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Utility computing environments provide on-demand IT Services to 
customers. Such environments are dynamic in nature and continuously
adapt to changes in requirements and system state. Errors are an
important category of environment state changes as such environments 
consist of a large number of components, and hence, are subject to errors.
In this paper, we propose a framework that applies a model-based 
approach that enables system administrators to simulate error analyses of
utility computing environments. Specifically, the information model-
centric framework leverages information about existing service
components and their interactions; integrates a variety of error models
which are bound to individual components; captures use-case behaviors 
of IT services; and feeds all this information into a simulation engine.
The framework also allows definitions of additional components and 
their interactions to provide error analysis at a finer granularity and
performs service evaluation in hypothetical situations (workloads or
equipment changes, use cases, error behaviors). To evaluate the
framework, we performed experiments on a virtualized blade-server 
based environment as the target system. Results show that the framework
is effective in analyzing error impacts on IT services, and hence, provides
a sound foundation for designing potential error mitigation mechanisms. 
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Abstract—Utility computing environments provide on-demand IT 

Services to customers. Such environments are dynamic in nature 

and continuously adapt to changes in requirements and system 

state. Errors are an important category of environment state 

changes as such environments consist of a large number of 

components, and hence, are subject to errors. In this paper, we 

propose a framework that applies a model-based approach that 

enables system administrators to simulate error analyses of utility 

computing environments. Specifically, the information model-

centric framework leverages information about existing service 

components and their interactions; integrates a variety of error 

models which are bound to individual components; captures use-

case behaviors of IT services; and feeds all this information into a 

simulation engine. The framework also allows definitions of 

additional components and their interactions to provide error 

analysis at a finer granularity and performs service evaluation in 

hypothetical situations (workloads or equipment changes, use 

cases, error behaviors). To evaluate the framework, we 

performed experiments on a virtualized blade-server based 

environment as the target system. Results show that the 

framework is effective in analyzing error impacts on IT services, 

and hence, provides a sound foundation for designing potential 

error mitigation mechanisms. 
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I.  INTRODUCTION 

Utility computing environments in the form of shared IT 
infrastructures and services are becoming more prevalent. 
These environments comprise of large range and number of 
components, which are inter-dependent on one another and are 
subject to complex interactions. Such environments are 
dynamic in nature and continuously experience and/or adapt to 
changes in requirements and system state. Specifically, utility 
computing environments are prone to unexpected failure 
behavior when the underlying components fail. As shared IT 
services grow popular and utility computing environments scale 
up, such errors are aggravated in large-scale environments and 
non-stop services, and impose a major threat which should be 
accounted for when the systems are designed. 

Existing research on error analysis of component-based 
systems includes evaluation of system reliability/availability 
through system modeling or fault injection [10] [11], error 
mitigation of generic/specific systems [13] [12] [4], and 
implementation-level simulation for program debugging [14].  

Unlike these works, this paper proposes a methodology to 
study error behavior of utility computing environments through 
an approach based on formal information models. Formal 
information model like CIM, UML are widely used in design of 
utility computing environments to provide flexible and general 
support to various IT services. Our approach leverages 
information about existing service components and their 
interactions stored in the information models to achieve the 
exact recreation of the utility computing environments. Besides 
the information models, the approach also captures use-case 
behaviors of IT services and introduces various error models for 
service components. Then all these data are fed into a 
simulation engine to study impacts of system errors. Moreover, 
additional components or interactions can be introduced into 
existing utility computing environments for simulation, which 
enables system designers to understand error behavior of 
proposed changes within the context of the existing service, and 
allows a finer-granularity of analysis on possible system errors. 

In fact, the information model-based simulation approach 
can be applied not only to error analysis but also to study of 
other environment changes, e.g. hardware upgrades, software 
updates, addition of new features, etc. The approach is a generic 
methodology and can be seamlessly merged into existing 
design processes of utility computing environments to offer 
general decision support for designing IT services.  

The contributions of the paper are briefly summarized as 
below:  

• proposes a model-based simulation framework to address 
decision support questions for IT services; 

• studies error models for a typical utility computing 
environment (a virtualized blade-server based 
environment), and designs error model representation in 
existing information models of the environment; 

• implements a prototype of the framework for error analysis 
of the target utility computing environment; and 

• utilizes the implemented prototype on the target 
environment focusing on the fail-stop error model to 
evaluate the effectiveness of the framework for error 
analysis. 

Section II of the paper provides background on information 
model-based utility computing environments and a brief 



description of our target utility computing environment. Section 
III presents a detailed study of error models in the target 
environment and the error model representation in existing 
information models. Section IV discusses the architecture of the 
model-based simulation framework. Then experiment setup and 
results are given in Section V and VI, respectively, before 
discussion of related work and conclusion. 

II. TARGET COMPUTING ENVIRONMENT 

The low acquisition cost of resources like PCs, memory and 
storage, and the high cost and complexity of resource 
managements make shared IT services an increasingly popular 
choice for enterprises. Multiple IT services are typically hosted 
in a utility computing environment at the same time. These 
services range from shared application server, web server, 
database utilities to the notion of a desktop utility (the target 
service for our case study). The environment is usually 
configured and managed through formal information models 
(e.g. UML, CIM). These information models accurately specify 
(a) the composition information of supported services and the 
computing environment, including classes of entities in the 
environments, instances of the entity classes, and interactions 
between the instances; and (b) attributes of these entity classes 
and instances, which are crucial for management and 
configuration. 

