

A Model-based Simulation Approach to Error Analysis of IT Services

Long Wang, Akhil Sahai, James Pruyne
Enterprise Systems and Software Laboratory
HP Laboratories Palo Alto
HPL-2006-181
December 5, 2006*

utility computing,
simulation, model,
management

Utility computing environments provide on-demand IT Services to
customers. Such environments are dynamic in nature and continuously
adapt to changes in requirements and system state. Errors are an
important category of environment state changes as such environments
consist of a large number of components, and hence, are subject to errors.
In this paper, we propose a framework that applies a model-based
approach that enables system administrators to simulate error analyses of
utility computing environments. Specifically, the information model-
centric framework leverages information about existing service
components and their interactions; integrates a variety of error models
which are bound to individual components; captures use-case behaviors
of IT services; and feeds all this information into a simulation engine.
The framework also allows definitions of additional components and
their interactions to provide error analysis at a finer granularity and
performs service evaluation in hypothetical situations (workloads or
equipment changes, use cases, error behaviors). To evaluate the
framework, we performed experiments on a virtualized blade-server
based environment as the target system. Results show that the framework
is effective in analyzing error impacts on IT services, and hence, provides
a sound foundation for designing potential error mitigation mechanisms.

* Internal Accession Date Only
A shorter version of this paper will be published in the proceedings of IM 2007, 21-25 May 2007, Munich,
Germany Approved for External Publication
© Copyright 2006 Hewlett-Packard Development Company, L.P.

A Model-based Simulation Approach to Error

Analysis of IT Services

Long Wang

Center for Reliable High-Performance Comp.

University of Illinois at Urbana-Champaign,

Urbana, IL 61801

longwang@crhc.uiuc.edu

Akhil Sahai, James Pruyne

Hewlett Packard Laboratories

Palo Alto, CA 94304

{akhil.sahai, jim_pruyne}@hp.com

Abstract—Utility computing environments provide on-demand IT

Services to customers. Such environments are dynamic in nature

and continuously adapt to changes in requirements and system

state. Errors are an important category of environment state

changes as such environments consist of a large number of

components, and hence, are subject to errors. In this paper, we

propose a framework that applies a model-based approach that

enables system administrators to simulate error analyses of utility

computing environments. Specifically, the information model-

centric framework leverages information about existing service

components and their interactions; integrates a variety of error

models which are bound to individual components; captures use-

case behaviors of IT services; and feeds all this information into a

simulation engine. The framework also allows definitions of

additional components and their interactions to provide error

analysis at a finer granularity and performs service evaluation in

hypothetical situations (workloads or equipment changes, use

cases, error behaviors). To evaluate the framework, we

performed experiments on a virtualized blade-server based

environment as the target system. Results show that the

framework is effective in analyzing error impacts on IT services,

and hence, provides a sound foundation for designing potential

error mitigation mechanisms.

Keywords-utility computing; model-based; simulation; IT

service; error; error analysis; error behavior; error model

I. INTRODUCTION

Utility computing environments in the form of shared IT
infrastructures and services are becoming more prevalent.
These environments comprise of large range and number of
components, which are inter-dependent on one another and are
subject to complex interactions. Such environments are
dynamic in nature and continuously experience and/or adapt to
changes in requirements and system state. Specifically, utility
computing environments are prone to unexpected failure
behavior when the underlying components fail. As shared IT
services grow popular and utility computing environments scale
up, such errors are aggravated in large-scale environments and
non-stop services, and impose a major threat which should be
accounted for when the systems are designed.

Existing research on error analysis of component-based
systems includes evaluation of system reliability/availability
through system modeling or fault injection [10] [11], error
mitigation of generic/specific systems [13] [12] [4], and
implementation-level simulation for program debugging [14].

Unlike these works, this paper proposes a methodology to
study error behavior of utility computing environments through
an approach based on formal information models. Formal
information model like CIM, UML are widely used in design of
utility computing environments to provide flexible and general
support to various IT services. Our approach leverages
information about existing service components and their
interactions stored in the information models to achieve the
exact recreation of the utility computing environments. Besides
the information models, the approach also captures use-case
behaviors of IT services and introduces various error models for
service components. Then all these data are fed into a
simulation engine to study impacts of system errors. Moreover,
additional components or interactions can be introduced into
existing utility computing environments for simulation, which
enables system designers to understand error behavior of
proposed changes within the context of the existing service, and
allows a finer-granularity of analysis on possible system errors.

