

Sy = madu(A(ph), F(py H}i>1 2
F(p}) = S(p})+%(fp?),i21 3)

\(/)vhe(ESA(péc) is the arrival time of request;, andu(t) is the virtual time at; F(p}) =
, U =0.

SFQ cannot be directly applied to storage systems, sincag&servers are con-
current, serving multiple requests at a time, and the \itioee v(¢) is not well defined.
Jin et al. [13] extended SFQ to concurrent servers by defining thealitime as the
maximum start tag of requests in service, i.e., the stare-tiag of the last request
dispatchedo the storage device. The resulting algorithm is catlegth-controlled
start-time fair queuing@nd abbreviated to SFQY), whereD is the queue depth of the
storage device. As with SFQ, the following theorem [13] shtlat SFQD) provides
backlogged workloads with proportionate service, albéibwa looser bound on the
unfairness.

Theorem 1 During any interval[ty, t5], the difference between the amount of work

completed by an SFQ@)) server for two backlogged streanfisandg is bounded by:

Wity t2) — Wy(ta, t2)

d’f ¢9 (4)

g(DH)(

cost’y " n cost;””)

d’f ¢9

While there are more complex scheduling algorithms [13] tfaa reduce the un-
fairness of SFQD), for simplicity, we use SFQQP) as the basis for our distributed fair
queuing algorithms. Since the original SFQ algorithm caroeodirectly applied to
storage systems, for the sake of readability, we will useQSte refer to SFQD) in
the remainder of the paper.

2.4 Reated Work

Extensive research in scheduling for packet switching ogterhas yielded a series
of fair queuing algorithms; see [20, 27, 8, 3] and referertbesein. These algo-
rithms have been adapted to storage systems for servicentimml sharing. For
example, YFQ [1], SFQD) and FSFQD) [13] are based on start-time fair queue-
ing [8]; SLEDS [2] and SARC [28] use leaky buckets; CVC [11]@oys the virtual
clock [29]. Fair queuing algorithms are very popular forgodional sharing for two
reasons: 1) they provide theoretically proven strong &ss) even under fluctuating
service capacity, and 2) they are work-conserving.

On the other hand, fair queuing algorithms are not convéhdemeal-time perfor-
mance goals, such as latencies. To address this issue, pro@aap is to use a real-time
scheduler; e.g., Facade [18] implements an Earliest Dea#irst (EDF) queue with
the proportional feedback for adjusting the disk queuetlergnother method is feed-
back control, a classical engineering technique that haently been applied to many
computing systems [10]. These generally require at leagtiamentary model of the
system being controlled. In the case of storage systemssevperformance is noto-
riously difficult to model [23, 26], Triage [15] adopts an g@tige controller that can
automatically adjust the system model based on input-ootpervations.

There are some frameworks [11, 28] combining the above tvectibees (propor-
tional sharing and latency guarantees) in a two-level gachire. Usually, the first
level guarantees proportional sharing by fair queueindods, such as CVC [11] and
SARC [28]. The second level tries to meet the latency godl witeal-time scheduler,
such as EDF. Some feedback from the second level to the fiedtdeheduler is help-
ful to balance the two objectives [28]. All of the above meath@re designed for use
in a centralized scheduler and cannot be directly applieditalistributed scheduling
problem.

Existing methods for providing quality of service in dibuited systems can be put
into two categories. The first category is the distributeldesitling of a single re-
source. The main problem here is to maintain informatioreahescheduler regarding
the amount of resource each stream has so far received. &woipés;, in fair queuing al-
gorithms, where there is usually a system virtual tin representing the normalized
fair amount of service that all backlogged clients shouldeh@ceived by time, the
problem is how to synchronize the virtual time among allritistted schedulers. This
can be solved in a number or ways; for example, in high capapitssbar switches, in

order to fairly allocate the bandwidth of the output linke thirtual time of different in-
put ports can be synchronized by thecess buffeinside the crossbar [22]. In wireless
networks, the communication medium is shared. When a nodewerhear pack-
ages from neighboring nodes for synchronization, diste@ypriority backoff schemes
closely approximate a single global fair queue [19, 14, 2d]the context of storage
scheduling, Request Window [13] is a distributed schedihlat is similar to a leaky
bucket scheduler. Services for different clients are laddrby the windows issued by
the storage server. It is not fully work-conserving undghtiworkloads.

The second category is centralized scheduling of multiegouarces. Gulati and
Varman [9] address the problem of allocating disk bandwfdiHy among concur-
rent competing flows in a parallel I/O system with multiplsidi and a centralized
scheduler. They aim at the optimization problem of minimizthe unfairness among
different clients with concurrent requests. 1/0 requestssaheduled in batches, and a
combinatorial optimization problem is solved in each roumkich makes the method
computationally expensive. The centralized controllekesait unsuitable for use in
fully distributed high-performance systems, such as FAB.

To the best of our knowledge, the problem of fair schedulmglistributed stor-
age systems that involve both distributed schedulers astdhiited data has not been
previously addressed.

3 Proportional Sharing in Distributed Storage Systems

We describe a framework for proportional sharing in disttéal storage systems, be-
ginning with the intuition, followed by a detailed descigt, and two instantiations of
the method exhibiting different sharing properties.

3.1 Anintuitive explanation

First, let us consider the simplified problem where the dateentralized at one brick,
but the coordinators may be distributed. An SFQ schedulelddoe placed either at
coordinators or at the storage brick. As fair schedulinguires the information for
all backlogged streams, direct or indirect communicatimoag coordinators may be
necessary if the scheduler is implemented at coordinatelacing the scheduler at
bricks avoids the problem. In fact, SFQ) can be used without modification in this
case, provided that coordinators attach a stream ID to eaglest so that the scheduler
at the brick can assign the start tag accordingly.

Now consider the case where the data is distributed overptaultricks as well.
In this case, SFQ schedulers at each brick can guarantesioglg brick proportional
sharing, but not necessarily total service proportionarisiy because the scheduler
at each brick sees only the requests directed to it and cameount for the service
rendered at other bricks.