The information models are stored in databases, or model 
repositories. These model repositories facilitate management in 
normal service delivery, and dynamic reconfiguration of IT 
services/ computing environments as corresponding 
requirements and/or policies change. Figure 1 shows the 
simplified architecture of our target computing environment, a 
commercial utility computing environment for a virtualized 
desktop service. The target computing environment consists of 
multiple physical machines (PMs), which are blade servers 
located in enclosures which in turn are hosted in racks. Each 
PM hosts multiple virtual machines (VMs). Customers log on 
and log off allocated virtual machines through remote desktop 
protocol (RDP) in the virtualized desktop service. A connection 
manager takes care of allocation of virtual machines using 
information stored in the model repository. Part of the 
information models (defined as CIM models) for the target 
computing environment is illustrated in Figure 2. 
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Figure 1: Simplified architecture of the target computing environment 

The figure shows that, the root entity class is CIM 
ManagedElement, which is provided by the CIM information 
model itself. Two subclasses inherit directly from CIM 
ManagedElement: machine and manager. There are two kinds 
of machines, physical machine (PM) and virtual machine (VM). 
Two PM instances and three VM instances are shown in Figure 
2 with VM1, VM2 on PM2, and VM3 on PM1. There is only 
one instance of connection manager in the environment. 

Interactions between instances are represented as CIM 
associations.  

The paper focuses on error analysis of the target computing 
environment so that the discussion is specific and exposes in-
depth sights of the proposed methodology. In fact, the 
methodology can be generally applied to information model-
based IT service environments for addressing a variety of 
decision support scenarios. 
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Figure 2: A sample of CIM models for the simplified architecture 

III. ERROR MODEL REPRESENTATION 

A utility computing environment is a complicated system 
consisting of a large number of components interdependent on 
each other. These components suffer from a variety of errors, 
ranging from hardware to software, from micro-scope (e.g. 
single bit flips) to macro-scope (e.g. entire component failure), 
and from benign to fatal.  

Table 1 lists the error models considered in our case study 
for the target computing environment. A hardware component, 
e.g. a server node or a rack switch, may suffer from persistent 
defects, transient fail-stops, performance degradation or partial 
failures. A software component, e.g. a host OS, a VM monitor, 
a VM or an application, may suffer from persistent program 
bugs, transient fail-stops, performance degradation, race 
conditions, and configuration/administration errors. Every 
component in the environment is subject to errors, but our case 
study only focuses on selected components, as summarized in 
Table 1. 

A. Requirements for Error Model Representation 

Several requirements need to be addressed by the error 
model representation in the proposed framework: 

• Error categories and hierarchy have to be represented. 
As error models are integrated into existing information 
models of the utility computing environment, the 
information about error types and propagations needs to be 
represented in form of the information model itself, i.e. 
errors are represented as classes and instances in the 
information model. 

• Error models have to be integrated without modifying 
models for existing components. In design of the 
computing environment, components are well represented 
in existing information models, which include component 
attributes and interactions. The existing information 
models are complicated for real-world environments, and 



are used for online management of IT services. So it is 
highly preferred not to make modifications to these 
models. For example, one possible way is to represent an 
error occurrence to a component as an interaction 
(association in CIM model) between the victim component 
and the error instance. 

• Component-specific error behaviors have to be 
captured. Component behaviors upon the same kind of 
error may be different because entity instances, even in the 
same entity class, have their own runtime status. So the 
error model representation needs to capture error behaviors 
which are specific to individual environment components. 
Moreover, the error model representation should allow for 
specification of sophisticated error behaviors, e.g. those in 
performance degradation, partial failure, race condition, 
etc. 

• Error propagations have to be handled. How errors 
propagate should be specified for each component 
interaction. For example, if a physical machine crashes (a 
fail-stop error), then all the entity instances on the physical 
machine (host OS, VMM, VMs, guest OSs, applications) 
fail with it, and in this case the fail-stop error propagates 
from the physical machine to these components through 
the “reside in” interaction illustrated in Figure 2. 

The following subsection describes how the error model 
representation in the framework is designed to address these 
requirements. 

B. Error Model Representation 

The error models listed in Table 1 are defined as entity 
classes and instances in the information model, as illustrated in 
Figure 3 (based on the sample architecture depicted in Figure 
2)

1
. An error is a subclass of the more general class of change. 

The error class has two subclasses, hardware error and 
software error, and each of them is partitioned into categories 
representing different types of error models.  

Each error class has multiple instances and each error 
instance captures specific error specification and error behavior 
of an entity class of environment components. For example, 
usually physical machines in the utility computing environment 
are homogeneous and have similar error characteristics like 
MTTF (mean-time-to-failure). Then the error characteristics are 
kept as attributes of the error instance which corresponds to all 
fail-stop errors of physical machine (demonstrated as HFS1 in 
Figure 3). The error instance also contains, as an attribute, the 
error behavior of the failed physical machine when the machine 
suffers from a fail-stop error. The error behavior is specified as 
a block of action statements that are interpreted during 
simulation process. HFS1 only deals with fail-stop error of 
physical machine, and other kinds of errors for network wire, 
rack switch, host OS, connection manager, etc., are 
characterized by other error instances in the error model 
representation. 