In fact, the information model-based simulation approach
can be applied not only to error analysis but also to study of
other environment changes, e.g. hardware upgrades, software
updates, addition of new features, etc. The approach is a generic
methodology and can be seamlessly merged into existing
design processes of utility computing environments to offer
general decision support for designing IT services.

The contributions of the paper are briefly summarized as
below:

• proposes a model-based simulation framework to address
decision support questions for IT services;

• studies error models for a typical utility computing
environment (a virtualized blade-server based
environment), and designs error model representation in
existing information models of the environment;

• implements a prototype of the framework for error analysis
of the target utility computing environment; and

• utilizes the implemented prototype on the target
environment focusing on the fail-stop error model to
evaluate the effectiveness of the framework for error
analysis.

Section II of the paper provides background on information
model-based utility computing environments and a brief

description of our target utility computing environment. Section
III presents a detailed study of error models in the target
environment and the error model representation in existing
information models. Section IV discusses the architecture of the
model-based simulation framework. Then experiment setup and
results are given in Section V and VI, respectively, before
discussion of related work and conclusion.

II. TARGET COMPUTING ENVIRONMENT

The low acquisition cost of resources like PCs, memory and
storage, and the high cost and complexity of resource
managements make shared IT services an increasingly popular
choice for enterprises. Multiple IT services are typically hosted
in a utility computing environment at the same time. These
services range from shared application server, web server,
database utilities to the notion of a desktop utility (the target
service for our case study). The environment is usually
configured and managed through formal information models
(e.g. UML, CIM). These information models accurately specify
(a) the composition information of supported services and the
computing environment, including classes of entities in the
environments, instances of the entity classes, and interactions
between the instances; and (b) attributes of these entity classes
and instances, which are crucial for management and
configuration.

The information models are stored in databases, or model
repositories. These model repositories facilitate management in
normal service delivery, and dynamic reconfiguration of IT
services/ computing environments as corresponding
requirements and/or policies change. Figure 1 shows the
simplified architecture of our target computing environment, a
commercial utility computing environment for a virtualized
desktop service. The target computing environment consists of
multiple physical machines (PMs), which are blade servers
located in enclosures which in turn are hosted in racks. Each
PM hosts multiple virtual machines (VMs). Customers log on
and log off allocated virtual machines through remote desktop
protocol (RDP) in the virtualized desktop service. A connection
manager takes care of allocation of virtual machines using
information stored in the model repository. Part of the
information models (defined as CIM models) for the target
computing environment is illustrated in Figure 2.

connection manager

Model

repository

VM

VM

VM

VM

PM

VM

VM

VM

VM

PM

Figure 1: Simplified architecture of the target computing environment

The figure shows that, the root entity class is CIM
ManagedElement, which is provided by the CIM information
model itself. Two subclasses inherit directly from CIM
ManagedElement: machine and manager. There are two kinds
of machines, physical machine (PM) and virtual machine (VM).
Two PM instances and three VM instances are shown in Figure
2 with VM1, VM2 on PM2, and VM3 on PM1. There is only
one instance of connection manager in the environment.

Interactions between instances are represented as CIM
associations.

The paper focuses on error analysis of the target computing
environment so that the discussion is specific and exposes in-
depth sights of the proposed methodology. In fact, the
methodology can be generally applied to information model-
based IT service environments for addressing a variety of
decision support scenarios.

 CIM ManagedElement

Machine Manager

VM Conn. Mgr

VM 1 : VM VM2 : VM VM 3 : VM PM 2 : PM

The Conn. Mgr : Conn. Mgr

PM

PM1 : PM

reside in

reside in 1

reside in

Figure 2: A sample of CIM models for the simplified architecture

III. ERROR MODEL REPRESENTATION

A utility computing environment is a complicated system
consisting of a large number of components interdependent on
each other. These components suffer from a variety of errors,
ranging from hardware to software, from micro-scope (e.g.
single bit flips) to macro-scope (e.g. entire component failure),
and from benign to fatal.