Suppose, however, that each coordinator broadcasts aétsexito all bricks. Clearly,
in this case, each brick has complete knowledge of all rdgdeseach stream. Each
brick responds only to the requests for which it is the cdrdestination. The remain-
ing requests are treatedddual requestsand we call the combined stream of real and

virtual requests pl 2

fanten
3 [ABICAAC[CTB] -

Brick A Virtual stream

) [ABICIAJAIC[CH -.-

Brick B virtual stream

) [alBIGIAJAIC[EB] ---

Brick C virtual stream

stream f°

*--coordinator

Figure 4:Thenaiveapproach. The coordinator broadcasts every request to all bricksuBgtg
to incorrect destination bricks avértual and take zero processing time. Proportional scheduling
at each local brick guarantees total service proportiomatisg.

O oAl 2[4 oA -

A[B[CIAJA[C[C[B] -

Brick A “delay ‘ stream f°
@ 1 5 “-coordinator
Brick B

Ej 2|C| 2|C| 0|C| ...

Brick C .

Figure 5: The improved approach. Only the aggregate cost of virtual requests is communi-
cated, indicated by the number before each request (asgumincost of each request). Broad-
casting is avoided yet total service proportional sharigg lose achieved.

virtual request &irtual stream see Fig. 4. A virtual request takes zero processing time
but does account for the service share allocated to its s@iream. Then the SFQ
scheduler at the brick guarantees service proportionairghaf backlogged virtual
streams. As the aggregate service cost of a virtual stream®the aggregate service
cost of the original stream, total service proportionakstgacan be achieved.

The above approach is simple and straightforward, but \aithd-scale distributed
storage systems, broadcasting is not acceptable. We ehsewever, that the SFQ
scheduler requires only knowledge of the cost of each ireguest, the coordinators
may therefore broadcast the cost value instead of the redsel. In addition, the
coordinator may combine the cost of consecutive virtualests and piggyback the
total cost information onto the next real request; see Fig. 5

The piggyback cost information on each real request is @¢alledelayof the re-
quest, because the modified SFQ scheduler will delay primeetfee request according
to this value. Different delay values may be used for difféneerformance goals,
which greatly extends the ability of SFQ schedulers. Thiglfiéty is captured in the
framework presented next.

10

3.2 Distributed Fair Queuing Framework

We propose the distributed fair queuing framework dispdbiyeFig. 6; as we show
later, it can be used for total proportional sharing, sifgliek proportional sharing, or
a hybrid between the two. Assume there are streAms... and bricksA, B, The
fair queueing scheduler is placed at each brick as just ssgzli The scheduler has a
priority queue for all streams and orders all requests byesprivority, e.g., start time
tags in the case of an SFQ scheduler. On the other hand, eachirator has a separate
gqueue for each stream, where the requests in a queue mayifiavend destinations.

When we apply SFQ to the framework, each request has a gjahtha finish tag.
To incorporate the idea presented in the previous sectiermadify the computation
of the tags as follows:

delay(p} a) } 5)

S(p},4) = max{v(A(p?,A)), F(pi i)+ Py

| cost(p}a) ©
oy

The only difference between SFQ formulae (2-3) and thosgalsthe new delay
function for each request, which is calculated at coordirssind carried by the request.
The normalized delay value translates into the amount of tayy which the start tag
should be shifted. How the delay is computed depends upoprtportional sharing
properties we wish to achieve, and we will discuss severlydeinctions and the
resulting sharing properties in the sections that followe Wil refer to the modified
Start-time Fair Queuing algorithm as Distributed StarteiFair Queuing (DSFQ).

In DSFQ, as in SFQD), v(t) is defined to be the start tag of the last request dis-
patched to the disk before or at time There is no global virtual time in the system.
Each brick maintains its own virtual time, which varies dfatient bricks depending
on the workload and the service capacity of the brick.

If the delay value is set to always be zero, DSFQ reduces to &tachieves
single brick proportional sharing. We next consider othenfgrmance goals.

3.3 Total Service Proportional Sharing

We describe how the distributed fair queueing framework lsarused for total pro-
portional sharing when each stream uses one coordinatdriteam argue that the
same method also engenders total proportional sharingmittiple coordinators per
stream.

3.3.1 Single-Client Single-Coordinator

We first assume that requests from one stream are alwayssgestby one coordinator;
different streams may or may not have different coordirsatdfe will later extend this
to the multiple coordinator case. The performance goal,&dsrb, is that the total
amount of service each client receives must be proportioritd weight.

11

Coordinator :

f
8]
8]

: FCFS queue

ol

I delay values
<71 calculated here
|

queue
71 disks

Figure 6:Thedistributed fair queuing framework

As described in Section 3.1, the following delay functiondaequest from stream
f to brick A represents the total cost of requests sent to other brinke #e previous
request to brickA.

delay(p’}’A) = batchcost(p’}’A) — cost(p}}A) @)

When this delay function is used with the distributed schieduramework defined
by formulae (5-7), we call the resulting algorithnoTAL-DSFQ. The delay function
(7) is the total service cost of requests sent to other bsokse the last request on the
brick. Intuitively, it implies that, if the brick is otherwe busy, a request should wait
an extra time corresponding to the aggregate service egeints of the preceding
requests from the same stream that were sent to other bmmkealized by the stream’s
weight.

Why ToTAL-DSFQ engenders proportional sharing of the total sendceived by
the streams can be explained using virtual streams. Aaogtdi the formulae (5-7),
ToTAL-DSFQ is exactly equivalent to the architecture where coatdrs send virtual
streams to the bricks and bricks are controlled by the star8laQ. This virtual stream
contains all the requests jij but the requests that are not destined4@re served atl
in zero time. Note that SFQ holds its fairness property eveenithe service capacity
varies [8]. In our case, the server capacity (processingdpearies from normal, if
the request is to be serviced on the same brick, to infinitydfrequest is virtual and is
to be serviced elsewhere. Intuitively, since the brickees all the requests jh(and
their costs) as a part of the virtual stream, the SFQ schedtl factors in the costs
of the virtual requests served elsewhere in its scheduéingn though they consume
no service time atd. This will lead to proportional sharing of the total servicEhe
theorem below formalizes the bounds on unfairness usempI-DSFQ.

Theorem 2 Assume strearyi is requesting service oi¥; bricks and streany on IV,

bricks. During any intervalt,, t2] in which f andg are both continuously backlogged
at some brickA4, the difference between the total amount of work compleyedllb

12

bricks for the two streams during the entire interval, nolixed by their weights, is
bounded as follows:

cost’ 3"

oy

max
costy 'y

Wity ta) Wy(ta, t2)
d’f ¢9

< ((D+D5FQ)*Nf+1) +

((D+ Dsrq) * Ng + 1)

g9

batchcosts' 4" N batchcostm”> ®)
¢f (159

whereD is the queue depth of the disland Ds r¢ is the queue depth of the Start-time
Fair Queue at the brick.