There are two kinds of interactions between an error 
instance and its corresponding environment components: error 
specification and error occurrence, illustrated as solid lines and 
dash arrows in Figure 3, respectively. An error specification 

                                                           
1
 For conciseness of the figure, not all the error models in Table 1 are depicted in 

Figure 3, and only fail-stop and performance degradation are shown. 

interaction is established if an error instance characterizes the 
error specification and error behavior of an entity instance for 
the specific error model associated with the error instance. As a 
result, an error instance usually sets up error specification 
interactions with all entity instances of the corresponding entity 
class because instances of the same class usually have similar 
error specification and behavior. An error occurrence 
interaction is established only when an error of the specific 
error model happens to an entity instance. So the dash arrow 
from HFS1 to PM2 in Figure 3 means that a hardware fail-stop 
error occurs to the PM2 physical machine with the error 
specification and behavior characterized in HFS1. These two 
interactions integrate error models into existing information 
models without incurring any modification to them. 

Table 1: Error analysis for the target computing environment 

Error Model Involved Components Potential error 

Behaviors 

Persistent 

defect 

Node/blade, network 

wire, rack switch, 

storage 

system/subsystem goes 

down every time; 

cannot be repaired 

Non-

persistent 

fail-stop 

Node/blade, network 

wire, rack switch, 

storage 

The component fails 

silently; can be 

restarted 

Perform. 

degradation 

Node/blade, network 

connection, storage 

Node slowdown, 

storage slowdown, 

network congestion 

Hard-

ware 

Partial 

failure 

Rack switch, node/blade Some connections fail; 

some system 

resources/operations 

unavailable 

Persistent 

error/bug 

Host OS, Virtual 

Machine 

Manager(VMM), VM, 

guest OSs, applications, 

monitors, connection 

manager 

The component goes 

down every time 

Non-

persistent 

fail-stop 

Same as above The component fails 

silently; can be 

restarted;  

Perform. 

degrad. 

Connection manager, 

status monitor, 

application 

processing slowdown; 

delayed report; request 

rejection 

Race 

condition/tim

ing 

error/deadloc

k 

RDP server, RDP client, 

connection manager, 

system status monitor, 
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use-case protocols. 

The component crashes 

or hangs; requests 

denied; packets go to 

invalid destination 
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ware 
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Figure 3: Representation of error models 



As mentioned above, an error instance is bound to all 
instances of an entity class in our design of error model 
representation, because usually instances of the same entity 
class have similar error characteristics, and it is not practical to 
specify error characteristics of every entity instance, which may 
be dynamically created in the runtime. However, as component-
specific error behaviors are required to be captured, a 
mechanism for instance recognition is provided in the class 
level taking advantage of key attributes of entity instances. 
Each entity instance has unique key attribute values, or ID. 
Error specification and behavior are defined in the error 
instance using these IDs to designate individual components. 
Besides IDs, other attribute values of entity instances are also 
applied for defining component-specific error specification and 
behavior in the class level. Here is an example: upon a power 
outage PM1 crashes while PM2 does not crash because PM2 
has a battery, then the error behavior defined in HFS1 may look 
like: 

if PM.ID = “PM1” then crash; 

if PM.ID = “PM2” then use_battery; 

or more general, 

for PMs with battery, use_battery; 

for PM2 without battery, crash; 

These kinds of definitions are called rule-based definitions. 
Rule-based definitions are not only used for error behaviors, but 
also used for specifying complicated use case behaviors in our 
simulation framework. 

Error propagation is defined as part of error specification in 
an error instance. As different errors propagate through 
different interactions, the interactions through which an error 
can be propagated are specified in the error instance. For 
example, when a fail-stop error occurs to PM2 (Figure 3), an 
error occurrence interaction is established between HFS1 and 
PM2. Then the simulation engine finds that the “reside in” 
interaction is registered for error propagation in HFS1, and 
VM1 and VM2 are residing in PM2 through the “reside in” 
interactions. As a result, error occurrence interactions are 
established between SFS1 and VM1/VM2. (The SFS1 is located 
according to the error propagation information defined in HFS1 
and the entity class information of VM1/VM2.) Error 
propagation continues until there is no interaction found for 
victim components to propagate the specific error. 

IV. MODEL-BASED SIMULATION FRAMEWORK 

The basic idea of the model-based simulation framework is 
to employ event-driven simulation to mimic environment 
behavior under policy/state changes, or errors in our focused 
case study.  

Each entity instance in the target computing environment is 
represented as a component in simulation. Existing information 
about entity classes and instances in model repositories, 
including component attributes and component interactions, is 
leveraged in simulation. Furthermore, a concept of state is 
introduced to all components for event-driven simulation. Upon 
receiving an event, a component transitions its state, updates its 
attributes, and/or establishes/removes interactions with other 
components. Manipulation of component attributes during 
simulation mimics real-world execution, and introduced 
component states allow for statistical performance 

measurements (e.g. the probability of a component staying in 
the “failed” state actually represents the unavailability of the 
component).  

Figure 4 illustrates the architecture of the proposed model-
based simulation framework. A simulation engine reads in input 
information from outside, performs simulation experiments, 
and generates experiment results for analysis. There are four 
kinds of input information: (a) information models of entity 
classes and instances (attributes and interactions) stored in 
model repositories (e.g. CIM model database), including error 
model representation discussed in Section III; (b) definitions of 
additional entity classes and instances which are not present in 
current information models; (c) behaviors of entity instances in 
target use-cases; (d) experiment setup and parameters (e.g. 
parameters of involved stochastic distributions, synthetic 
workload, number of physical machines in a scalability study). 

There are a large number of researches exploiting 
simulation to study complicated systems/protocols. Our 
simulation framework is distinct from these works in the 
following aspects: 

1. By employing real-world data from information 
models present in the real computing environment, our model-
based simulation framework provides more accurate results for 
the target computing environment compared to a best-effort 
recreation of the environment, or a different hypothetical 
environment.  