Table 1 lists the error models considered in our case study
for the target computing environment. A hardware component,
e.g. a server node or a rack switch, may suffer from persistent
defects, transient fail-stops, performance degradation or partial
failures. A software component, e.g. a host OS, a VM monitor,
a VM or an application, may suffer from persistent program
bugs, transient fail-stops, performance degradation, race
conditions, and configuration/administration errors. Every
component in the environment is subject to errors, but our case
study only focuses on selected components, as summarized in
Table 1.

A. Requirements for Error Model Representation

Several requirements need to be addressed by the error
model representation in the proposed framework:

• Error categories and hierarchy have to be represented.
As error models are integrated into existing information
models of the utility computing environment, the
information about error types and propagations needs to be
represented in form of the information model itself, i.e.
errors are represented as classes and instances in the
information model.

• Error models have to be integrated without modifying
models for existing components. In design of the
computing environment, components are well represented
in existing information models, which include component
attributes and interactions. The existing information
models are complicated for real-world environments, and

are used for online management of IT services. So it is
highly preferred not to make modifications to these
models. For example, one possible way is to represent an
error occurrence to a component as an interaction
(association in CIM model) between the victim component
and the error instance.

• Component-specific error behaviors have to be
captured. Component behaviors upon the same kind of
error may be different because entity instances, even in the
same entity class, have their own runtime status. So the
error model representation needs to capture error behaviors
which are specific to individual environment components.
Moreover, the error model representation should allow for
specification of sophisticated error behaviors, e.g. those in
performance degradation, partial failure, race condition,
etc.

• Error propagations have to be handled. How errors
propagate should be specified for each component
interaction. For example, if a physical machine crashes (a
fail-stop error), then all the entity instances on the physical
machine (host OS, VMM, VMs, guest OSs, applications)
fail with it, and in this case the fail-stop error propagates
from the physical machine to these components through
the “reside in” interaction illustrated in Figure 2.

The following subsection describes how the error model
representation in the framework is designed to address these
requirements.

B. Error Model Representation

The error models listed in Table 1 are defined as entity
classes and instances in the information model, as illustrated in
Figure 3 (based on the sample architecture depicted in Figure
2)

1
. An error is a subclass of the more general class of change.

The error class has two subclasses, hardware error and
software error, and each of them is partitioned into categories
representing different types of error models.

Each error class has multiple instances and each error
instance captures specific error specification and error behavior
of an entity class of environment components. For example,
usually physical machines in the utility computing environment
are homogeneous and have similar error characteristics like
MTTF (mean-time-to-failure). Then the error characteristics are
kept as attributes of the error instance which corresponds to all
fail-stop errors of physical machine (demonstrated as HFS1 in
Figure 3). The error instance also contains, as an attribute, the
error behavior of the failed physical machine when the machine
suffers from a fail-stop error. The error behavior is specified as
a block of action statements that are interpreted during
simulation process. HFS1 only deals with fail-stop error of
physical machine, and other kinds of errors for network wire,
rack switch, host OS, connection manager, etc., are
characterized by other error instances in the error model
representation.

There are two kinds of interactions between an error
instance and its corresponding environment components: error
specification and error occurrence, illustrated as solid lines and
dash arrows in Figure 3, respectively. An error specification

1
 For conciseness of the figure, not all the error models in Table 1 are depicted in

Figure 3, and only fail-stop and performance degradation are shown.

interaction is established if an error instance characterizes the
error specification and error behavior of an entity instance for
the specific error model associated with the error instance. As a
result, an error instance usually sets up error specification
interactions with all entity instances of the corresponding entity
class because instances of the same class usually have similar
error specification and behavior. An error occurrence
interaction is established only when an error of the specific
error model happens to an entity instance. So the dash arrow
from HFS1 to PM2 in Figure 3 means that a hardware fail-stop
error occurs to the PM2 physical machine with the error
specification and behavior characterized in HFS1. These two
interactions integrate error models into existing information
models without incurring any modification to them.