(Dsrq +1) <

Proof: The proof of this and all following theorems can be found ia #ppendix. B

The bound in Formula (8) has two parts. The first part is sintitathe bound
of SFQ() in (4), the unfairness due to server queues. The secondspaetv and
contributed by the distributed data. If the majority of reqts of streanf is processed
at the backlogged server, theichcost?'4" is small and the bound is tight. Otherwise,
if f gets alot of service at other bncks the bound is loose.

As we showed in Example 2, however, there are situations ishwiotal propor-
tional sharing is impossible with work conserving schediilén the theorem above,
this corresponds to the case with an infirtitéchcost;'4”, and hence the bound is in-
finite. To delineate more precisely when total proportlcnhiirlng is possible under
ToTAL-DSFQ, we characterize when the total service rates of tlearsis are pro-
portional to their weights. The theorem below says that,euidbTAL-DSFQ, if a
set of streams are backlogged together at a set of bricks efittger their normalized
total service rates over all bricks are equal (thus satigftfie total proportionality re-
guirement), or there are some streams whose normalizetserntes are equal and
the remainder receive no service at the backlogged bricksuse they already receive
more service elsewhere.

Let Ry(t1,t2) = Wy(t1,t2)/(é5 * (t2 — t1)) be the normalized service rate of
streamf in the duration(t;, ¢2). If the total service rates of streams are proportional to
their weights, then their normalized service rates shoelédual as the time interval
to — t1 goes to infinity. Suppose streafris backlogged at a set of bricks, denoted as
setS, its normalized service rate atis denoted afiy s(t1,t2), andRy other(t1,t2)
denotes its normalized total service rate at all other Stifl¢ (¢, t2) = Rf s(t1,t2)+
Ry other(t1,t2). We drop(tq, t2) hereafter as we always consider interizal ¢2).

Theorem 3 UnderToTAaL-DSFQ if during (1, t2), streams{ f1, fo, ... f, } are back-
logged at a set of bricks), in the orderRy, oiner < Ry, other < ... Rf, other, AS
to —t1 — oo, eitherRy, = Ry, = ..Ry, or 3k € {1,2,..n — 1}, such that
Ry = .. Ry, < Rfk+17othe1’ andeHhS =..Rs ¢ =0.

The intuition of Theorem 3 is as follows. At brick s&f let us first setRy, g =
Rs, 5 = ... = Ry, ¢ = 0 and try to allocate the resources ®f Streamf; has the

1if there are multiple disks (the normal casg) s the sum of the queue depths of the disks.

13

= oAl 1[A] ...
BrickA . 1[A] ..
delay

O
. (stream f*

Brick B 0[B] 2[B] ... A
8 1ic] 1[d] ... \"—rcoordinator

Brick C 2

Figure 7:Effect of multiple coordinatorsunder ToTAL-DSFQ. Delay value of an individual
request is different from Fig. 5, but the total amount of getemains the same.

highest priority since its delay is the smallest. Thus th@ SEheduler will increase
Ry s until Ry, = Ry, other- NOW both f1 and f> have the same total service rate and
the same highest priority. Brick sstwill then increaseiy, s andRy, s equally until
Ry, = Ry, = Ry, other- In the end, either all the streams have the same total servic
rate, or it is impossible to balance all streams due to thidiirservice capacity of all
bricks in S. In the latter case, the firétstreams have equal total service rates, while
the remaining streams are blocked for servic# atntuitively, this is the best we can
do with a work-conserving scheduler to equalize normalsasdtice rates.

In Section 3.4 we propose a modification toTRL-DSFQ that ensures no stream
is blocked at any brick.

3.3.2 Single-client Multi-coordinator

So far we have assumed that a stream requests service thwoagtoordinator only.
In many high-end systems, however, it is preferable for figtu clients to distribute
their requests among multiple coordinators in order tor@ghe load on the coordi-
nators. In this section, we discuss the single-client radbrdinator setting and the
corresponding fairness analysis fooTAL-DSFQ. In summary, we find thatolrAL-
DSFQ does engender total proportional sharing in thisggtéxcept in some unusual
cases.

We motivate the analysis with an example. First, let us assiimat a stream ac-
cesses two coordinators in round-robin order and examaeftact on the delay func-
tion (7) through the example stream in Fig. 5. The resultspldiyed in Fig. 7. Odd-
numbered requests are processed by the first coordinat@vandnumbered requests
are processed by the second coordinator. With one cooadjrithe three requests to
brick A have delay values 0, 2 and 0. With two round-robin coordirsatihe delay
values of the two requests dispatched by the first coordirea® now 0 and 1; the
delay value of the request dispatched by the second codediisal. Thus, although
individual request may have delay value different from theecof single coordinator,
the total amount of delay remains the same. This is becausy eirtual request (to
other bricks) is counted exactly once.

We formalize this result in Theorem 4 below, which says, etaly, that streams
backlogged at a brick receive total proportional servicéosg as each stream uses

14

a consistent set of coordinators (i.e., the same set of awtads for each brick it
accesses).

Formally, assume streaghsends requests throughcoordinators’s, Cs, ..., Cy,
and coordinato€’; receives a substream ¢fdenoted ag;. With respect to brick4,
each substrearfy has itsbatchcost’;“y. Letus first assume thattchcost’; "y is finite
for all substreams, i.e., requests4are distributed among all coordinators.

Theorem 4 Assume strearfiaccessesa coordinators such that each one receives sub-
streamsfy, ..., [, respectively, and streamaccesses: coordinators with substreams
g1, ---» gm, respectively. During any intervéd; , ¢3] in which f andg are both continu-
ously backlogged at bricl, inequality (8) still holds, where

batcheost' " = maz{ batchcost’%, ...batchcost’ 4 } 9
batchcosty's" = maz{ batchcos s - batchcostm‘”f‘l} (10)

An anomalous case arises if a stream patrtitions the bri¢ckgisjoint subsets and
accesses each partition through separate coordinatdfrgsicase, the requests served
in one partition will never be counted in the delay of any resjuo the other partition,
and the total service may no longer be proportional to thgkteFor example, requests
to B in Fig. 7 have smaller delay values than the ones in Fig. 5s Gase is unlikely
to occur with most load balancing schemes such as round-oohiniformly random
selection of coordinators. Note that the algorithm willl gfuarantee total proportional
sharing ifdifferentstreams use separate coordinators.

