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Abstract

Fully distributed storage systems have gained popularity in the past few years
because of their ability to use cheap commodity hardware andtheir high scalabil-
ity. While there are a number of algorithms for providing differentiated quality of
service to clients of a centralized storage system, the problem has not been solved
for distributed storage systems. Providing performance guarantees in distributed
storage systems is more complex because clients may have different data layouts
and access their data through different coordinators (access nodes), yet the perfor-
mance guarantees required are global.

This paper presents a distributed scheduling framework. Itis an adaptation of
fair queuing algorithms for distributed servers. Specifically, upon scheduling each
request, it enforces an extra delay (possibly zero) that corresponds to the amount
of service the client gets on other servers. Different performance guarantees, e.g.,
per storage node proportional sharing, total service proportional sharing or mixed,
can be met by different delay functions. The delay functionscan be calculated at
coordinators locally so excess communication is avoided. The analysis and ex-
perimental results show that these new algorithms can enforce performance goals
under different data layouts and workloads.

1 Introduction

The storage requirements of commercial and institutional organizations are growing
rapidly. A popular approach for reducing the resulting costand complexity of manage-
ment is to consolidate the separate computing and storage resources of various applica-
tions into a common pool. The common resources can then be managed together and
shared more efficiently. Distributed storage systems, suchasFederated Array of Bricks
(FAB) [21], Petal [17], and IceCube [12], are designed to serve as large storage pools.
They are built from a number of individual storage nodes, or bricks, but present a sin-
gle, highly-available store to users. High scalability is another advantage of distributed
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Figure 1:A distributed storage system

storage systems. The system can grow smoothly from small to large-scale installations
because it is not limited by the capacity of an array or mainframe chassis. This satisfies
the needs of service providers to continuously add application workloads onto storage
resources.

A data center serving a large enterprise may support thousands of applications. In-
evitably, some of these applications will have higher storage performance requirements
than others. Traditionally, these requirements have been met by allocating separate
storage for such applications; for example, applications with high write rates may be
allocated storage on high-end disk arrays with large caches, while other applications
live on less expensive, lower-end storage. However, maintaining separate storage hard-
ware in a data center can be a management nightmare. It would be preferable to provide
each application with the service level it requires while sharing storage. However, stor-
age systems typically treat all I/O requests equally, whichmakes differentiated service
difficult. Additionally, a bursty I/O workload from one application can cause other
applications sharing the same storage to suffer.

One solution to this problem is to specify the performance requirement of each
application’s storage workload and enable the storage system to ensure that it is met.
Thus applications are insulated from the impact of workloadsurges in other appli-
cations. This can be achieved by ordering the requests from the applications appro-
priately, usually through a centralized scheduler, to coordinate access to the shared
resources [5, 6, 25]. The scheduler can be implemented in theserver or as a separate
interposed request scheduler[2, 13, 18, 28] that treats the storage server as a black box
and applies the resource control externally.

Centralized scheduling methods, however, fit poorly with distributed storage sys-
tems. To see this, consider the typical distributed storagesystem shown in Figure 1.
The system is composed of bricks; each brick is a computer with a CPU, memory,
networking, and storage. In a symmetric system, each brick runs the same software.
Data stored by the system is distributed across the bricks. Typically, a client accesses
the data through acoordinator, which locates the bricks where the data resides and
performs the I/O operation. A brick may act both as a storage node and a coordina-
tor. Different requests, even from the same client, may be coordinated by different
bricks. Two features in this distributed architecture prevent us from applying any ex-
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isting request scheduling algorithm directly. First, the coordinators are distributed. A
coordinator schedules requests possibly without the knowledge of requests processed
by other coordinators. Second, the data corresponding to requests from a client could
be distributed over many bricks, since a logical volume in a distributed storage system
may be striped, replicated, or erasure-coded across many bricks [7]. Our goal is to de-
sign a distributed scheduler that can provide service guarantees regardless of the data
layout.

This paper proposes a distributed algorithm to enforceproportional sharingof stor-
age resources amongstreamsof requests. Each stream has an assignedweight, and the
algorithm reserves for it a minimum share of the system capacity proportional to its
weight. Surplus resources are shared among streams with outstanding requests, also in
proportion to their weights. System capacity, in this context, can be defined in a variety
of ways: for example, the number of I/Os per second, the number of bytes read or writ-
ten per second, etc. The algorithm is work-conserving: no resource is left idle if there
is any request waiting for it. However, it can be shown easilythat a work-conserving
scheduling algorithm for multiple resources (bricks in oursystem) cannot achieve pro-
portional sharing in all cases. We present an extension to the basic algorithm that
allows per-brick proportional sharing in such cases, or a method that provides a hybrid
between system-wide proportional sharing and per-brick proportional sharing. This
method allows total proportional sharing when possible while ensuring a minimum
level of service on each brick for all streams.

The contribution of this paper includes a novel distributedscheduling framework
that can incorporate many existing centralized fair queuing algorithms. Within the
framework, several algorithms that are extensions to Start-time Fair Queuing [8] are
developed for different system settings and performance goals. To the best of our
knowledge, this is the first algorithm that can achieve totalservice proportional sharing
for distributed storage resources with distributed schedulers. We evaluate the proposed
algorithms both analytically and experimentally on a FAB system, but the results are
applicable to most distributed storage systems. The results confirm that the algorithms
allocate resources fairly under various settings — different data layouts, clients access-
ing the data through multiple coordinators, and fluctuatingservice demands.

This paper is organized as follows. Section 2 presents an overview of the problem,
the background, and the related work. Section 3 describes our distributed fair queue-
ing framework, two instantiations of it, and their properties. Section 4 presents the
experimental evaluation of the algorithms. Section 5 concludes.

2 Overview and background

We describe here the distributed storage system that our algorithms are designed for, the
proportional sharing properties they are intended to enforce, the centralized algorithm
that we base our work upon, and other related work.
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Figure 2: Data access model of a distributed storage system. Different clients may have
different data layouts spreading across different sets of bricks. However, coordinators are fully
symmetric. They know all data layouts and can handle requests from any client.

2.1 Distributed Storage Systems

Figure 2 shows the configuration of a typical distributed storage system. The system
includes a collection of storagebricks, which might be built from commodity disks,
CPUs, and NVRAM. Bricks are connected by a standard network such as gigabit Eth-
ernet. Access to the data on the bricks is handled by the coordinators, which present
a virtual diskor logical volumeinterface to the clients. In the FAB distributed storage
system [21], a client may access data through an arbitrary coordinator or a set of coor-
dinators at the same time to balance its load. Coordinators also handle data layout and
volume management tasks, such as volume creation, deletion, extension and migration.
In FAB, the coordinators reside on the bricks, but this is notrequired.