Table 1: Error analysis for the target computing environment

Error Model Involved Components Potential error

Behaviors

Persistent

defect

Node/blade, network

wire, rack switch,

storage

system/subsystem goes

down every time;

cannot be repaired

Non-

persistent

fail-stop

Node/blade, network

wire, rack switch,

storage

The component fails

silently; can be

restarted

Perform.

degradation

Node/blade, network

connection, storage

Node slowdown,

storage slowdown,

network congestion

Hard-

ware

Partial

failure

Rack switch, node/blade Some connections fail;

some system

resources/operations

unavailable

Persistent

error/bug

Host OS, Virtual

Machine

Manager(VMM), VM,

guest OSs, applications,

monitors, connection

manager

The component goes

down every time

Non-

persistent

fail-stop

Same as above The component fails

silently; can be

restarted;

Perform.

degrad.

Connection manager,

status monitor,

application

processing slowdown;

delayed report; request

rejection

Race

condition/tim

ing

error/deadloc

k

RDP server, RDP client,

connection manager,

system status monitor,

other agents involved in

use-case protocols.

The component crashes

or hangs; requests

denied; packets go to

invalid destination

Soft-

ware

Config/admi

n error

Model repository, user

specification

Dependent on the

component

Change

Error

HW Error SW Error

HW Fail-stop HW Perf. Degrad. SW Fail-stop SW Perf. Degrad.

HFS1 : HW Fail-stop HPD1 : HW Perf. Degrad. SFS1 : SW Fail-stop SFS2 : SW Fail-stop

SPD1 : SW Perf. Degrad.

VM1 : VM VM2 : VM VM3 : VMPM2 : PM The Conn. Mgr : Conn. MgrPM1 : PM

reside in

reside in

reside in

error spec

error occurrence

Figure 3: Representation of error models

As mentioned above, an error instance is bound to all
instances of an entity class in our design of error model
representation, because usually instances of the same entity
class have similar error characteristics, and it is not practical to
specify error characteristics of every entity instance, which may
be dynamically created in the runtime. However, as component-
specific error behaviors are required to be captured, a
mechanism for instance recognition is provided in the class
level taking advantage of key attributes of entity instances.
Each entity instance has unique key attribute values, or ID.
Error specification and behavior are defined in the error
instance using these IDs to designate individual components.
Besides IDs, other attribute values of entity instances are also
applied for defining component-specific error specification and
behavior in the class level. Here is an example: upon a power
outage PM1 crashes while PM2 does not crash because PM2
has a battery, then the error behavior defined in HFS1 may look
like:

if PM.ID = “PM1” then crash;

if PM.ID = “PM2” then use_battery;

or more general,

for PMs with battery, use_battery;

for PM2 without battery, crash;

These kinds of definitions are called rule-based definitions.
Rule-based definitions are not only used for error behaviors, but
also used for specifying complicated use case behaviors in our
simulation framework.

Error propagation is defined as part of error specification in
an error instance. As different errors propagate through
different interactions, the interactions through which an error
can be propagated are specified in the error instance. For
example, when a fail-stop error occurs to PM2 (Figure 3), an
error occurrence interaction is established between HFS1 and
PM2. Then the simulation engine finds that the “reside in”
interaction is registered for error propagation in HFS1, and
VM1 and VM2 are residing in PM2 through the “reside in”
interactions. As a result, error occurrence interactions are
established between SFS1 and VM1/VM2. (The SFS1 is located
according to the error propagation information defined in HFS1
and the entity class information of VM1/VM2.) Error
propagation continues until there is no interaction found for
victim components to propagate the specific error.

IV. MODEL-BASED SIMULATION FRAMEWORK

The basic idea of the model-based simulation framework is
to employ event-driven simulation to mimic environment
behavior under policy/state changes, or errors in our focused
case study.

Each entity instance in the target computing environment is
represented as a component in simulation. Existing information
about entity classes and instances in model repositories,
including component attributes and component interactions, is
leveraged in simulation. Furthermore, a concept of state is
introduced to all components for event-driven simulation. Upon
receiving an event, a component transitions its state, updates its
attributes, and/or establishes/removes interactions with other
components. Manipulation of component attributes during
simulation mimics real-world execution, and introduced
component states allow for statistical performance

measurements (e.g. the probability of a component staying in
the “failed” state actually represents the unavailability of the
component).