More interestingly, selecting randomly among multiple bioators may smooth
out the stream, and resultin more uniform delay values. ¥amgle, Ifbatchcost(pf)
in the original stream is a sequence of i.i.d. (independéentically distributed) ran-
dom variables with large variance such tlbatchcost’}j“ might be large, it is not
difficult to show that with independently random mapping atle request to a coor-
dinator,batchcost(pi[hA) is also a sequence of i.i.d. random variables with the same
mean, but the variance decreases as number of coordinatozases. This means that
under random selection of coordinators, while the averadgeyds still the same (thus
service rate is the same), the variance in the delay valuedisced and therefore the
unfairness bound is tighter. We test this observation tiincan empirical study later.

3.4 Hybrid Proportional Sharing

Under TOTAL-DSFQ, Theorem 3 tells us that a stream may be blocked at kibiic
gets too much service at other bricks. This is not desirabfeany cases. We would
like to guarantee a minimum service rate for each stream eryérick so the client
program can always make progress. Under the DSFQ framewerkformulae (5-6),
this means that the delay must be bounded, using a diffeedany €Linction than the one
used in TOTAL-DSFQ. We next develop a delay function that guarantees amm
service share to backlogged streams on each brick.

Let us assume that the weights assigned to streams are imgthake.0 < ¢y <1
and)_ ; ¢y = 1. Suppose that, in addition to the weighy, each streanf is assigned
a brick-minimum weightb;"'m, corresponding to the minimum service share per brick

15

for the streant. We can then show that the following delay function will guatese the
required minimum service share on each brick for each stream

delay(p} 4) = % * cost(p} 4) (11)
— ¢y

We can see, for example, that settimgi” = ¢y yields a delay of zero, and the
algorithm then reduces to single brick proportional shathmat guarantees minimum
sharegp for streamf, as expected.

By combining delay function (11) with the delay function @y TOTAL-DSFQ,
we can achieve an algorithm that approaches total propadtgharing while guaran-
teeing a minimum service level for each stream per brickolgviis.

delay(p’}’A) = min { batchcost(pj}’A) - cost(p’}’A),
¢f/¢7fmln -1
1 —¢f

The DSFQ algorithm using the delay function (12) defines a algerithm called
HYBRID-DSFQ. Since the delay undenidriD-DSFQ is no greater than the delay in
(11), the service rate at every brick is no less than the rader11), thus the minimum
per brick service shar@;"'i" is still guaranteed. On the other hand, if the amount of
service a streanf receives on other bricks between requests to b#idk lower than
(¢f/¢;"'m - 1)/(1 - (bf)*COSt(p(if’A), the delay function behaves similarly to equation
(7), and hence the sharing properties in this case shoularlaisto TOTAL-DSFQ,
i.e., total proportional sharing.

Empirical evidence (in Section 4.3) indicates thatB®ID-DSFQ works as ex-
pected for various workloads. However, there are patholdgiorkloads that can
violate the total service proportional sharing propertyr Example, if a stream using
two bricks knows its data layout, it can alternate burstsie lorick and then the other.
Under TOTAL-DSFQ, the first request in each burst would have receivedge lde-
lay, corresponding to the service the stream had receiveldeoother brick during the
preceding burst, but in ¥BRID-DSFQ, the delay is truncated by the minimum share
term in the delay function. As a result, the stream receive®raervice than its weight
entitles it to. We believe that this can be resolved by iniclgdnore history in the
minimum share term, but the design and evaluation of sucleg flenction is reserved
to future work.

* cost(p(if’A)} (12)

4 Experimental Evaluation

We evaluate our distributed proportional sharing algaoniiim a prototype FAB sys-
tem [21], which consists of six bricks. Each brick is an idegity configured HP
ProLiant DL380 server with 2x 2.8GHz Xeon CPU, 1.5GB RAM, 2ig&hit NIC,

and an integrated Smart Array 6i storage controller witlr fi8G Ultral320, 15K rpm

2

16

stream f
stream g

IS

o
I}
= e,) /\/v/w/\/w/v/\/\/\/d\—/
E ST
3 2 s e et e eeestarteatenes
£ N
0 " ;
0 5 10 15 2C
number of Postmark threads of stream g
(a) throughputs for two streams
~ 0.2
)
80.15
o
<
° 0.1F e
[R S L)
= e
©0.05 -
(>u NS —
0 .)
0 5 20

10 15
number of Postmark threads of stream g

(b) latencies for two streams

Figure 8:Proportional sharing on onebrick. ¢7:¢4=1:2; legend in (a) applies to (b).

SCSI disks configured as RAID 0. All bricks are running SUSE Binux, kernel
2.6.8-24.10-smp. Each brick runs a coordinator.

The workload generator consists of a number of clients gsts, each running
several Postmark [16] instances. Each Postmark threadxaatiyeone outstanding
requestin the system at any time, accessing its isolatedB36gical volume. Unless
otherwise specified, each volume resides on a single bridlkeanh thread generates
random read/write requests with file sizes from 1KB to 16KB.

With our work-conserving schedulers, until a stream is bagided, its 10 through-
put increases as the number of threads increases. Wheraitk$ogged, on the other
hand, the actual service amount depends on the schedujjogthim.

4.1 SingleBrick Proportional Sharing

We first demonstrate the effect ofoTAL-DSFQ on two streams reading from one
brick. Streamf consistently has 30 Postmark threads, while the number sthirok
threads for streary is increased from 0 to 20. The ratio of weights betwegeand

g is at 1:2. As the data is not distributed, the delay valuewsags zero and this is
essentially the same as SHQ)([13].