2. More sophisticated error models can be simulated in 
the framework because the designed error model representation 
permits complicated error behavior as well as error 
propagations through complex interactions. 

3. Definitions of additional classes and instances enable 
analysis of the computing environment behavior, as part of the 
design process, for projected changes or components (i.e. errors 
in our case study) that are not yet present in current models of 
the environment. For example, network topology is not in 
existing design of the target computing environment. When 
network error, or performance impact of network topology, is 
considered, information on network topology can be supplied 
for simulation as additional classes and instances. These 
additional classes/instances are only used for analysis of the 
environment and do not bring complexity to design of the 
environment itself. Moreover, additional components and 
interactions also enable evaluation of IT services under the 
scenarios incapable or inefficient to be tested on existing 
testbeds or real workloads. Examples include scalability 
analysis, sensitivity study, various error models, and 
boundary/extreme cases. 
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Figure 4: Architecture of the model-based simulation framework 



4. Actions of entity instances can be specified in form of 
action statements which are compiled on the fly before 
performed in simulation. This is especially useful for simulating 
sophisticated error behaviors. As error specification (like 
MTTF) and error behavior may be dependent on current status 
of the victim component as well as other components, error 
specification and behavior are defined as action statements 
which are compiled on the fly to provide the required 
flexibility. Moreover, combination of rule-based action 
definition (discussed in Section III) and action statement makes 
the proposed approach a powerful tool to simulate sophisticated 
use-case scenarios and error behaviors. 

Now we give more details on the architectural parts of the 
model-based simulation framework.   

A. Simulation Engine 

The simulation engine performs normal event-driven 
simulations. An event is a message with a target component and 
an event ID. An event may have or have not parameters with it. 
Each event is scheduled with a predefined stochastic 
distribution to trigger actions of the target component at a 
particular occasion. The stochastic distribution characterizes the 
semantic of the event. For example, exponential distribution is 
used to characterize the arrival of customer requests for logging 
on a virtualized desktop.  

Actions taken by components include event generation, 
state transition, attribute update, interaction establishment/ 
removal, and component creation/destroy. A component may 
take multiple actions upon receiving an event, and these 
multiple actions are called an action block.  

Though normal event-driven simulation is performed, the 
simulation engine is actually information-model centric. There 
is an action matrix specified in each entity class (and error 
class), which defines how instances of the entity class act upon 
receiving particular events. Every entity instance is in a state at 
any time. Let S = {s1, s2, …} denote the set of states the entity 
instance may be in; E = {e1, e2, …} denote the set of all events 
with different event IDs (so ei and ej have different event IDs if 
i ≠ j); and A denote the set of all action blocks. Then the action 
matrix can be expressed as a mapping function f: S×E → A 

f(si, ej) = aij, 

where aij  A is the action block performed by the entity 
instance when it is in the state si and receives the event ej. 

However, actions taken by components may depend on the 
status of the component and/or other components (i.e. attribute 
values, component states, interactions, etc.). For example, the 
event of “user logon” can only trigger actions of virtual 
machines which are allocated by the connection manager (i.e an 
“allocated” attribute of the virtual machine is set as “true”). 
This status dependency is captured by imposing a condition 
before an action block. Actually, this is exactly the design of 
rule-based actions. A condition is a first-order predicate 
concerning attribute values, component states/interactions, and 
event parameters. Let C denote the set of all conditions, CA 
denote the set of all <condition, action block> pairs (i.e. CA = 
C×A), then the action matrix is refined to be a mapping 
function fx: S×E → Ax 

fx(si, ej) = axij, 

where axij  Ax = { ax | ax ⊆ CA }, i.e. axij is the set of 
<condition, action block> pairs that are performed by the entity 
instance when it is in the state si and receives the event ej. A 
<condition, action block> pair is executed in this procedure: if 
the condition is satisfied, the corresponding action block is 
executed; otherwise, the action block is not executed. All the 
<condition, action block> pairs in axij are executed one after 
another. 

Though the formal specification of the action matrix above 
appears complex, actually the structure of the action matrix, as 
illustrated in Figure 5, is simple and easy to understand. 

s1

s2…

e1 e2 e3 …
cond1: act11, act12, …

cond2: act21, act22, ……

attr1

attr2

class name

instance1

attr1: value

attr2: value

instance2

attr1: value

attr2: value

state: sk state: sl

Action Matrix

Instanceof

Instanceof

state

event

 

Figure 5: Structure of the action matrix in an entity class 

The action matrix is placed in the entity class (and error 
class) instead of entity instance because it is not convenient or 
practical to specify the action matrix for every instance, 
especially in the cases when instances are created/ destoryed 
dynamically, or there are a large number of instances of the 
same entity class (e.g. in scalability study). Note that 
component-specific actions are rule-based, and the involved 
components are pinpointed by means of key attribute values of 
entity instances. Section III has more discussion on this issue. 

B. Simulation Input Language 

Figure 4 shows that, besides information models (including 
introduced error models) which are read into the simulation 
engine through a model reader provided by the information 
model (usually a database client), the other information, 
including definitions of additional 
classes/instances/interactions, specifications of use-case 
behaviors, and experiment setup/parameters, also needs to be 
read into the simulation engine. An XML-similar markup 
language is designed for this purpose, and a parser is created to 
compile the files written in the simulation input language. The 
parser can be invoked on the fly during simulation to support 
action statements. 