The data layout for a volume is usually designed to optimize properties such as
load balance, availability, and reliability. In FAB, a logical volume is divided into a
large number ofsegments, which may be distributed across bricks using a replicated or
erasure-coded layout. The choice of brick-set for each segment is determined by the
storage system. Generally, the layout is opaque to the clients.

The scheduling algorithm we present is designed for such a distributed system,
making a minimum of assumptions. The data for a client may be laid out in an arbitrary
manner. Clients may request data located on an arbitrary setof bricks at arbitrary and
even fluctuating rates, possibly through an arbitrary set ofcoordinators.

2.2 Proportional Sharing

The algorithms in this paper support proportional sharing of resources for clients with
queued requests. Each client is assigned a weight by the userand, in every time inter-
val, the algorithms try to ensure that clients with requestspending during that interval
receive service proportional to their weight. It is easy to show that a perfectly propor-
tional resource sharing is not always possible in a distributed storage system; in these
cases, the algorithms attempt to come as close as possible tothe ideal.

More precisely, I/O requests are grouped into service classes calledstreams, each
with a weight assigned. For example, all requests from a client could form a single
stream. A stream isbackloggedif it has requests queued.

A streamf consists a sequence of requestsp0
f ...pn

f . Each request has an associated
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Figure 3: Distributed data. Streamf sends requests to brickA only while streamg sends
requests to bothA andB; φf = φg = 1.

service costcost(pi
f ). For example, with bandwidth performance goals, the cost might

be the size of the requested data; with service time goals, processing time of a request
might be its cost. The maximum request cost of streamf is denotedcostmax

f . The
weight assigned to streamf is denotedφf ; only the relative values of the weights
matter for proportional sharing. (Note: the notation we useis summarized in Table 1
for convenient reference.)

Formally, if Wf (t1, t2) is the aggregate cost of the requests from streamf served
in the time interval[t1, t2], then the unfairness between two continuously backlogged
streamsf andg is defined to be:

∣

∣

∣

∣

Wf (t1, t2)

φf

−
Wg(t1, t2)

φg

∣

∣

∣

∣

(1)

A fair proportional sharing algorithm should guarantee that (1) is bounded by a
constant. The constant usually depends on the stream characteristics, e.g.,costmax

f .
The time interval[t1, t2] in (1) may be any time duration. This corresponds to

a “use it or lose it” policy, i.e., a stream will not suffer during one time interval for
consuming surplus resources in another interval, nor will it benefit later from under-
utilizing resources.

In the case of distributed data storage, we need to define whatis to be proportionally
shared. Let us look at the following example.

Example 1 Figure 3 shows a storage system of two bricksA andB, with equal service
capacities. If both streamsf andg are backlogged atA, how should we allocate the
service capacity of brickA?

There are two alternatives for the above example, which induce two different mean-
ings for proportional sharing. The first issingle brick proportional sharing, i.e., service
capacity of brickA will be proportionally shared. Many existing proportionalsharing
algorithms fall into this category. However, streamg also receives service at brickB,
thus receiving higher overall service. While this appears fair because streamg does a
better job of balancing its load over the bricks than streamf , note that the data layout
may be managed by the storage system and opaque to the clients; thus the quality of
load balancing is merely an accident. From the clients’ point of view, streamf unfairly
receives less service than streamg.
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SYMBOLS DESCRIPTION

φf Weight of streamf
pi

f Streamf ’s i-th request
pi

f,A Streamf ’s i-th request to brickA
cost(·) Cost of a single request
costmax

f Max request cost of streamf
costmax

f,A Max cost on brickA of f

Wf (t1, t2) Aggregate cost of requests served
from f during interval[t1, t2]

batchcost Total cost of requests in between
(pi

f,A) pi−1

f,A andpi
f,A, includingpi

f,A

batchcostmax
f,A Max value ofbatchcost(pi

f,A)

A(·) Arrival time of a request
S(·) Start tag of a request
F (·) Finish tag of a request
v(t) Virtual time at timet
delay(·) Delay value of a request

Table 1:Some symbols used in this paper.

The other alternative istotal service proportional sharing. In this case, the share
of the service streamf receives on brickA can be increased to compensate for the
fact that streamg receives service on brickB, while f does not. This problem is more
intricate and little work has been done on it.

It is not always possible to guarantee total service proportional sharing with a work-
conserving scheduler, i.e., where the server is never left idle when there is a request
queued. Consider the following extreme case.

Example 2 Streamf requests service only from brickA, but equally weighted stream
g is sending requests toA and many other bricks, which are otherwise not loaded. The
amount of serviceg obtained from the other bricks is larger than the capacity ofA.
With work-conserving schedulers, it is impossible to equalize the total service of the
two streams by adjusting the service allocation atA.

If the scheduler tries to make the total service received byf andg as close to equal
as possible,g will be blocked at brickA, which may not be desirable. Inspired by the
example, we would like to guarantee some minimum service on each brick for each
stream, yet satisfy total service proportional sharing whenever possible.

In this paper, we propose a distributed algorithm frameworkunder which single
brick proportional sharing, total service proportional sharing, and total service propor-
tional sharing with a minimum service guarantee are all possible.

2.3 The centralized approach

In selecting an approach towards a distributed proportional sharing scheduler, we must
take four requirements into account: i) the scheduler must be work-conserving: re-
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sources that backlogged streams are waiting for should never be idle; ii) “use it or
lose it”, as described in the previous section; iii) the scheduler should accommodate
fluctuating service capacity since the service times of IOs can vary unpredictably due
to the effects of caching, sequentiality, and interferenceby other streams, as well as
characteristics such as request type (read or write) and request size; and iv) reason-
able computational complexity — there might be thousands ofbricks and clients in a
distributed storage system, hence the computational and communication costs must be
considered.

There are many centralized scheduling algorithms that could be extended to dis-
tributed systems [3, 4, 8, 27, 29, 18, 15, 9]. We chose to focuson the Start-time Fair
Queuing (SFQ) [8] and its extension SFQ(D) [13] because they come closest to meet-
ing the requirements above. We present a brief discussion ofthe SFQ and SFQ(D)
algorithms in the remainder of this section.

SFQ is a proportional sharing scheduler for a single server;intuitively, it works as
follows. SFQ assigns astart timetag and afinish timetag to each request corresponding
to the normalized times at which the request should start andcomplete according to a
system notion ofvirtual time. A new request is assigned a start time based on the
assigned finish time of the previous request from that stream, or the current virtual
time, whichever is greater. The finish time is then assigned based on the cost of the
request and the weight attached to its stream. The virtual time is set to be the start
time of the currently executing request, or the finish time ofthe last completed request
if there is none currently executing. Requests are scheduled in the order of their start
tags. It can be shown that, in any time interval, the service received by two backlogged
workloads is approximately proportionate to their weights.