Figure 8 shows the performance isolation between the tventsli The throughput
of streamy is increasing and its latency is fixed ungibicquires its proportional share
at around 13 threads. After that, additional threads do ivet gny more bandwidth
but increase the latency. On the other hand, the througimgutéency of streanf are
both affected by;. Onceg gets its share, it has no further impact fin

17

(3
4 - stream f
— — — stream g, brick A

2 A o stream g, brick B
stream g, total

throughput (MB/s)

-~ _ ~

0 L L L il S
0

5 10 15
number of Postmark threads of stream g on brick B

(@) Random I/0¢ ¢:¢4=1:1, max file size=16KB

w
o
o

JEVSUANS AN S A VAR

N

N
o
o

ity
o
o

throughput (MB/s)

numbgr of Postmark th:rLgads of stream glgn brick B 20

(b) Sequential I/0¢ ;:¢4=1:3, max file size=1MB

Figure 9:Total service proportional sharing. f’s data is on brick4 only; g has data on both
bricks A and B. As g gets more service on the bricks it does not share Wijtthe algorithm
increaseg’s share on the brick they do share; thus the total throughgiioth streams increase.

4.2 Total ServiceProportional Sharing

Figure 9 demonstrates the effectiveness offAL-DSFQ for two clients. The work-
load streams have access patterns shown in Fig. 3. We ad#mgdata layout so that
each Postmark thread accesses only one brick. Stfearmd streany both have 30
threads on brickd throughout the experiment, meanwhile, an increasing nurobe
threads fromy is processed at brick. Postmark allows us to specify the maximum
size of the random files generated, and we tested the algowith workloads using
two different maximum random file sizes, 16KB and 1MB.

Figure 9(a) shows that as the number of Postmark threadsdt@mamg directed
to brick B increases, its throughput from bridk increases, and the share it receives
at brick A decreases to compensate. The total throughputs receiveidaynsf and
g stay roughly equal throughout. As the streanecomes more unbalanced between
bricks A and B, however, the throughput difference between stregraad g varies
more. This can be related to the fairness bound in Theorens Zheaimbalance in-
creases, so doéstchcosty';”, and the bound becomes a little looser.

Figure 11 displays the result with multiple coordinatorsheTdata layouts and
workloads are the same as in the experiment shown in Figuaes 3(a): two bricks,
streamf accesses only one, and stregraccesses both. The only difference is that
streany accesses both brickkand B through two or four coordinators in round-robin
order.

Using multiple coordinators still guarantees proporti@haring of the total through-
put. Furthermore, a comparison of Fig. 9, 11(a), and 11 itates that as the number

18

stream f
— — —stream g, one brick

stream g, total

Throughput (MB/s)

5 10 15 .
number of Postmark threads of stream g on one brick

Figure 10:Total service proportional sharing with striped data. ¢s:¢,=1:1. g has RAID-0
logical volume striping on three brickg:s data is on one brick only.

o
g 4 stream f
5 stream g, total
:; 2 — — — stream g, brick A
3 U R AR RN stream g, brick B
£ SN
T T e o~
0 . . o= - =
0 20

5 10 15
number of Postmark threads of stream g on brick B

(a) Two coordinators

throughput (MB/s)

5 10 15
number of Postmark threads of stream g on brick B

(b) Four coordinators

Figure 11:Total service proportional sharing with multi-coordinator, ¢ :¢,=1:1

19

w A’\/\/\"/\’/v\f/\-/ P T e R
2 s Mot e e e e B e
o it RS B

=3 Y RSP - stream f

5 L NG stream g, total
5 L — — —stream g, brick A
> PR . . .

g - N~ 0.5MB/s stream g, brick B
£ ~ P

R S S U N Ao

5 10 15 20
number of Postmark threads of stream g on brick B

(a) throughputs with MBRID-DSFQ

throughput (MB/s)

TN~ . 0.5MB/s
~ '\\/\FLAV\ \\\\\

5 10 15
number of Postmark threads of stream g on brick B

(b) throughputs with MBRID-DSFQ, two coordinators

Figure 12:Two-brick experiment using HYBRID-DSFQ

of coordinators increases, the match between the totalgimauts received by andg

is closer, i.e., the unfairness bound is tighter. This cardithe observation in Section
3.3.2 that multiple coordinators may smooth out a streamraddce the variance of
batchcost’;' 4" .

4.3 Hybrid Proportional Sharing

The result of vBRID-DSFQ for performance isolation is presented in Fig. 12. The
workload is the same as in the experiment shown in Figuresi®éa): two bricksA
andB, streamf accesses only one, and streamccesses both. Strearfisndg both
have 20 Postmark threads on bridk andg has an increasing number of Postmark
threads on brickB. We wish to give strearp a minimum share of /12 on brick A
when it is backlogged. This corresponds/f’ = 1/12; based on Equation 12, the
delay function forg is

delay(p;A) = min { batchcost(p;A) — cost(p;A), 10 * cost(p;A)}

Streamf is served on bricld only and its delay is always zero.

With HYBRID-DSFQ, the algorithm reserves a minimum share for eachrafrea
and tries to make the total throughput as close as possiltlowtireallocating the
reserved share. For this workload, the service capacity lmick is approximately
6MB/sec. We can see in Fig. 12(a) that if the throughput @festrg on brick B is less
than 4MB, HBRID-DSFQ can balance the total throughputs of the two strearss. A
g receives more service on bridk, the maximum delay part in ¥BRID-DSFQ takes
effect andg gets its minimum share on brick. The total throughputs are no longer

20

sf T f‘y R S S S T
% | 2raurer Voaaoaad Wieertes Lot

§4 stream f, total stream g, total — — — stream h
53 roN" -0 e~ [
£ ! 1\ ! : : ! ! :
32 ! | : | I | I |
£1 ! | ! | [| I |
| ‘ | | | | | |

0 11 J L NI 11 =l Ll N

0 10 20 30. 40 50 60 70 80

Time (second)

(a) Streamsf andg both have 20 Postmark threads on bri¢ki.e.,
Queue deptiDgpg = 20

IS e

. ety /\J\(\/« k«vx,‘ [, ﬁ
P . | 72 ! !
é 4 V\ /.\,,_w\,i ‘/_/
= - - so— RN N~
a 3 | v \ ‘J \ | ~ N !/ ‘
< | |
cg;Z | ! | | I \ ; |
< I I |
< | ! | |
=1 | ! | | ! | : |

o) l | | ! L ! |

10 20

o

30Time (s%%ond) 50 60 0 80

(b) Streamsf andg both have 30 thread®)s rq = 30

Figure 13:Fluctuating workloads. Streamsf andg both have the same number of Postmark
threads on brick4, and streany has 10 additional Postmark threads on brigk In addition,
there is a stream that has 10 on/off threads on bridk that are repeatedly on together for 10
seconds and then off for 10 seconds. The weights are egjyalg : ¢, =1:1: 1.

proportional to the assigned weights, but is still reastynelbse. Figure 12(b) repeats
the experiment with the streams selecting between two auatats alternately; the
workload and data layout are otherwise identical to thelsingordinator experiment.