Behaviors of use-cases are captured as event actions of 
involved entity instances. All event actions of entity instances 
are inputted into the simulation engine as action matrixes 
defined in corresponding entity classes (an action matrix can be 
directly specified using the simulation input language).   

C. Simulation Results 

There are two kinds of results out of simulation 
experiments. 

• If the computing environment is not stable in working after 
an error occurrence and falls in an absorbing state, the 
experiment result is a recorded sequence of triggered 
events (and the corresponding actions), which are useful 



for root-cause analysis. An example is a failure of the 
connection manager without any recovery mechanisms. In 
this case the entire computing environment stops working 
and no statistic performance measurements can be 
obtained. 

• If the computing environment remains stable in working 
after an error occurrence, statistic performance 
measurements can be collected. For example, response 
time, throughput, availability, and utilization can be 
measured when servers in the computing environment 
undergo regular maintenance. In this case the behavior 
impact is performance degradation of a few percentages. 
(Of course, the result of event sequence is also available in 
this case.) 

V. EXPERIMENT SETUP 

This section describes setup of experiments for evaluating 
the effectiveness of the model-based simulation framework in 
addressing error-related decision support problems on the target 
computing environment.  

A. Experiment Assumptions & Target Use-Cases 

As described in Section II, the target computing 
environment is a real-world commercial utility computing 
environment for virtualized desktop service. There are multiple 
use-cases in the service, while in our experiments only two of 
them are targeted: user logon and user logoff.  

The architecture of the computing environment depicted in 
Figure 1 is a simplified version, and more components are 
present in the environment. Here we give the composition of 
the environment components involved in experiments, as well 
as the assumptions made for these experiments: 

• There is only one connection manager in the environment. 

• There are several physical machines (PMs). 

• There are multiple virtual machines (VMs) on each 
physical machine. 

• There is one virtual machine agent (VM agent) residing in 
each virtual machine, which monitors the user logon/logoff 
status of the virtual machine, and reports status change to 
the connection manager. 

• When a user is to log on a VM, a RDP (remote desktop 
protocol) client is launched, and the RDP client connects to 
the VM. 

• There are multiple users who log on and log off VMs for 
their work. Each user requests a VM and logs on it at an 
exponentially distributed interval. A user may operate 
multiple VMs at the same time. Each user logs out of a VM 
after operating the VM for an exponentially distributed 
period of time.  

• Overheads like processing time, network delay are ignored 
in the experiments. So actions triggered by events are 
finished immediately. 

The target use cases of user-logon and user-logoff are 
illustrated in Figure 6 and Figure 7, respectively. They are 
presented in event-sequence semantics. We briefly discuss the 

two use cases here as understanding of the use cases is a 
necessity for analyzing experiment results. 

RDP client Virtual machine

Evt_RequestVm

(UserId)
Evt_AllocateVm

(UserId)

Evt_UserLogin

(UserId)

Evt_UserLoggedin

Connection mgr

Evt_VMAllocated

(VmId)

VM agent

Evt_LoginDetected

(VmId)

Evt_ReportLogin

(VmId)

Evt_NoAvailableVm

User

Launch a RDPClient

Evt_VMAllocated

(UserId, VmId)

Evt_ToLogon

Evt_UserLogin

Evt_UserLoggedin

 

Figure 6: The use case of user logon 

User logon. When a user wants to log on a VM, the user 
sends a request to the connection manager (Evt_RequestVM). 
On receiving such a request, the connection manager takes 
some time to allocate a virtual machine for the user 
(Evt_AllocateVM). If there are available VMs, the connection 
manager randomly picks one and sends the ID of the VM to the 
user (Evt_VMAllocated); if there is no available VM, the 
connection manager notifies the user, too 
(Evt_NoAvailableVm). When the user receives an allocated VM 
ID, he/she launches a RDP client, and logs on the virtual 
machine through the RDP client (Evt_UserLogin). After the 
user successfully logs on the VM, the VM notifies the user of 
the success (Evt_UserLoggedin), and then the user is able to 
operate the VM now. At the same time, the VM agent on the 
VM detects the user logon (Evt_LoginDetected), and reports the 
status change to the connection manager (Evt_ReportLogin). 
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Figure 7: The use case of user logoff 

User logoff. After the user operates the VM for some time, 
the user logs off the VM (Evt_UserLogout) through the 
corresponding RDP client. When the logoff is successful, the 
VM notifies the user of the success (Evt_UserLoggedout), and 
the user then terminates the RDP client. At the same time, the 
VM agent on the VM detects the user logoff 
(Evt_LogoutDetected), and reports the status change to the 
connection manager (Evt_ReportLogout), which then reclaims 
the VM for future use (Evt_DeallocateVm). 



B. Focused Error Models 

As discussed in Section III, the model-based simulation 
approach is able to simulate sophisticated error models such as 
performance degradation, partial failure, etc., by means of the 
error model representation (error specification and error 
behavior), and this feature is a major strength of the proposed 
framework. But in the first stage of the project we aim at the 
error model of fail-stop in our experiments, with the objective 
to evaluate the correctness of the framework design as well as 
the effectiveness of the framework for error analysis by resting 
on a simple error model and the first version of the prototype 
implementation. More sophisticated error models are to be 
analyzed on the refined implementation of the framework 
prototype in the near future. 

The focused error model in the experiments is transient fail-
stop error to any component (hardware or software) in the 
environment. No error detection or mitigation mechanisms are 
considered in the experiments. 