More formally, the requestpi
f is assigned thestart tagS(pi

f ) and thefinish tag
F (pi

f ) as follows:

S(pi
f) = max{v(A(pi

f )), F (pi−1

f )}, i ≥ 1 (2)

F (pi
f ) = S(pi

f ) +
cost(pi

f )

φf

, i ≥ 1 (3)

whereA(pi
f ) is the arrival time of requestpi

f , andv(t) is the virtual time att; F (p0
f ) =

0, v(0) = 0.
SFQ cannot be directly applied to storage systems, since storage servers are con-

current, serving multiple requests at a time, and the virtual time v(t) is not well defined.
Jin et al. [13] extended SFQ to concurrent servers by defining the virtual time as the
maximum start tag of requests in service, i.e., the start-time tag of the last request
dispatchedto the storage device. The resulting algorithm is calleddepth-controlled
start-time fair queuingand abbreviated to SFQ(D), whereD is the queue depth of the
storage device. As with SFQ, the following theorem [13] shows that SFQ(D) provides
backlogged workloads with proportionate service, albeit with a looser bound on the
unfairness.

Theorem 1 During any interval[t1, t2], the difference between the amount of work
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completed by an SFQ(D) server for two backlogged streamsf andg is bounded by:
∣

∣

∣

∣

Wf (t1, t2)

φf

−
Wg(t1, t2)

φg

∣

∣

∣

∣

≤ (D + 1)

(

costmax
f

φf

+
costmax

g

φg

)

(4)

While there are more complex scheduling algorithms [13] that can reduce the un-
fairness of SFQ(D), for simplicity, we use SFQ(D) as the basis for our distributed fair
queuing algorithms. Since the original SFQ algorithm cannot be directly applied to
storage systems, for the sake of readability, we will use “SFQ” to refer to SFQ(D) in
the remainder of the paper.

2.4 Related Work

Extensive research in scheduling for packet switching networks has yielded a series
of fair queuing algorithms; see [20, 27, 8, 3] and referencestherein. These algo-
rithms have been adapted to storage systems for service proportional sharing. For
example, YFQ [1], SFQ(D) and FSFQ(D) [13] are based on start-time fair queue-
ing [8]; SLEDS [2] and SARC [28] use leaky buckets; CVC [11] employs the virtual
clock [29]. Fair queuing algorithms are very popular for proportional sharing for two
reasons: 1) they provide theoretically proven strong fairness, even under fluctuating
service capacity, and 2) they are work-conserving.

On the other hand, fair queuing algorithms are not convenient for real-time perfor-
mance goals, such as latencies. To address this issue, one approach is to use a real-time
scheduler; e.g., Façade [18] implements an Earliest Deadline First (EDF) queue with
the proportional feedback for adjusting the disk queue length. Another method is feed-
back control, a classical engineering technique that has recently been applied to many
computing systems [10]. These generally require at least a rudimentary model of the
system being controlled. In the case of storage systems, whose performance is noto-
riously difficult to model [23, 26], Triage [15] adopts an adaptive controller that can
automatically adjust the system model based on input-output observations.

There are some frameworks [11, 28] combining the above two objectives (propor-
tional sharing and latency guarantees) in a two-level architecture. Usually, the first
level guarantees proportional sharing by fair queueing methods, such as CVC [11] and
SARC [28]. The second level tries to meet the latency goal with a real-time scheduler,
such as EDF. Some feedback from the second level to the first level scheduler is help-
ful to balance the two objectives [28]. All of the above methods are designed for use
in a centralized scheduler and cannot be directly applied toour distributed scheduling
problem.

Existing methods for providing quality of service in distributed systems can be put
into two categories. The first category is the distributed scheduling of a single re-
source. The main problem here is to maintain information at each scheduler regarding
the amount of resource each stream has so far received. For example, in fair queuing al-
gorithms, where there is usually a system virtual timev(t) representing the normalized
fair amount of service that all backlogged clients should have received by timet, the
problem is how to synchronize the virtual time among all distributed schedulers. This
can be solved in a number or ways; for example, in high capacity crossbar switches, in
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order to fairly allocate the bandwidth of the output link, the virtual time of different in-
put ports can be synchronized by theaccess bufferinside the crossbar [22]. In wireless
networks, the communication medium is shared. When a node can overhear pack-
ages from neighboring nodes for synchronization, distributed priority backoff schemes
closely approximate a single global fair queue [19, 14, 24].In the context of storage
scheduling, Request Window [13] is a distributed schedulerthat is similar to a leaky
bucket scheduler. Services for different clients are balanced by the windows issued by
the storage server. It is not fully work-conserving under light workloads.

The second category is centralized scheduling of multiple resources. Gulati and
Varman [9] address the problem of allocating disk bandwidthfairly among concur-
rent competing flows in a parallel I/O system with multiple disks and a centralized
scheduler. They aim at the optimization problem of minimizing the unfairness among
different clients with concurrent requests. I/O requests are scheduled in batches, and a
combinatorial optimization problem is solved in each round, which makes the method
computationally expensive. The centralized controller makes it unsuitable for use in
fully distributed high-performance systems, such as FAB.

To the best of our knowledge, the problem of fair scheduling in distributed stor-
age systems that involve both distributed schedulers and distributed data has not been
previously addressed.

3 Proportional Sharing in Distributed Storage Systems

We describe a framework for proportional sharing in distributed storage systems, be-
ginning with the intuition, followed by a detailed description, and two instantiations of
the method exhibiting different sharing properties.

3.1 An intuitive explanation

First, let us consider the simplified problem where the data is centralized at one brick,
but the coordinators may be distributed. An SFQ scheduler could be placed either at
coordinators or at the storage brick. As fair scheduling requires the information for
all backlogged streams, direct or indirect communication among coordinators may be
necessary if the scheduler is implemented at coordinators.Placing the scheduler at
bricks avoids the problem. In fact, SFQ(D) can be used without modification in this
case, provided that coordinators attach a stream ID to each request so that the scheduler
at the brick can assign the start tag accordingly.

Now consider the case where the data is distributed over multiple bricks as well.
In this case, SFQ schedulers at each brick can guarantee onlysingle brick proportional
sharing, but not necessarily total service proportional sharing because the scheduler
at each brick sees only the requests directed to it and cannotaccount for the service
rendered at other bricks.

Suppose, however, that each coordinator broadcasts all requests to all bricks. Clearly,
in this case, each brick has complete knowledge of all requests for each stream. Each
brick responds only to the requests for which it is the correct destination. The remain-
ing requests are treated asvirtual requests, and we call the combined stream of real and
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Figure 4:The naive approach. The coordinator broadcasts every request to all bricks. Requests
to incorrect destination bricks arevirtual and take zero processing time. Proportional scheduling
at each local brick guarantees total service proportional sharing.