The results indicate that¥8RID-DSFQ works as designed with multiple coordinators
too.

4.4 Fluctuating wor kloads

First we investigate how @TAL-DSFQ responds to sudden changes in load by using
an on/off fluctuating workload. We also see that as the nurnb#wreads (and hence
the SFQ depth) increases, the sharp drogsrthroughput is more significant. These
experimental observations agree with the unfairness andoTAL-DSFQ shown

in Theorem 2, which increase with the queue depth.

Next we examine the effectiveness of different proportistearing algorithms
through sinusoidal workloads. Both streajfignd g access three bricks and overlap
on one brick only, brickd. The number of Postmark threads for each stream on each
brick is approximately a sinusoidal function with diffetdrequency; see Fig. 14(a).
To demonstrate the effectiveness of proportional shaviegry to saturate bricld by
setting the number of threads on it to a sinusoidal functamyimg from 15 to 35, while
thread numbers on other bricks take values from 0 to 10 (reavslin Fig. 14(a)). The
result confirms several hypotheses. Figure 14(b) is thétrmsa standard FAB without
any fair scheduling. Figure 14(c) shows that single brickportional sharing provides

21

proportional service on brick but not necessarily the total service. At time 250, the
service onA is not proportional becaugehas minimum threads o and is not back-
logged. Figure 14(d) displays the effect of total serviagpmrtional sharing. The total
service rates match well in general. At times around 65, 160, and 210, the rates
deviate because one stream gets too much service on othks,baind its service on
A drops close to zero. ThusoTAL-DSFQ cannot balance the total service. At time
around 230-260, the service rates are not close becauamgtiie not backlogged, as
was the case in Fig. 14(c). Finally, Fig. 14(e) confirms thieatiof hybrid proportional
sharing. Comparing with Fig. 14(d),¥#RID-DSFQ proportional sharing guarantees
minimum share when @TAL-DSFQ does not, at the cost of slightly greater deviation
from total proportional sharing during some periods.

5 Conclusions

In this paper, we presented a proportional-service scireglframework suitable for
use in a distributed storage system. We use it to devise abdi®td scheduler that
enforces proportional sharing of total service betweeeastis to the degree possi-
ble given the workloads. Enforcing proportional total seevin a distributed storage
system is hard because different clients can access datanfidtiple storage nodes
(bricks) using different, and possibly multiple, accesinfm(coordinators). Thus,
there is no single entity that knows the state of all the stiieand the service they
have received. Our scheduler extends the SFHQL3] algorithm, which was designed
as a centralized scheduler. Our scheduler is fully disteduadds very little commu-
nication overhead, has low computational requirementd,i@smork-conserving. We
prove the fairness properties of this scheduler analyyieaid also show experimental
results from an implementation on the FAB distributed gjeraystem that illustrate
these properties.

We also present examples of unbalanced workloads for widahark-conserving
scheduler can provide proportional sharing of the totadulghput, and attempting to
come close can block some clients on some bricks. We denadasthybrid scheduler
that attempts to provide total proportional sharing whergsible, while guaranteeing
a minimum share per brick for every client. Experimentallewice indicates that it
works well.

Our work leaves several issues open. First, we assumedigraisaising multiple
coordinators load those coordinators equally or randomulyije this is a reasonable
assumption in most cases, there may be cases when it doesldet-hfor example,
when some coordinators have an affinity to data on partiduriaks. Some degree of
communication between coordinators may be required inrdaderovide total pro-
portional sharing in this case. Second, more work is needatksign and evaluate
better hybrid delay functions that can deal robustly witthpébgical workloads. Fi-
nally, our algorithms are designed for enforcing propaerdicservice guarantees, but in
many cases, requirements may be based partially on abselutiee levels, such as a
specified minimum throughput, or maximum response time. &k fo address how
this may be combined with proportional sharing in future kvor

22

Throughput (MB/s)

- f, total

g, total o f, brick A v g, brick A
60

(%2}
o
[
[
=
5]
9]
Q
£
>
4

10)

0 50 100 150 200 250 300
Time (second)
(a) Number of Postmark threads

8
%6
2}
<
EX)
5; 4 o,
=3 P01
Q <
E2

0 I I
0 50 100

‘ ‘
150 200 250 300
Time (second)
(b) Without any proportional sharing scheduling
8 -, "‘.a“\-a 3_"".."""\»_‘
@,
o6
=3
34
=) ot
D Pt o0 i, 0900 0005 AP0 S0 P, °>°W gt
c2+
£
0 s s s s s ‘
0 50 100 _ 150 200 250 300
Time (second)
(c) Single brick proportional sharing
sl
@6
[aa}
=
B4,
< s R
=3 Pag g
=1 o -
o kS
Sor e -
F £ - 0.5MBlse,
R S
0 L St o7 L - L J
0 50 100 150 200 250 300
Time (second)
(d) Total service proportional sharing
sl
6
4 °
B T s o0 0™
: -, & i~
2F AR % K ‘
. % © o 05MBlse, o o0 e
o -, L L N
0 ‘ ‘ ‘ s ‘ ‘
0 50 100 200 250 300

Time (s%a?:gnd)

(e) Hybrid proportional sharing
Figure 14:Sinusoidal workloads, ¢ f:¢4=1:1.
23

6

Acknowledgements

Antonio Hondroulis and Hernan Laffitte assisted us with tkpegimental setup for
this paper. We thank Marcos Aguilera, Eric Anderson, Cbsigtaramanolis, Magnus
Karlsson, Kimberly Keeton, Terence Kelly, Mustafa Uysalistair Veitch, and John
Wilkes for comments that helped us improve the paper.

References

(1]

(2]

(3]

[4]

5]

[6]

[7]

(8]

J. L. Bruno, J. C. Brustoloni, E. Gabber, B. Ozden, and #eschatz. Disk scheduling
with quality of service guarantee®roceedings of the IEEE International Conference on
Multimedia Computing and Systems (ICMCE%00-05, 1999.

D. D. Chambliss, G. A. Alvarez, P. Pandey, and D. JadavrfoPmance virtualization
for large-scale storage systems. Rroceedings of the 22nd International Symposium on
Reliable Distributed Systems (SRDIEEE Computer Society, 2003.