C. Prototype Implementation 

The first-version prototype of the model-based simulation 
framework is implemented using JDK 1.5.0 on a real utility 
computing environment, which was designed with CIM 
information model. The model repositories in the environment 
are stored in MySQL 4.1. A simulation tool package, DESMO-
J 2.1.1 [15] [16], is employed for basic event scheduling and a 
library of common stochastic distributions. 

VI. RESULTS 

We conducted experiments for single-error scenarios, multi-
error scenarios, and error-free scalability studies. The results of 
these experiments are presented below. 

A. Single-Error Scenarios 

The experiment setup for single-error scenarios is 
summarized below: 

• There are 5 users. 

• Each user requests a VM and logs on it at an exponentially 
distributed interval with the mean value of 4 hours. 

• Each user logs off a VM after operating it for an 
exponentially distributed period of time with the mean 
value of 2 hours. 

• The information of PMs and VMs is directly obtained from 
the model repository of the real environment. During the 
experiments the environment testbed had 3 PMs. One PM 
had 7 VMs while the other two PMs had no VMs. 

• Each experiment lasts 10 days of simulated time. 

• During an experiment a single fail-stop error is injected 
into a randomly picked instance of a particular entity class 
(physical machine, virtual machine, RDP client, connection 
manager, or VM agent) with an MTTF of 2 days. This 
means that, after an exponentially distributed period of 
simulated time the error is injected, and the mean value of 
the time period is 2 days. So there are cases when the time 
periods are longer than the experiment duration (10 days) 
and errors are not injected. Error injection is performed by 

establishing an error occurrence interaction between the 
error instance and the selected component. Then the 
corresponding error behavior is triggered and the error is 
propagated if possible. 

The goal of the single-error experiments is to study the 
impacts of fail-stop errors which occur to individual 
components, or more specifically, to answer the question “what 
happens after a fail-stop error occurs to the component”. After 
analysis of experiment results (event sequences), the outcomes 
are presented in Table 2, which includes error injection 
numbers and error behaviors. 

Table 2: Experiment results for single-error injections * 

Injected 

entity 

Inject-

ions 

Error Behaviors 

59 The PM fails (the PM does not host VMs). 

Physical 

machine 
98 

39 

The PM fails -> the 7 VMs fail -> the 7 VM 

agents fail (the PM hosts VMs). 

(a) A user requests a VM, a failed VM is 

allocated, but when the user connects the VM by 

an RDP client, there is no response; 

(b) A user was working on a failed VM, and does 

not receive any response from the VM. 

73 

The VM fails -> the VM agent fails (the VM is 

not logged on). 

Same as (a) above. Virtual 

machine 
100 

27 

The VM fails -> the VM agent fails (the VM is 

logged on). 

Same as (b) above. 

RDP 

client 
92 92 

The RDP client fails. 

The connected VM will not be logged off and is 

unavailable for future allocation. 

Connecti

on mgr 
99 99 

The connection manager fails. 

(a) A user requests a VM but receives no response 

from the connection manager; 

(b) A user logs off a VM successfully, but the 

VM is not deallocated, and the config DB stays 

inconsistent. 

63 

The VM agent fails (the associated VM is not 

logged on). 

A user requests a VM and the associated VM is 

allocated. The user logs on it and logs off it 

successfully. But the user logoff is not detected 

and the VM is not deallocated for future use. 
VM 

agent 
100 

37 

The VM agent fails (the associated VM is logged 

on). 

The user logs off the associated VM successfully, 

but the user logoff is not detected and the VM is 

not deallocated for future use. 
* 100 experiments were conducted for each row in the table. 

100 experiments were conducted to inject errors into 
instances of each entity class involved in the target use cases, 
and not all these experiments have errors injected (e.g. 98 out of 
100 experiments are error-injected for physical machines). 

The question “what happens after the error” is answered in 
the “error behaviors” column in Table 2. The simulation results 
show that (the first row in Table 2), in 39 out of 98 error-
injected experiments, the PM hosting 7 VMs fails and the error 
propagates to the VMs and VM agents on the PM. Two 
scenarios happen after the error (an experiment may have both 
occur because multiple VMs fail in one experiment): 

 (a) A user requests a VM, and a failed VM is allocated to 
him/her. But when the user tries to connect to the VM through 
an RDP client, the user receives no response from the VM.  



(b) A user was working on a VM when the error fails the 
VM. Then the user does not receive any response from the VM. 

In the simulation results the user receives no response from 
the VM and the VM appears hung. This gives us hints that a 
timeout mechanism needs to be set up for detecting VM 
failures. Actually such a mechanism is usually provided by the 
underlying network protocol, and can be incorporated into the 
simulation through definitions of additional classes and 
instances.  

The impacts of errors occurring to VMs, RDP clients, the 
connection manager, and VM agents are also listed in Table 2. 
Though errors of different components bring about different 
error behaviors, all the error behaviors in Table 2 can be 
roughly classified into two types with regard to VM health: (i) 
the VM is failed and appears hung to users (VM failure); (ii) the 
VM is not failed but is not allocated for future use (VM 
wasting). Failures of PMs and VMs lead to VM failure, while 
failures of RDP clients, connection manager, and VM agents 
lead to VM wasting. 

B. Multi-Error Scenarios 

The previous subsection studies single-error scenarios and 
demonstrates the effectiveness of the proposed framework in 
addressing the question of “what happens after the error”. The 
study provides us insights into behaviors of virtualized desktop 
service when a fail-stop error occurs to a component of the 
service. However, in reality every component is subject to 
errors and multiple components may fail during a period of 
time. This subsection studies behaviors of the target computing 
environment in multi-error scenarios by allowing multiple 
components to fail in every experiment.  