Figure 5: The improved approach. Only the aggregate cost of virtual requests is communi-
cated, indicated by the number before each request (assuming unit cost of each request). Broad-
casting is avoided yet total service proportional sharing can be achieved.

virtual request avirtual stream; see Fig. 4. A virtual request takes zero processing time
but does account for the service share allocated to its source stream. Then the SFQ
scheduler at the brick guarantees service proportional sharing of backlogged virtual
streams. As the aggregate service cost of a virtual stream equals the aggregate service
cost of the original stream, total service proportional sharing can be achieved.

The above approach is simple and straightforward, but with large-scale distributed
storage systems, broadcasting is not acceptable. We observe, however, that the SFQ
scheduler requires only knowledge of the cost of each virtual request, the coordinators
may therefore broadcast the cost value instead of the request itself. In addition, the
coordinator may combine the cost of consecutive virtual requests and piggyback the
total cost information onto the next real request; see Fig. 5.

The piggyback cost information on each real request is called thedelayof the re-
quest, because the modified SFQ scheduler will delay processing the request according
to this value. Different delay values may be used for different performance goals,
which greatly extends the ability of SFQ schedulers. This flexibility is captured in the
framework presented next.
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3.2 Distributed Fair Queuing Framework

We propose the distributed fair queuing framework displayed in Fig. 6; as we show
later, it can be used for total proportional sharing, single-brick proportional sharing, or
a hybrid between the two. Assume there are streamsf, g, ... and bricksA, B, .... The
fair queueing scheduler is placed at each brick as just discussed. The scheduler has a
priority queue for all streams and orders all requests by some priority, e.g., start time
tags in the case of an SFQ scheduler. On the other hand, each coordinator has a separate
queue for each stream, where the requests in a queue may have different destinations.

When we apply SFQ to the framework, each request has a start tag and a finish tag.
To incorporate the idea presented in the previous section, we modify the computation
of the tags as follows:

S(pi
f,A) = max

{

v(A(pi
f,A)), F (pi−1

f,A) +
delay(pi

f,A)

φf

}

(5)

F (pi
f,A) = S(pi

f,A) +
cost(pi

f,A)

φf

(6)

The only difference between SFQ formulae (2-3) and those above is the new delay
function for each request, which is calculated at coordinators and carried by the request.
The normalized delay value translates into the amount of time by which the start tag
should be shifted. How the delay is computed depends upon theproportional sharing
properties we wish to achieve, and we will discuss several delay functions and the
resulting sharing properties in the sections that follow. We will refer to the modified
Start-time Fair Queuing algorithm as Distributed Start-time Fair Queuing (DSFQ).

In DSFQ, as in SFQ(D), v(t) is defined to be the start tag of the last request dis-
patched to the disk before or at timet. There is no global virtual time in the system.
Each brick maintains its own virtual time, which varies at different bricks depending
on the workload and the service capacity of the brick.

If the delay value is set to always be zero, DSFQ reduces to SFQand achieves
single brick proportional sharing. We next consider other performance goals.

3.3 Total Service Proportional Sharing

We describe how the distributed fair queueing framework canbe used for total pro-
portional sharing when each stream uses one coordinator, and then argue that the
same method also engenders total proportional sharing withmultiple coordinators per
stream.

3.3.1 Single-Client Single-Coordinator

We first assume that requests from one stream are always processed by one coordinator;
different streams may or may not have different coordinators. We will later extend this
to the multiple coordinator case. The performance goal, as before, is that the total
amount of service each client receives must be proportionalto its weight.
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Figure 6:The distributed fair queuing framework

As described in Section 3.1, the following delay function for a request from stream
f to brickA represents the total cost of requests sent to other bricks since the previous
request to brickA.

delay(pi
f,A) = batchcost(pi

f,A) − cost(pi
f,A) (7)

When this delay function is used with the distributed scheduling framework defined
by formulae (5-7), we call the resulting algorithm TOTAL-DSFQ. The delay function
(7) is the total service cost of requests sent to other brickssince the last request on the
brick. Intuitively, it implies that, if the brick is otherwise busy, a request should wait
an extra time corresponding to the aggregate service requirements of the preceding
requests from the same stream that were sent to other bricks,normalized by the stream’s
weight.

Why TOTAL-DSFQ engenders proportional sharing of the total service received by
the streams can be explained using virtual streams. According to the formulae (5-7),
TOTAL-DSFQ is exactly equivalent to the architecture where coordinators send virtual
streams to the bricks and bricks are controlled by the standard SFQ. This virtual stream
contains all the requests inf , but the requests that are not destined forA are served atA
in zero time. Note that SFQ holds its fairness property even when the service capacity
varies [8]. In our case, the server capacity (processing speed) varies from normal, if
the request is to be serviced on the same brick, to infinity if the request is virtual and is
to be serviced elsewhere. Intuitively, since the brickA sees all the requests inf (and
their costs) as a part of the virtual stream, the SFQ scheduler at A factors in the costs
of the virtual requests served elsewhere in its scheduling,even though they consume
no service time atA. This will lead to proportional sharing of the total service. The
theorem below formalizes the bounds on unfairness using TOTAL-DSFQ.

Theorem 2 Assume streamf is requesting service onNf bricks and streamg on Ng

bricks. During any interval[t1, t2] in whichf andg are both continuously backlogged
at some brickA, the difference between the total amount of work completed by all
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bricks for the two streams during the entire interval, normalized by their weights, is
bounded as follows:

∣

∣

∣

∣

Wf (t1, t2)

φf

−
Wg(t1, t2)

φg

∣

∣

∣

∣

≤ ((D + DSF Q) ∗ Nf + 1)
costmax

f,A

φf

+

((D + DSF Q) ∗ Ng + 1)
costmax

g,A

φg

+

(DSF Q + 1)

(

batchcostmax
f,A

φf

+
batchcostmax

g,A

φg

)

(8)

whereD is the queue depth of the disk1, andDSFQ is the queue depth of the Start-time
Fair Queue at the brick.

Proof: The proof of this and all following theorems can be found in the appendix.

The bound in Formula (8) has two parts. The first part is similar to the bound
of SFQ(D) in (4), the unfairness due to server queues. The second partis new and
contributed by the distributed data. If the majority of requests of streamf is processed
at the backlogged server, thebatchcostmax

f,A is small and the bound is tight. Otherwise,
if f gets a lot of service at other bricks, the bound is loose.

As we showed in Example 2, however, there are situations in which total propor-
tional sharing is impossible with work conserving schedulers. In the theorem above,
this corresponds to the case with an infinitebatchcostmax

g,A , and hence the bound is in-
finite. To delineate more precisely when total proportionalsharing is possible under
TOTAL-DSFQ, we characterize when the total service rates of the streams are pro-
portional to their weights. The theorem below says that, under TOTAL-DSFQ, if a
set of streams are backlogged together at a set of bricks, then either their normalized
total service rates over all bricks are equal (thus satisfying the total proportionality re-
quirement), or there are some streams whose normalized service rates are equal and
the remainder receive no service at the backlogged bricks because they already receive
more service elsewhere.