H. M. Chaskar and U. Madhow. Fair scheduling with tunalalency: A round-robin
approachProceedings of the IEEB3(10):1374-96, 1995.

A. Demers, S. Keshav, and S. Shenker. Analysis and stionlaf a fair queueing algo-
rithm. In SIGCOMM '89: Symposium proceedings on Communicationsitactbres &
protocols pages 1-12, New York, NY, USA, 1989. ACM Press.

Z. Dimitrijevi€ and R. Rangaswami. Quality of servicepport for real-time storage sys-
tems. International IPSI-2003 Conferengc®ctober 2003.

B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, |. Prait Warfield, P. Barham, and
R. Neugebauer. Xen and the art of virtualization.Phoceedings of the ACM Symposium
on Operating Systems Principledctober 2003.

S. Frglund, A. Merchant, Y. Saito, S. Spence, and A. Veité decentralized algorithm
for erasure-coded virtual disks. Int. Conf. on Dependable Systems and Netwalse
2004.

P. Goyal, M. Vin, and H. Cheng. Start-time fair queueirgscheduling algorithm for in-
tegrated services packet switching netwok€M Transactions on Networking(5):690—
704, 1997.

[9] A. Gulati and P. Varman. Lexicographic QoS schedulinggarallel /0. In17th ACM

(10]

(11]

Symposium on Parallelism in Algorithms and Architectudesy 2005.

J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbufyeedback Control of Computing
SystemsWiley-IEEE Press, 2004.

L. Huang, G. Peng, and T. cker Chiueh. Multi-dimensiost@rage virtualization. In
Proceedings of the International Conference on Measur¢met Modeling of Computer
Systems (SIGMETRIC2004.

IBM. Icecube — a system architecture for storage anderivdt servers.
http://www.almaden.ibm.com/StorageSystems/indembkht

W. Jin, J. S. Chase, and J. Kaur. Interposed propottisharing for a storage service
utility. In Proceedings of the International Conference on Measuré¢ret Modeling of
Computer Systems (SIGMETRICZ)04.

V. Kanodia, C. Li, A. Sabharwal, B. Sadeghi, and E. KrtighDistributed priority schedul-
ing and medium access in ad hoc netwoNkSreless Networks8:455-466, 2002.

24

[15] M. Karlsson, C. Karamanolis, and X. Zhu. Triage: Peariance isolation and differentia-
tion for storage systems. FProceedings of the 12th International Workshop on Quality o
Service (IWQOS)EEE, 2004.

[16] J. Katcher. Postmark: A new file system benchmark. TeethiReport TR3022, Network
Appliance, Oct. 1997.

[17] E. K. Lee and C. A. Thekkath. Petal: Distributed virtdéks. INASPLOSpages 84-92,
1996.

[18] C. R. Lumb, A. Merchant, and G. A. Alvarez. Facade: waltstorage devices with per-
formance guarantees. Rroceedings of the 2nd USENIX Conference on File and Storage
Technologies (FAST2003.

[19] H. Luo, S. Lu, V. Bharghavan, J. Cheng, and G. Zhong. Akpaischeduling approach to
gos support in multihop wireless networkdob. Netw. Appl.9(3):193-206, 2004.

[20] A. K. Parekh and R. G. Gallager. A generalized processaring approach to flow con-
trol in integrated services networks: The single node cdB&E/ACM Transactions on
Networking 1(3):344-357, June 1993.

[21] Y. Saito, S. Frglund, A. Veitch, A. Merchant, and S. Sge=n Fab: Building distributed
enterprise disk arrays from commodity componentsA8PLOSACM, October 2004.

[22] D. C. Stephens and H. Zhang. Implementing distribut@ckpt fair queueing in a scalable
switch architecture. INFOCOM, volume 1, pages 282-290. |IEEE, 1998.

[23] M. Uysal, G. A. Alvarez, and A. Merchant. A modular, aytédal throughput model for
modern disk arrays. IRroc. of the 9th Intl. Symp. on Modeling, Analysis and Sitiha
on Computer and Telecommunications Systems (MASCOHES, August 2001.

[24] N. H. Vaidya, P. Bahl, and S. Gupta. Distributed fairaghling in a wireless lan. IMo-
biCom '00: Proceedings of the 6th annual international @ahce on Mobile computing
and networkingpages 167-178, New York, NY, USA, 2000. ACM Press.

[25] C. A. Waldspurger. Memory resource management in VMWES X server. iBymposium
on Operating Systems Design and Implementatit®ENIX, December 2002.

[26] M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Faloutsosind G. R. Ganger. Storage
device performance prediction with cart modelsSIGMETRICS 2004/PERFORMANCE
2004: Proceedings of the joint international conferenceM@asurement and modeling of
computer systempages 412-413, New York, NY, USA, 2004. ACM Press.

[27] H. Zhang. Service disciplines for guaranteed perfaroeaservice in packet-switching
networks.Proceedings of the IEEB3(10):1374-96, 1995.

[28] J. Zhang, A. Sivasubramaniam, A. Riska, Q. Wang, andi&d&. An interposed 2-level
1/0 scheduling framework for performance virtualizatidn. Proceedings of the Interna-
tional Conference on Measurement and Modeling of Computstegis (SIGMETRICS)
ACM, 2005.

[29] L. Zhang. Virtualclock: A new traffic control algorithrfor packet-switched networks.
ACM Transactions on Computer Syste®(®):101-124, 1991.

Appendix: Proofsof theorems

First, we introduce some additional notation. E{S) be the total cost of requests in
setS, thenbatchcost(p} 4) can be represented 88(other(p} 4)) + cost(p} 4). The

25

concept of a virtual stream is very helpful for our analysi® denote virtual stream
corresponding to strearfias f’. Note that on different bricksf’ has the same set of
requests, but real and virtual requests are marked difflgré&or simplicity, we use the

uniform notationf’ since we always considgt on brick A, which is the backlogged
brick.

Proof of Theorem 2.