Figure 4 illustrates the architecture of the proposed model-
based simulation framework. A simulation engine reads in input
information from outside, performs simulation experiments,
and generates experiment results for analysis. There are four
kinds of input information: (a) information models of entity
classes and instances (attributes and interactions) stored in
model repositories (e.g. CIM model database), including error
model representation discussed in Section III; (b) definitions of
additional entity classes and instances which are not present in
current information models; (c) behaviors of entity instances in
target use-cases; (d) experiment setup and parameters (e.g.
parameters of involved stochastic distributions, synthetic
workload, number of physical machines in a scalability study).

There are a large number of researches exploiting
simulation to study complicated systems/protocols. Our
simulation framework is distinct from these works in the
following aspects:

1. By employing real-world data from information
models present in the real computing environment, our model-
based simulation framework provides more accurate results for
the target computing environment compared to a best-effort
recreation of the environment, or a different hypothetical
environment.

2. More sophisticated error models can be simulated in
the framework because the designed error model representation
permits complicated error behavior as well as error
propagations through complex interactions.

3. Definitions of additional classes and instances enable
analysis of the computing environment behavior, as part of the
design process, for projected changes or components (i.e. errors
in our case study) that are not yet present in current models of
the environment. For example, network topology is not in
existing design of the target computing environment. When
network error, or performance impact of network topology, is
considered, information on network topology can be supplied
for simulation as additional classes and instances. These
additional classes/instances are only used for analysis of the
environment and do not bring complexity to design of the
environment itself. Moreover, additional components and
interactions also enable evaluation of IT services under the
scenarios incapable or inefficient to be tested on existing
testbeds or real workloads. Examples include scalability
analysis, sensitivity study, various error models, and
boundary/extreme cases.

Error

models

Model
repository

Simulation

Engine

Additional
classes &

instances

Behaviors

Simulation exp.

setup &
params

Simulation exp.

result

Model
repository

Figure 4: Architecture of the model-based simulation framework

4. Actions of entity instances can be specified in form of
action statements which are compiled on the fly before
performed in simulation. This is especially useful for simulating
sophisticated error behaviors. As error specification (like
MTTF) and error behavior may be dependent on current status
of the victim component as well as other components, error
specification and behavior are defined as action statements
which are compiled on the fly to provide the required
flexibility. Moreover, combination of rule-based action
definition (discussed in Section III) and action statement makes
the proposed approach a powerful tool to simulate sophisticated
use-case scenarios and error behaviors.

Now we give more details on the architectural parts of the
model-based simulation framework.

A. Simulation Engine

The simulation engine performs normal event-driven
simulations. An event is a message with a target component and
an event ID. An event may have or have not parameters with it.
Each event is scheduled with a predefined stochastic
distribution to trigger actions of the target component at a
particular occasion. The stochastic distribution characterizes the
semantic of the event. For example, exponential distribution is
used to characterize the arrival of customer requests for logging
on a virtualized desktop.

Actions taken by components include event generation,
state transition, attribute update, interaction establishment/
removal, and component creation/destroy. A component may
take multiple actions upon receiving an event, and these
multiple actions are called an action block.

Though normal event-driven simulation is performed, the
simulation engine is actually information-model centric. There
is an action matrix specified in each entity class (and error
class), which defines how instances of the entity class act upon
receiving particular events. Every entity instance is in a state at
any time. Let S = {s1, s2, …} denote the set of states the entity
instance may be in; E = {e1, e2, …} denote the set of all events
with different event IDs (so ei and ej have different event IDs if
i ≠ j); and A denote the set of all action blocks. Then the action
matrix can be expressed as a mapping function f: S×E → A

f(si, ej) = aij,

where aij A is the action block performed by the entity
instance when it is in the state si and receives the event ej.