Let Rf (t1, t2) = Wf (t1, t2)/(φf ∗ (t2 − t1)) be the normalized service rate of
streamf in the duration(t1, t2). If the total service rates of streams are proportional to
their weights, then their normalized service rates should be equal as the time interval
t2 − t1 goes to infinity. Suppose streamf is backlogged at a set of bricks, denoted as
setS, its normalized service rate atS is denoted asRf,S(t1, t2), andRf,other(t1, t2)
denotes its normalized total service rate at all other bricks.Rf (t1, t2) = Rf,S(t1, t2)+
Rf,other(t1, t2). We drop(t1, t2) hereafter as we always consider interval(t1, t2).

Theorem 3 UnderTOTAL-DSFQ, if during (t1, t2), streams{f1, f2, ...fn} are back-
logged at a set of bricksS, in the orderRf1,other ≤ Rf2,other ≤ ... Rfn,other, as
t2 − t1 → ∞, either Rf1

= Rf2
= ...Rfn

or ∃k ∈ {1, 2, ...n − 1}, such that
Rf1

= ...Rfk
≤ Rfk+1,other andRfk+1,S = ...Rfn,S = 0.

The intuition of Theorem 3 is as follows. At brick setS, let us first setRf1,S =
Rf2,S = ... = Rfn,S = 0 and try to allocate the resources ofS. Streamf1 has the

1If there are multiple disks (the normal case),D is the sum of the queue depths of the disks.
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Figure 7:Effect of multiple coordinators under TOTAL-DSFQ. Delay value of an individual
request is different from Fig. 5, but the total amount of delay remains the same.

highest priority since its delay is the smallest. Thus the SFQ scheduler will increase
Rf1,S until Rf1

= Rf2,other. Now bothf1 andf2 have the same total service rate and
the same highest priority. Brick setS will then increaseRf1,S andRf2,S equally until
Rf1

= Rf2
= Rf3,other. In the end, either all the streams have the same total service

rate, or it is impossible to balance all streams due to the limited service capacity of all
bricks inS. In the latter case, the firstk streams have equal total service rates, while
the remaining streams are blocked for service atS. Intuitively, this is the best we can
do with a work-conserving scheduler to equalize normalizedservice rates.

In Section 3.4 we propose a modification to TOTAL-DSFQ that ensures no stream
is blocked at any brick.

3.3.2 Single-client Multi-coordinator

So far we have assumed that a stream requests service throughone coordinator only.
In many high-end systems, however, it is preferable for high-load clients to distribute
their requests among multiple coordinators in order to balance the load on the coordi-
nators. In this section, we discuss the single-client multi-coordinator setting and the
corresponding fairness analysis for TOTAL-DSFQ. In summary, we find that TOTAL-
DSFQ does engender total proportional sharing in this setting, except in some unusual
cases.

We motivate the analysis with an example. First, let us assume that a stream ac-
cesses two coordinators in round-robin order and examine the effect on the delay func-
tion (7) through the example stream in Fig. 5. The result is displayed in Fig. 7. Odd-
numbered requests are processed by the first coordinator andeven-numbered requests
are processed by the second coordinator. With one coordinator, the three requests to
brick A have delay values 0, 2 and 0. With two round-robin coordinators, the delay
values of the two requests dispatched by the first coordinator are now 0 and 1; the
delay value of the request dispatched by the second coordinator is 1. Thus, although
individual request may have delay value different from the case of single coordinator,
the total amount of delay remains the same. This is because every virtual request (to
other bricks) is counted exactly once.

We formalize this result in Theorem 4 below, which says, essentially, that streams
backlogged at a brick receive total proportional service solong as each stream uses
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a consistent set of coordinators (i.e., the same set of coordinators for each brick it
accesses).

Formally, assume streamf sends requests throughn coordinatorsC1, C2, ..., Cn,
and coordinatorCi receives a substream off denoted asfi. With respect to brickA,
each substreamfi has itsbatchcostmax

fi,A
. Let us first assume thatbatchcostmax

fi,A
is finite

for all substreams, i.e., requests toA are distributed among all coordinators.

Theorem 4 Assume streamf accessesn coordinators such that each one receives sub-
streamsf1, ..., fn, respectively, and streamg accessesm coordinators with substreams
g1, ..., gm, respectively. During any interval[t1, t2] in whichf andg are both continu-
ously backlogged at brickA, inequality (8) still holds, where

batchcostmax
f,A = max{ batchcostmax

f1,A, ...batchcostmax
fn,A} (9)

batchcostmax
g,A = max{ batchcostmax

g1,A, ...batchcostmax
gm,A} (10)

An anomalous case arises if a stream partitions the bricks into disjoint subsets and
accesses each partition through separate coordinators. Inthis case, the requests served
in one partition will never be counted in the delay of any request to the other partition,
and the total service may no longer be proportional to the weight. For example, requests
to B in Fig. 7 have smaller delay values than the ones in Fig. 5. This case is unlikely
to occur with most load balancing schemes such as round-robin or uniformly random
selection of coordinators. Note that the algorithm will still guarantee total proportional
sharing ifdifferentstreams use separate coordinators.

More interestingly, selecting randomly among multiple coordinators may smooth
out the stream, and result in more uniform delay values. For example, ifbatchcost(pj

f,A)
in the original stream is a sequence of i.i.d. (independent,identically distributed) ran-
dom variables with large variance such thatbatchcostmax

f,A might be large, it is not
difficult to show that with independently random mapping of each request to a coor-
dinator,batchcost(pj

fi,A
) is also a sequence of i.i.d. random variables with the same

mean, but the variance decreases as number of coordinators increases. This means that
under random selection of coordinators, while the average delay is still the same (thus
service rate is the same), the variance in the delay value is reduced and therefore the
unfairness bound is tighter. We test this observation through an empirical study later.

3.4 Hybrid Proportional Sharing

Under TOTAL-DSFQ, Theorem 3 tells us that a stream may be blocked at a brick if it
gets too much service at other bricks. This is not desirable in many cases. We would
like to guarantee a minimum service rate for each stream on every brick so the client
program can always make progress. Under the DSFQ framework,i.e., formulae (5-6),
this means that the delay must be bounded, using a different delay function than the one
used in TOTAL-DSFQ. We next develop a delay function that guarantees a minimum
service share to backlogged streams on each brick.