Proof: Let the setS; be the set of requests of streafrthat is dispatched by’s

coordinator during the time intervéth, t>]. SetS, denotes requests gfdispatched
beforet; yetis completed durinff, 2]. On the other hand§} is a subset of; that
is still in queue, either the SFQ queue or disk queue, afteFhen

Wi(t1,t2) = W(Sy) + W(Sy) — W(S}) (13)

whereW (S) means the total cost of requests in Set
The total number of requests Bﬁf‘ and SJT are both limited by queue depth on
each brick

IS¢ | < (Dspq + Daisk) * Ny
1S < (Dsrq + Daisk) * Ny

Therefore,

W(S;) - W(S}r) < (Dgrq + Daisk) *
Ny x cost'y' " (14)

The above formula establishes a relationship with requiispatched by the coordi-
nator and requests completed by the server. Next, we builditsrelationship with
requests dispatched by the coordinator and requests ciggzhby the SFQ scheduler
atbrick A. The idea is exactly the same if you think of the SFQ scheddehe server
that “completes” the request by dispatching it to the disk.

We use thevirtual streamf’ instead in order to make a comparison with. Let
S¢ be the set of requests (including virtual requests) of airtireamf’ completed
(dispatched to the disk) by the SFQ scheduler dulfings]. Wy (t1,t2) = W(Sy/) is
the aggregate cost of requestsSip. St is the set of requests dispatched to the SFQ
scheduler before; yet is completed by the SFQ scheduler durjhgts], andS}r, is
the subset ob/ that is still in the SFQ scheduler after. Again

Wy (t1,t2) = W(Sg) + W(S;) — W(S}) (15)

We must be careful for developing upper boundslgiiS,) and W(S;{,) because
virtual streamf’ instead off is used here. The key point is that virtual requests in
/' must not occupy any spot in the SFQ queue since they are nallgcprocessed.
We may assume that a virtual queue of infinite size for virtegjuests are inserted
before and after every slot in the SFQ queue, as shown in bigThe set of virtual

26

D__+1 virtual queues
/_Q_/%

stream 1

Ej '« [BJA[C[BIA[BC

Brick A SFQ Queue size D

Figure 15:Virtual requests do not occupy any spot in the SFQ queue anglaced invirtual
gueuesWe only consider one stream in this example. More streamsigly reduce the number
of virtual queuesf occupy and tighten the bound.

reqguests in a virtual queue before a slot that contp@inAs is other(pj} 4)» whose total
cost, includingp’; ,, is batchcost(p;) and bounded byatchcost’P4*. Since there
are totaIIyDSFQ + 1 virtual queues before and after thy; r slots we have

W(S;) < (Dsrq + 1) * batchcost ' §"
W(S]Jvr) < (Dsrq + 1) * batchcost}'§"

Therefore

(W(S}) = W(S})| < (Dsrg +1) *
batchcosty's" (16)

Equations (13) and (15) together
Wi(t1,ta) = Wyi(t1,ta) — W(S;) + W(S],) +
W(S;) - W(S}) 7
Similarly with (14)(16-17), for stream we have
W(S,)—W(S;)| < (Dsrq + Daisk) *

Ny * costy'3" (18)
W (S) —W(SH)| < (Dspq +1) *
batchcost)" 3" (29)
Wy (t1,ta) = Wy (ti,t2) = W(S,) + W(S]) +
W(S;) - W(S;r) (20)

The normalized difference between (17) and (20) is:
Wit t2) Wy(ta, t2)

Oy g
_ Wyt ta) Wyt ta) W(S;) — W(S;r/) .
¢f ¢g ¢f
W(S;)—W(SS) W(S;)—W(Sf)
|
bg or
W(Sg) —W(S7)

(21)

27

Take the absolute value and plug in Equations (14),(16}1@)8

‘Wf(tl,tz) _ Wyl ta)
¢y

g
< ‘Wf’(thtz) - Wy, t2) n W(S;) - W(S})
B bf oy o5
N W(S,)— W(S;) N W(S;) - W(SJJ[) N
¢g ¢f
‘ W(S;) —W(S;)
g
W (t1,t W (t1,t
<‘ p(tta) Wyt ta) + (Dspo +1) +
ol bg
batchcost%* batchcost™%*
——— L+ (Dsrg + 1) s ————24
o Pg
cost}”ﬁ{”
(Dsrq + Daisk) * Ny * — +
b5
cos ;”fff”
(DSFQ + Ddisk) * Ng ’ —F (22)
bg
According to Theorem 1 in [8],
Wity t2) — Wy (t, t2)
(bf (bg B
cost'eT cost™SE
A g,A
+ 23
¢f ¢g (23)
The above two inequalities give us the result. |

One may observe in the above proof that ﬁ}tsandSJ; may overlap, as well as

ST and Sjir,. It may be possible to obtain a tighter bound with more carafalysis.
For simplicity, the loose bound is presented here.

Proof of Theorem 3.

Proof: Let us first consider the simple case where two strefarsdg are backlogged

on brick A, and Ry other > Ry other- If Ry > Ry, as a virtual stream represents
the whole stream, the incoming rate of virtual stregnis faster than the incoming
rate of f at brick A. However, f/ and g’ are processed at the same (normalized)
speed by the SFQ scheduler. Singds already backlogged, a faster incoming rate
implies that the queue size 9f is ever-increasing. The size of the physical queue is
bounded, so the increasing part can only be virtual requkatsdo not occupy any
physical slot; see Fig. 15. Eventually, these virtual retsivill totally block normal
requests ofy’ (i.e., the delay fom;A will become infinite), thusk, 4 — 0. Then

28

Ry = Rg.other < Ry other < Ry, wWhich is a contradiction. Therefor&; > R,,. If
Ry > R, asimilar analysis tells us thét; 4 = 0.

As aresult, if during intervallt1, ta], R other > Ry other, @Sta — t1 — o0, either
Rf = Rg, Oer > Rg ande,A =0.

The theorem is a direct corollary of the above result. [|

Proof of Theorem 4.

Proof: We again consider virtual streams. However, we assume thext & coordina-
tor dispatches arequest to a brick other tHait does not replicate it tal immediately.
Instead, it holds these virtual requests until a request tmmes and then dispatches
all held virtual requests followed by the request4dn a batch.

In this way, the virtual streamg andg’ that brick A receives are reordered, i.e., it
consists of all requests ifiandg, but not necessarily in the same order as in the case
of single coordinator; see Fig. 7. According to the virtuaéam analysis in the proof
of Theorem 2, inequality (8) is true, bttitchcost?'" andbatcheost' 4" should be
calculated by (9,10) because of the way the reordered Vstteams are constructed.

|

29