However, actions taken by components may depend on the
status of the component and/or other components (i.e. attribute
values, component states, interactions, etc.). For example, the
event of “user logon” can only trigger actions of virtual
machines which are allocated by the connection manager (i.e an
“allocated” attribute of the virtual machine is set as “true”).
This status dependency is captured by imposing a condition
before an action block. Actually, this is exactly the design of
rule-based actions. A condition is a first-order predicate
concerning attribute values, component states/interactions, and
event parameters. Let C denote the set of all conditions, CA
denote the set of all <condition, action block> pairs (i.e. CA =
C×A), then the action matrix is refined to be a mapping
function fx: S×E → Ax

fx(si, ej) = axij,

where axij Ax = { ax | ax ⊆ CA }, i.e. axij is the set of
<condition, action block> pairs that are performed by the entity
instance when it is in the state si and receives the event ej. A
<condition, action block> pair is executed in this procedure: if
the condition is satisfied, the corresponding action block is
executed; otherwise, the action block is not executed. All the
<condition, action block> pairs in axij are executed one after
another.

Though the formal specification of the action matrix above
appears complex, actually the structure of the action matrix, as
illustrated in Figure 5, is simple and easy to understand.

s1

s2…

e1 e2 e3 …
cond1: act11, act12, …

cond2: act21, act22, ……

attr1

attr2

class name

instance1

attr1: value

attr2: value

instance2

attr1: value

attr2: value

state: sk state: sl

Action Matrix

Instanceof

Instanceof

state

event

Figure 5: Structure of the action matrix in an entity class

The action matrix is placed in the entity class (and error
class) instead of entity instance because it is not convenient or
practical to specify the action matrix for every instance,
especially in the cases when instances are created/ destoryed
dynamically, or there are a large number of instances of the
same entity class (e.g. in scalability study). Note that
component-specific actions are rule-based, and the involved
components are pinpointed by means of key attribute values of
entity instances. Section III has more discussion on this issue.

B. Simulation Input Language

Figure 4 shows that, besides information models (including
introduced error models) which are read into the simulation
engine through a model reader provided by the information
model (usually a database client), the other information,
including definitions of additional
classes/instances/interactions, specifications of use-case
behaviors, and experiment setup/parameters, also needs to be
read into the simulation engine. An XML-similar markup
language is designed for this purpose, and a parser is created to
compile the files written in the simulation input language. The
parser can be invoked on the fly during simulation to support
action statements.

Behaviors of use-cases are captured as event actions of
involved entity instances. All event actions of entity instances
are inputted into the simulation engine as action matrixes
defined in corresponding entity classes (an action matrix can be
directly specified using the simulation input language).

C. Simulation Results

There are two kinds of results out of simulation
experiments.

• If the computing environment is not stable in working after
an error occurrence and falls in an absorbing state, the
experiment result is a recorded sequence of triggered
events (and the corresponding actions), which are useful

for root-cause analysis. An example is a failure of the
connection manager without any recovery mechanisms. In
this case the entire computing environment stops working
and no statistic performance measurements can be
obtained.

• If the computing environment remains stable in working
after an error occurrence, statistic performance
measurements can be collected. For example, response
time, throughput, availability, and utilization can be
measured when servers in the computing environment
undergo regular maintenance. In this case the behavior
impact is performance degradation of a few percentages.
(Of course, the result of event sequence is also available in
this case.)

V. EXPERIMENT SETUP

This section describes setup of experiments for evaluating
the effectiveness of the model-based simulation framework in
addressing error-related decision support problems on the target
computing environment.

A. Experiment Assumptions & Target Use-Cases

As described in Section II, the target computing
environment is a real-world commercial utility computing
environment for virtualized desktop service. There are multiple
use-cases in the service, while in our experiments only two of
them are targeted: user logon and user logoff.

The architecture of the computing environment depicted in
Figure 1 is a simplified version, and more components are
present in the environment. Here we give the composition of
the environment components involved in experiments, as well
as the assumptions made for these experiments:

• There is only one connection manager in the environment.

• There are several physical machines (PMs).

• There are multiple virtual machines (VMs) on each
physical machine.

• There is one virtual machine agent (VM agent) residing in
each virtual machine, which monitors the user logon/logoff
status of the virtual machine, and reports status change to
the connection manager.

• When a user is to log on a VM, a RDP (remote desktop
protocol) client is launched, and the RDP client connects to
the VM.

• There are multiple users who log on and log off VMs for
their work. Each user requests a VM and logs on it at an
exponentially distributed interval. A user may operate
multiple VMs at the same time. Each user logs out of a VM
after operating the VM for an exponentially distributed
period of time.