Let us assume that the weights assigned to streams are normalized, i.e.0 ≤ φf ≤ 1
and

∑

f φf = 1. Suppose that, in addition to the weightφf , each streamf is assigned
a brick-minimum weightφmin

f , corresponding to the minimum service share per brick
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for the stream.2 We can then show that the following delay function will guarantee the
required minimum service share on each brick for each stream.

delay(pi
f,A) =

φf/φmin
f − 1

1 − φf

∗ cost(pi
f,A) (11)

We can see, for example, that settingφmin
f = φf yields a delay of zero, and the

algorithm then reduces to single brick proportional sharing that guarantees minimum
shareφf for streamf , as expected.

By combining delay function (11) with the delay function (7)for TOTAL-DSFQ,
we can achieve an algorithm that approaches total proportional sharing while guaran-
teeing a minimum service level for each stream per brick, as follows.

delay(pi
f,A) = min { batchcost(pi

f,A) − cost(pi
f,A),

φf/φmin
f − 1

1 − φf

∗ cost(pi
f,A)} (12)

The DSFQ algorithm using the delay function (12) defines a newalgorithm called
HYBRID-DSFQ. Since the delay under HYBRID-DSFQ is no greater than the delay in
(11), the service rate at every brick is no less than the rate under (11), thus the minimum
per brick service shareφmin

f is still guaranteed. On the other hand, if the amount of
service a streamf receives on other bricks between requests to brickA is lower than
(φf/φmin

f − 1)/(1 − φf )∗cost(pi
f,A), the delay function behaves similarly to equation

(7), and hence the sharing properties in this case should be similar to TOTAL-DSFQ,
i.e., total proportional sharing.

Empirical evidence (in Section 4.3) indicates that HYBRID-DSFQ works as ex-
pected for various workloads. However, there are pathological workloads that can
violate the total service proportional sharing property. For example, if a stream using
two bricks knows its data layout, it can alternate bursts to one brick and then the other.
Under TOTAL-DSFQ, the first request in each burst would have received a large de-
lay, corresponding to the service the stream had received onthe other brick during the
preceding burst, but in HYBRID-DSFQ, the delay is truncated by the minimum share
term in the delay function. As a result, the stream receives more service than its weight
entitles it to. We believe that this can be resolved by including more history in the
minimum share term, but the design and evaluation of such a delay function is reserved
to future work.

4 Experimental Evaluation

We evaluate our distributed proportional sharing algorithm in a prototype FAB sys-
tem [21], which consists of six bricks. Each brick is an identically configured HP
ProLiant DL380 server with 2x 2.8GHz Xeon CPU, 1.5GB RAM, 2x Gigabit NIC,
and an integrated Smart Array 6i storage controller with four 18G Ultral320, 15K rpm

2
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Figure 8:Proportional sharing on one brick. φf :φg=1:2; legend in (a) applies to (b).

SCSI disks configured as RAID 0. All bricks are running SUSE 9.2 Linux, kernel
2.6.8-24.10-smp. Each brick runs a coordinator.

The workload generator consists of a number of clients (streams), each running
several Postmark [16] instances. Each Postmark thread has exactly one outstanding
request in the system at any time, accessing its isolated 256MB logical volume. Unless
otherwise specified, each volume resides on a single brick and each thread generates
random read/write requests with file sizes from 1KB to 16KB.

With our work-conserving schedulers, until a stream is backlogged, its IO through-
put increases as the number of threads increases. When it is backlogged, on the other
hand, the actual service amount depends on the scheduling algorithm.

4.1 Single Brick Proportional Sharing

We first demonstrate the effect of TOTAL-DSFQ on two streams reading from one
brick. Streamf consistently has 30 Postmark threads, while the number of Postmark
threads for streamg is increased from 0 to 20. The ratio of weights betweenf and
g is at 1:2. As the data is not distributed, the delay value is always zero and this is
essentially the same as SFQ(D) [13].

Figure 8 shows the performance isolation between the two clients. The throughput
of streamg is increasing and its latency is fixed untilg acquires its proportional share
at around 13 threads. After that, additional threads do not give any more bandwidth
but increase the latency. On the other hand, the throughput and latency of streamf are
both affected byg. Onceg gets its share, it has no further impact onf .
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(b) Sequential I/O,φf :φg=1:3, max file size=1MB

Figure 9:Total service proportional sharing. f ’s data is on brickA only; g has data on both
bricks A andB. As g gets more service on the bricks it does not share withf , the algorithm
increasesf ’s share on the brick they do share; thus the total throughputs of both streams increase.

4.2 Total Service Proportional Sharing

Figure 9 demonstrates the effectiveness of TOTAL-DSFQ for two clients. The work-
load streams have access patterns shown in Fig. 3. We arranged the data layout so that
each Postmark thread accesses only one brick. Streamf and streamg both have 30
threads on brickA throughout the experiment, meanwhile, an increasing number of
threads fromg is processed at brickB. Postmark allows us to specify the maximum
size of the random files generated, and we tested the algorithm with workloads using
two different maximum random file sizes, 16KB and 1MB.

Figure 9(a) shows that as the number of Postmark threads fromstreamg directed
to brick B increases, its throughput from brickB increases, and the share it receives
at brickA decreases to compensate. The total throughputs received bystreamsf and
g stay roughly equal throughout. As the streamg becomes more unbalanced between
bricksA andB, however, the throughput difference between streamsf andg varies
more. This can be related to the fairness bound in Theorem 2: as the imbalance in-
creases, so doesbatchcostmax

g,A , and the bound becomes a little looser.
Figure 11 displays the result with multiple coordinators. The data layouts and

workloads are the same as in the experiment shown in Figures 3and 9(a): two bricks,
streamf accesses only one, and streamg accesses both. The only difference is that
streamg accesses both bricksA andB through two or four coordinators in round-robin
order.

Using multiple coordinators still guarantees proportional sharing of the total through-
put. Furthermore, a comparison of Fig. 9, 11(a), and 11(b) indicates that as the number
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Figure 10:Total service proportional sharing with striped data. φf :φg=1:1. g has RAID-0
logical volume striping on three bricks;f ’s data is on one brick only.
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Figure 11:Total service proportional sharing with multi-coordinator, φf :φg=1:1
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Figure 12:Two-brick experiment using HYBRID-DSFQ

of coordinators increases, the match between the total throughputs received byf andg
is closer, i.e., the unfairness bound is tighter. This confirms the observation in Section
3.3.2 that multiple coordinators may smooth out a stream andreduce the variance of
batchcostmax

f,A .