The experiment setup for multi-error scenarios is 
summarized here: 

• A hypothetical testbed of 4 PMs, with 5 VMs on each PM, 
is employed in the experiments. We use the hypothetical 
testbed instead of the real environment testbed because our 
real testbed has 3 PMs and only one of them hosts VMs. 
As conducting experiments on a one-PM testbed is not so 
interesting, the hypothetical testbed is used in this study.  

• During an experiment each instance of the entity classes 
involved in the target use cases (physical machine, virtual 
machine, RDP client, connection manager, and VM agent) 
is injected with a fail-stop error with an MTTF of 2 days. 

• All the other conditions are the same as those in single-
error scenarios. 

Our previous study shows that, errors of the considered 
components bring about impacts in two categories, VM failure 
and VM wasting. Therefore, impacts of errors of multiple 
components can be observed by monitoring how many VMs are 
failed and how many VMs are wasted at an occasion. Usually 
multiple errors may bring complicated error correlations. 
However, as simple fail-stop errors are considered in our 
experiments, there are only limited types of error propagations 
(e.g. from a PM to the VMs and VM agents on the PM), and 
other types of correlated errors are not considered 

2
.  

                                                           
2
 Hopefully we will have more interesting and insightful results when correlated 

errors are fully studied. 

We conducted 1000 experiments with multiple errors. In 
each experiment the numbers of failed VMs, wasted VMs, and 
usable VMs are recorded every 2 hours. Then averages of these 
VM numbers in the 1000 experiments are calculated and 
depicted in Figure 8.  

From the figure we see that, when the experiment starts, all 
the VMs are usable (the environment has a total of 20 VMs). As 
the experiment proceeds, users log on and log off VMs, and 
components are subject to errors with the MTTF of 2 days (48 
hours). Figure 8 shows that the number of usable VMs drops 
quickly and the number of failed VMs increases quickly as 
VMs and/or PMs fail independently. The number of usable 
VMs drops faster than the increase of failed VMs, because 
some VMs are wasted. An interesting observation is that, the 
number of wasted VMs first increases, and then decreases after 
it reaches the peak. This is because more failures of VM agents, 
RDP clients and connection manager bring about more wasted 
VMs, and these wasted VMs also fail as time continues. The 
figure shows that, no VM can be used after 48 hours (consistent 
with the uniform MTTF value), however, not all the VMs are 
failed at that time (about 2.4 VMs are wasted), and only after 
112 hours all the VMs in the environment are failed. The figure 
also shows that after 14 hours the number of wasted VMs 
reaches the peak value of 5.1. 
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Figure 8: Evolvement of VMs in a multi-error scenario 
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Figure 9: Servicing user-logon requests in a multi-error scenario 

The performance of servicing user-logon requests is 
depicted in Figure 9, which illustrates how many requests are 
initiated in every 2 hours and how many of them are denied. 
Similar to Figure 8, the plotted values in Figure 9 are averages 
of 1000 experiments. The figure shows that, around 2.5 
requests are initiated by the 5 users in every 2 hours (consistent 
with the experiment setup that a user requests a VM after an 
exponentially distributed period with the mean value of 4 



hours). As there are sufficient VMs in the environment for the 5 
users, few requests are denied in error-free scenarios. When 
components get failed as time goes along, more requests are 
denied. Figure 9 shows that, after 54 hours almost all the 
requests are denied. 

With the objective to demonstrate the correctness and 
effectiveness of the framework design, a simple setup is 
exploited in our experiments, i.e. the environment components 
have the same error characteristics (i.e. MTTF). In reality 
different entity classes have different error characteristics, and 
the parameters of the error characteristics should be collected 
from the real environment to give an accurate modeling. If 
these features are incorporated in the experiments, the results 
will be very interesting and provide in-depth understanding of 
error-present service behaviors on the real-world target 
environment.  

C. Error-free Scalability Study 

The previous two subsections study the behaviors of the 
computing environment in both single-error and multi-error 
scenarios. Actually the simulation tool can be applied for 
studies of error-free scenarios as well, including validation of 
use-case designs, performance evaluation, and scalability study. 
Here we give a simple example demonstrating how a scalability 
study can be conducted through our model-based simulation 
framework. 

As the size of the computing environment grows to a large 
scale, there arise challenges of effective and efficient 
management of the environment. Also, the number of users 
may easily increase and poses a major scalability problem for 
existing services. Since management of the environment is not 
involved in our target use cases, the scalability of the user 
numbers is focused on in this subsection. 

User behavior under this study is the same as in the previous 
two studies. We vary the number of users from 5 to 1280 in our 
experiments, and then monitor how the requests from these 
users are serviced by the environment. For this purpose, the 
averages of the numbers of requests which are initiated, 
serviced, and declined during 2-hour intervals in each 
experiment are calculated (the numbers during multiple 2-hour 
intervals are stable in each experiment in error-free scenarios, 
and hence can be averaged), and these per-experiment values 
are averaged among multiple experiments with the same user 
number. Then the results, or the average numbers of requests 
which are initiated, serviced, and declined during 2 hours, are 
plotted in Figure 10 vs. different numbers of users (note that the 
horizontal axis has a logarithmic scale).  