• Overheads like processing time, network delay are ignored
in the experiments. So actions triggered by events are
finished immediately.

The target use cases of user-logon and user-logoff are
illustrated in Figure 6 and Figure 7, respectively. They are
presented in event-sequence semantics. We briefly discuss the

two use cases here as understanding of the use cases is a
necessity for analyzing experiment results.

RDP client Virtual machine

Evt_RequestVm

(UserId)
Evt_AllocateVm

(UserId)

Evt_UserLogin

(UserId)

Evt_UserLoggedin

Connection mgr

Evt_VMAllocated

(VmId)

VM agent

Evt_LoginDetected

(VmId)

Evt_ReportLogin

(VmId)

Evt_NoAvailableVm

User

Launch a RDPClient

Evt_VMAllocated

(UserId, VmId)

Evt_ToLogon

Evt_UserLogin

Evt_UserLoggedin

Figure 6: The use case of user logon

User logon. When a user wants to log on a VM, the user
sends a request to the connection manager (Evt_RequestVM).
On receiving such a request, the connection manager takes
some time to allocate a virtual machine for the user
(Evt_AllocateVM). If there are available VMs, the connection
manager randomly picks one and sends the ID of the VM to the
user (Evt_VMAllocated); if there is no available VM, the
connection manager notifies the user, too
(Evt_NoAvailableVm). When the user receives an allocated VM
ID, he/she launches a RDP client, and logs on the virtual
machine through the RDP client (Evt_UserLogin). After the
user successfully logs on the VM, the VM notifies the user of
the success (Evt_UserLoggedin), and then the user is able to
operate the VM now. At the same time, the VM agent on the
VM detects the user logon (Evt_LoginDetected), and reports the
status change to the connection manager (Evt_ReportLogin).

RDP client Virtual machine

Evt_UserLogout

Connection mgr VM agent

Evt_LogoutDetected
(VmId)

Evt_ReportLogout
(VmId)

User

Evt_UserLogout
(UserId)

Evt_UserLoggedout

Evt_UserLoggedout

Evt_DeallocateVm
(VmId)

Evt_ToLogout

remove a RDPClient

Figure 7: The use case of user logoff

User logoff. After the user operates the VM for some time,
the user logs off the VM (Evt_UserLogout) through the
corresponding RDP client. When the logoff is successful, the
VM notifies the user of the success (Evt_UserLoggedout), and
the user then terminates the RDP client. At the same time, the
VM agent on the VM detects the user logoff
(Evt_LogoutDetected), and reports the status change to the
connection manager (Evt_ReportLogout), which then reclaims
the VM for future use (Evt_DeallocateVm).

B. Focused Error Models

As discussed in Section III, the model-based simulation
approach is able to simulate sophisticated error models such as
performance degradation, partial failure, etc., by means of the
error model representation (error specification and error
behavior), and this feature is a major strength of the proposed
framework. But in the first stage of the project we aim at the
error model of fail-stop in our experiments, with the objective
to evaluate the correctness of the framework design as well as
the effectiveness of the framework for error analysis by resting
on a simple error model and the first version of the prototype
implementation. More sophisticated error models are to be
analyzed on the refined implementation of the framework
prototype in the near future.

The focused error model in the experiments is transient fail-
stop error to any component (hardware or software) in the
environment. No error detection or mitigation mechanisms are
considered in the experiments.

C. Prototype Implementation

The first-version prototype of the model-based simulation
framework is implemented using JDK 1.5.0 on a real utility
computing environment, which was designed with CIM
information model. The model repositories in the environment
are stored in MySQL 4.1. A simulation tool package, DESMO-
J 2.1.1 [15] [16], is employed for basic event scheduling and a
library of common stochastic distributions.

VI. RESULTS

We conducted experiments for single-error scenarios, multi-
error scenarios, and error-free scalability studies. The results of
these experiments are presented below.

A. Single-Error Scenarios

The experiment setup for single-error scenarios is
summarized below:

• There are 5 users.

• Each user requests a VM and logs on it at an exponentially
distributed interval with the mean value of 4 hours.

• Each user logs off a VM after operating it for an
exponentially distributed period of time with the mean
value of 2 hours.