4.3 Hybrid Proportional Sharing

The result of HYBRID-DSFQ for performance isolation is presented in Fig. 12. The
workload is the same as in the experiment shown in Figures 3 and 9(a): two bricksA
andB, streamf accesses only one, and streamg accesses both. Streamsf andg both
have 20 Postmark threads on brickA, andg has an increasing number of Postmark
threads on brickB. We wish to give streamg a minimum share of1/12 on brickA
when it is backlogged. This corresponds toφmin

g = 1/12; based on Equation 12, the
delay function forg is

delay(pi
g,A) = min { batchcost(pi

g,A) − cost(pi
g,A), 10 ∗ cost(pi

g,A)}

Streamf is served on brickA only and its delay is always zero.
With HYBRID-DSFQ, the algorithm reserves a minimum share for each stream,

and tries to make the total throughput as close as possible without reallocating the
reserved share. For this workload, the service capacity of abrick is approximately
6MB/sec. We can see in Fig. 12(a) that if the throughput of streamg on brickB is less
than 4MB, HYBRID-DSFQ can balance the total throughputs of the two streams. As
g receives more service on brickB, the maximum delay part in HYBRID-DSFQ takes
effect andg gets its minimum share on brickA. The total throughputs are no longer
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(a) Streamsf andg both have 20 Postmark threads on brickA, i.e.,
Queue depthDSF Q = 20
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Figure 13:Fluctuating workloads. Streamsf andg both have the same number of Postmark
threads on brickA, and streamg has 10 additional Postmark threads on brickB. In addition,
there is a streamh that has 10 on/off threads on brickB that are repeatedly on together for 10
seconds and then off for 10 seconds. The weights are equal:φf : φg : φh = 1 : 1 : 1.

proportional to the assigned weights, but is still reasonably close. Figure 12(b) repeats
the experiment with the streams selecting between two coordinators alternately; the
workload and data layout are otherwise identical to the single coordinator experiment.
The results indicate that HYBRID-DSFQ works as designed with multiple coordinators
too.

4.4 Fluctuating workloads

First we investigate how TOTAL-DSFQ responds to sudden changes in load by using
an on/off fluctuating workload. We also see that as the numberof threads (and hence
the SFQ depth) increases, the sharp drop ing’s throughput is more significant. These
experimental observations agree with the unfairness bounds on TOTAL-DSFQ shown
in Theorem 2, which increase with the queue depth.

Next we examine the effectiveness of different proportional sharing algorithms
through sinusoidal workloads. Both streamsf andg access three bricks and overlap
on one brick only, brickA. The number of Postmark threads for each stream on each
brick is approximately a sinusoidal function with different frequency; see Fig. 14(a).
To demonstrate the effectiveness of proportional sharing,we try to saturate brickA by
setting the number of threads on it to a sinusoidal function varying from 15 to 35, while
thread numbers on other bricks take values from 0 to 10 (not shown in Fig. 14(a)). The
result confirms several hypotheses. Figure 14(b) is the result on a standard FAB without
any fair scheduling. Figure 14(c) shows that single brick proportional sharing provides
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proportional service on brickA but not necessarily the total service. At time 250, the
service onA is not proportional becauseg has minimum threads onA and is not back-
logged. Figure 14(d) displays the effect of total service proportional sharing. The total
service rates match well in general. At times around 65, 100,150, and 210, the rates
deviate because one stream gets too much service on other bricks, and its service on
A drops close to zero. Thus TOTAL-DSFQ cannot balance the total service. At time
around 230-260, the service rates are not close because streamg is not backlogged, as
was the case in Fig. 14(c). Finally, Fig. 14(e) confirms the effect of hybrid proportional
sharing. Comparing with Fig. 14(d), HYBRID-DSFQ proportional sharing guarantees
minimum share when TOTAL-DSFQ does not, at the cost of slightly greater deviation
from total proportional sharing during some periods.

5 Conclusions

In this paper, we presented a proportional-service scheduling framework suitable for
use in a distributed storage system. We use it to devise a distributed scheduler that
enforces proportional sharing of total service between streams to the degree possi-
ble given the workloads. Enforcing proportional total service in a distributed storage
system is hard because different clients can access data from multiple storage nodes
(bricks) using different, and possibly multiple, access points (coordinators). Thus,
there is no single entity that knows the state of all the streams and the service they
have received. Our scheduler extends the SFQ(D) [13] algorithm, which was designed
as a centralized scheduler. Our scheduler is fully distributed, adds very little commu-
nication overhead, has low computational requirements, and is work-conserving. We
prove the fairness properties of this scheduler analytically and also show experimental
results from an implementation on the FAB distributed storage system that illustrate
these properties.

We also present examples of unbalanced workloads for which no work-conserving
scheduler can provide proportional sharing of the total throughput, and attempting to
come close can block some clients on some bricks. We demonstrate a hybrid scheduler
that attempts to provide total proportional sharing where possible, while guaranteeing
a minimum share per brick for every client. Experimental evidence indicates that it
works well.

Our work leaves several issues open. First, we assumed that clients using multiple
coordinators load those coordinators equally or randomly;while this is a reasonable
assumption in most cases, there may be cases when it does not hold — for example,
when some coordinators have an affinity to data on particularbricks. Some degree of
communication between coordinators may be required in order to provide total pro-
portional sharing in this case. Second, more work is needed to design and evaluate
better hybrid delay functions that can deal robustly with pathological workloads. Fi-
nally, our algorithms are designed for enforcing proportional service guarantees, but in
many cases, requirements may be based partially on absoluteservice levels, such as a
specified minimum throughput, or maximum response time. We plan to address how
this may be combined with proportional sharing in future work.
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(b) Without any proportional sharing scheduling
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(c) Single brick proportional sharing
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(d) Total service proportional sharing
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(e) Hybrid proportional sharing

Figure 14:Sinusoidal workloads, φf :φg=1:1.
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Appendix: Proofs of theorems

First, we introduce some additional notation. LetW (S) be the total cost of requests in
setS, thenbatchcost(pi

f,A) can be represented asW (other(pi
f,A)) + cost(pi

f,A). The
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concept of a virtual stream is very helpful for our analysis;we denote virtual stream
corresponding to streamf asf ′. Note that on different bricks,f ′ has the same set of
requests, but real and virtual requests are marked differently. For simplicity, we use the
uniform notationf ′ since we always considerf ′ on brickA, which is the backlogged
brick.

Proof of Theorem 2.

Proof: Let the setSf be the set of requests of streamf that is dispatched byf ’s
coordinator during the time interval[t1, t2]. SetS−

f denotes requests off dispatched

beforet1 yet is completed during[t1, t2]. On the other hand,S+

f is a subset ofSf that
is still in queue, either the SFQ queue or disk queue, aftert2. Then

Wf (t1, t2) = W (Sf ) + W (S−

f ) − W (S+

f ) (13)

whereW (S) means the total cost of requests in setS.
The total number of requests inS−

f andS+

f are both limited by queue depth on
each brick

|S−

f | ≤ (DSFQ + Ddisk) ∗ Nf

|S+

f | ≤ (DSFQ + Ddisk) ∗ Nf

Therefore,
∣

∣

∣
W (S−

f ) − W (S+

f )
∣

∣

∣
≤ (DSFQ + Ddisk) ∗

Nf ∗ costmax
f,A (14)

The above formula establishes a relationship with requestsdispatched by the coordi-
nator and requests completed by the server. Next, we build a similar relationship with
requests dispatched by the coordinator and requests dispatched by the SFQ scheduler
at brickA. The idea is exactly the same if you think of the SFQ scheduleras the server
that “completes” the request by dispatching it to the disk.