Figure 10 shows that, there exists a threshold of the user 
number such that, when the user number is less than the 
threshold almost no request is declined and every request is 
serviced (the “declined” lines lie on the horizontal axis, and the 
“serviced” lines coincide with the “initiated” lines); when the 
user number is larger than the threshold, only a fixed number of 
requests can be serviced and the extra requests are declined (the 
“declined” lines leave the horizontal axis after some point and 
jump high with the “initiated” lines, while the “serviced” lines 
depart from the “initiated” lines and remain quite stable as the 
user number increases). For example, when there are 20 VMs in 
the environment, the threshold is between 20 and 80, according 
to the figure.  

0

100

200

300

400

500

600

700

5 20 80 320 1280

requests

denied requests (20 VMs)

serviced requests (20 VMs)

denied requests (100 VMs)

serviced requests (100 VMs)

 

Figure 10: Servicing user-logon requests for different numbers of users 

In an environment with more VMs, the threshold is 
increased. Figure 10 shows that, when the number of VMs in 
the environment increases from 20 to 100, the threshold then 
falls between 80 and 320. 

The rationale behind the threshold is that, the computing 

environment has a service capacity. Let n, m, λ, and µ denote 
number of users, number of VMs, per-user request rate, and 
per-VM service rate, then the following inequation must hold 
for incoming workloads to be contained in the service capacity 
of the environment: 

nλ ≤ mµ 

where mµ is the service capacity. In our experiments, λ = 

1/4, µ = 1/2, then the maximum user number is 40 for 20 VMs, 
and 200 for 100 VMs. This explains the thresholds 
demonstrated in Figure 10.  

VII. RELATED WORK 

Reliability of IT services is a research focus nowadays in 
academy and industry with popularity of IT services. 
Traditional research work targets reliability of the specific web 
service. For example, Tsai et al. [1] propose a service-oriented 
model to evaluate reliability of web services by employing a 
particular testing technique, and IBM [2] applies the semantic 
of object transaction to web service for providing web service 
reliability. These models and solutions are specific to web 
service and can not be easily adapted to other IT services. 

Utility computing and Grid computing make IT service 
popular and generic approaches on reliability of IT services 
grow prosperous. Dai et al. [3] provide a theoretical analysis of 
Grid service reliability by simplifying real-world Grid services 
into virtual-tree structures and applying graph theory and 
Bayesian analysis onto the structures. This is a theoretic work 
which ignores the complexity of real-world computing 
environments. Candea et al. [4] propose a general methodology 
to improve availability of component-based systems, typically 
computing environments for IT services. The methodology 
handles only the failures that can be recovered from reboots, 
and the idea is to reboot only the components that need to be 
rebooted for recovering from such a failure. The research has 
the limit that it only considers a specific category of errors, and 
moreover, it emphasizes on recovery mechanism provided the 
overall view of fault propagation paths is known, but does not 



try to propose a solution for analyzing error behavior of 
complicated environments. 

Some related works exist in error model classification and 
representation. A thorough and complete classification of error 
models is given in [5], and a classical approach, fault tree 
analysis [6], is widely accepted for failure analysis of 
complicated system. Our approach builds the error model 
classification into standard information models (CIM and 
UML) which are popularly employed in industry, and, unlike 
the fault tree analysis which targets analysis of abstract system 
composition/specification, our approach closely binds itself to 
real-world computing environments and provides concrete 
service behaviors in presence of a variety of errors.  

Dependability modeling and simulation is another related 
research area and has lots of interesting works. Stochastic 
models, e.g. Markov chain, Petri Net, SAN, are widely used. [7] 
models a satellite network for dependability evaluation, and [8] 
designs a stochastic model for scalability study of deploying 
coordinated checkpointing protocols in large-scale systems, 
with emphasis on system dependability and performance. These 
models are either best-effort recreation of computing 
environments or simply hypothetical ones, and can not expose 
concrete service behaviors in various error scenarios. 

There is also work done for evaluating reliability/ 
availability of real systems/environments. Fault injection is 
popularly used for this purpose. NFTAPE [9] is a dedicated 
software toolset for injecting errors into real systems and 
assessing system dependability, and has been applied in 
analyzing dependability of a variety of libraries, platforms, and 
system composites. For example, [10] studies error behaviors of 
Ensemble, a reliable group communication library, and [11] 
characterizes Linux kernel behaviors under errors, by deploying 
NFTAPE toolset. 

VIII. CONCLUSION & FUTURE WORK 

IT services as a novel computing model for E-business are 
prevalent nowadays and commercial utility computing 
environments are emerging to provide support to this 
computing model. Reliability is a crucial property of such 
computing environments for service delivery. In this paper, a 
model-based simulation framework is designed to analyze 
behaviors of these environments under different error models, 
ranging from simple fail-stop to sophisticated partial failure, 
performance degradation, and timing error. The framework 
combines error models with component models existing in 
current design of real-world utility computing environments, 
and hence, achieves the goal of providing a practical way to 
accurately evaluate error behavior of real-world computing 
environments. Besides error analysis on existing components in 
the environments, projected system designs/changes and use-
case scenarios can also be tested on this framework. 
Experiment results demonstrate that the framework is effective 
for analyzing error behavior of complicated computing 
environments. 

Current framework prototype implements only fail-stop 
errors. We are incorporating partial failure, performance 
degradation and other error models into the implementation. 
Moreover, error models are considered in the framework as a 
specific example of general environment changes.  So we will 
apply the framework to deal with other environment changes in 

real computing environments, e.g. server upgrading, service 
specification change, service patching, etc., in the future. 
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