We use thevirtual streamf ′ instead in order to make a comparison withSf . Let
Sf ′ be the set of requests (including virtual requests) of virtual streamf ′ completed
(dispatched to the disk) by the SFQ scheduler during[t1, t2]. Wf ′(t1, t2) = W (Sf ′) is
the aggregate cost of requests inSf ′ . S−

f ′ is the set of requests dispatched to the SFQ

scheduler beforet1 yet is completed by the SFQ scheduler during[t1, t2], andS+

f ′ is
the subset ofSf ′ that is still in the SFQ scheduler aftert2. Again

Wf ′(t1, t2) = W (Sf ) + W (S−

f ′) − W (S+

f ′) (15)

We must be careful for developing upper bounds onW (S−

f ′) andW (S+

f ′) because
virtual streamf ′ instead off is used here. The key point is that virtual requests in
f ′ must not occupy any spot in the SFQ queue since they are not actually processed.
We may assume that a virtual queue of infinite size for virtualrequests are inserted
before and after every slot in the SFQ queue, as shown in Fig. 15. The set of virtual
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Figure 15:Virtual requests do not occupy any spot in the SFQ queue and are placed invirtual
queues. We only consider one stream in this example. More streams can only reduce the number
of virtual queuesf occupy and tighten the bound.

requests in a virtual queue before a slot that containspi
f,A is other(pi

f,A), whose total
cost, includingpi

f,A, is batchcost(pi
f,A) and bounded bybatchcostmax

f,A . Since there
are totallyDSFQ + 1 virtual queues before and after theDSFQ slots, we have

W (S−

f ′) ≤ (DSFQ + 1) ∗ batchcostmax
f,A

W (S+

f ′) ≤ (DSFQ + 1) ∗ batchcostmax
f,A

Therefore

|W (S−

f ′) − W (S+

f ′)| ≤ (DSFQ + 1) ∗

batchcostmax
f,A (16)

Equations (13) and (15) together

Wf (t1, t2) = Wf ′(t1, t2) − W (S−

f ′) + W (S+

f ′) +

W (S−

f ) − W (S+

f ) (17)

Similarly with (14)(16-17), for streamg we have

|W (S−

g ) − W (S+
g )| ≤ (DSFQ + Ddisk) ∗

Ng ∗ costmax
g,A (18)

|W (S−

g′ ) − W (S+

g′ )| ≤ (DSFQ + 1) ∗

batchcostmax
g,A (19)

Wg(t1, t2) = Wg′ (t1, t2) − W (S−

g′ ) + W (S+

g′) +

W (S−

g ) − W (S+
g ) (20)

The normalized difference between (17) and (20) is:

Wf (t1, t2)

φf

−
Wg(t1, t2)

φg

=
Wf ′(t1, t2)

φf

−
Wg′ (t1, t2)

φg

−
W (S−

f ′) − W (S+

f ′)

φf

+

W (S−

g′) − W (S+

g′)

φg

+
W (S−

f ) − W (S+

f )

φf

−

W (S−

g ) − W (S+
g )

φg

(21)
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Take the absolute value and plug in Equations (14),(16), (18-19)
∣

∣

∣

∣

Wf (t1, t2)

φf

−
Wg(t1, t2)

φg

∣

∣

∣

∣

≤

∣

∣

∣

∣

Wf ′(t1, t2)

φf

−
Wg′ (t1, t2)

φg

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

W (S−

f ′) − W (S+

f ′)

φf

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

W (S−

g′) − W (S+

g′ )

φg

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

W (S−

f ) − W (S+

f )

φf

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

W (S−

g ) − W (S+
g )

φg

∣

∣

∣

∣

≤

∣

∣

∣

∣

Wf ′(t1, t2)

φf

−
Wg′ (t1, t2)

φg

∣

∣

∣

∣

+ (DSFQ + 1) ∗

batchcostmax
f,A

φf

+ (DSFQ + 1) ∗
batchcostmax

g,A

φg

+

(DSFQ + Ddisk) ∗ Nf ∗
costmax

f,A

φf

+

(DSFQ + Ddisk) ∗ Ng ∗
costmax

g,A

φg

(22)

According to Theorem 1 in [8],
∣

∣

∣

∣

Wf ′(t1, t2)

φf

−
Wg′(t1, t2)

φg

∣

∣

∣

∣

≤

costmax
f,A

φf

+
costmax

g,A

φg

(23)

The above two inequalities give us the result.

One may observe in the above proof that setsS−

f andS−

f ′ may overlap, as well as

S+

f andS+

f ′ . It may be possible to obtain a tighter bound with more careful analysis.
For simplicity, the loose bound is presented here.

Proof of Theorem 3.

Proof: Let us first consider the simple case where two streamsf andg are backlogged
on brick A, andRf,other ≥ Rg,other. If Rg > Rf , as a virtual stream represents
the whole stream, the incoming rate of virtual streamg′ is faster than the incoming
rate of f ′ at brick A. However,f ′ and g′ are processed at the same (normalized)
speed by the SFQ scheduler. Sinceg′ is already backlogged, a faster incoming rate
implies that the queue size ofg′ is ever-increasing. The size of the physical queue is
bounded, so the increasing part can only be virtual requeststhat do not occupy any
physical slot; see Fig. 15. Eventually, these virtual requests will totally block normal
requests ofg′ (i.e., the delay forpi

g,A will become infinite), thusRg,A → 0. Then
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Rg = Rg,other ≤ Rf,other ≤ Rf , which is a contradiction. Therefore,Rf ≥ Rg. If
Rf > Rg, a similar analysis tells us thatRf,A = 0.

As a result, if during interval[t1, t2], Rf,other ≥ Rg,other , ast2 − t1 → ∞, either
Rf = Rg, or Rf > Rg andRf,A = 0.

The theorem is a direct corollary of the above result.

Proof of Theorem 4.

Proof: We again consider virtual streams. However, we assume that when a coordina-
tor dispatches a request to a brick other thanA, it does not replicate it toA immediately.
Instead, it holds these virtual requests until a request toA comes and then dispatches
all held virtual requests followed by the request toA in a batch.

In this way, the virtual streamsf ′ andg′ that brickA receives are reordered, i.e., it
consists of all requests inf andg, but not necessarily in the same order as in the case
of single coordinator; see Fig. 7. According to the virtual stream analysis in the proof
of Theorem 2, inequality (8) is true, butbatchcostmax

f,A andbatchcostmax
g,A should be

calculated by (9,10) because of the way the reordered virtual streams are constructed.
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