• The information of PMs and VMs is directly obtained from
the model repository of the real environment. During the
experiments the environment testbed had 3 PMs. One PM
had 7 VMs while the other two PMs had no VMs.

• Each experiment lasts 10 days of simulated time.

• During an experiment a single fail-stop error is injected
into a randomly picked instance of a particular entity class
(physical machine, virtual machine, RDP client, connection
manager, or VM agent) with an MTTF of 2 days. This
means that, after an exponentially distributed period of
simulated time the error is injected, and the mean value of
the time period is 2 days. So there are cases when the time
periods are longer than the experiment duration (10 days)
and errors are not injected. Error injection is performed by

establishing an error occurrence interaction between the
error instance and the selected component. Then the
corresponding error behavior is triggered and the error is
propagated if possible.

The goal of the single-error experiments is to study the
impacts of fail-stop errors which occur to individual
components, or more specifically, to answer the question “what
happens after a fail-stop error occurs to the component”. After
analysis of experiment results (event sequences), the outcomes
are presented in Table 2, which includes error injection
numbers and error behaviors.

Table 2: Experiment results for single-error injections *

Injected

entity

Inject-

ions

Error Behaviors

59 The PM fails (the PM does not host VMs).

Physical

machine
98

39

The PM fails -> the 7 VMs fail -> the 7 VM

agents fail (the PM hosts VMs).

(a) A user requests a VM, a failed VM is

allocated, but when the user connects the VM by

an RDP client, there is no response;

(b) A user was working on a failed VM, and does

not receive any response from the VM.

73

The VM fails -> the VM agent fails (the VM is

not logged on).

Same as (a) above. Virtual

machine
100

27

The VM fails -> the VM agent fails (the VM is

logged on).

Same as (b) above.

RDP

client
92 92

The RDP client fails.

The connected VM will not be logged off and is

unavailable for future allocation.

Connecti

on mgr
99 99

The connection manager fails.

(a) A user requests a VM but receives no response

from the connection manager;

(b) A user logs off a VM successfully, but the

VM is not deallocated, and the config DB stays

inconsistent.

63

The VM agent fails (the associated VM is not

logged on).

A user requests a VM and the associated VM is

allocated. The user logs on it and logs off it

successfully. But the user logoff is not detected

and the VM is not deallocated for future use.
VM

agent
100

37

The VM agent fails (the associated VM is logged

on).

The user logs off the associated VM successfully,

but the user logoff is not detected and the VM is

not deallocated for future use.
* 100 experiments were conducted for each row in the table.

100 experiments were conducted to inject errors into
instances of each entity class involved in the target use cases,
and not all these experiments have errors injected (e.g. 98 out of
100 experiments are error-injected for physical machines).

The question “what happens after the error” is answered in
the “error behaviors” column in Table 2. The simulation results
show that (the first row in Table 2), in 39 out of 98 error-
injected experiments, the PM hosting 7 VMs fails and the error
propagates to the VMs and VM agents on the PM. Two
scenarios happen after the error (an experiment may have both
occur because multiple VMs fail in one experiment):

 (a) A user requests a VM, and a failed VM is allocated to
him/her. But when the user tries to connect to the VM through
an RDP client, the user receives no response from the VM.

(b) A user was working on a VM when the error fails the
VM. Then the user does not receive any response from the VM.

In the simulation results the user receives no response from
the VM and the VM appears hung. This gives us hints that a
timeout mechanism needs to be set up for detecting VM
failures. Actually such a mechanism is usually provided by the
underlying network protocol, and can be incorporated into the
simulation through definitions of additional classes and
instances.

The impacts of errors occurring to VMs, RDP clients, the
connection manager, and VM agents are also listed in Table 2.
Though errors of different components bring about different
error behaviors, all the error behaviors in Table 2 can be
roughly classified into two types with regard to VM health: (i)
the VM is failed and appears hung to users (VM failure); (ii) the
VM is not failed but is not allocated for future use (VM
wasting). Failures of PMs and VMs lead to VM failure, while
failures of RDP clients, connection manager, and VM agents
lead to VM wasting.

B. Multi-Error Scenarios

The previous subsection studies single-error scenarios and
demonstrates the effectiveness of the proposed framework in
addressing the question of “what happens after the error”. The
study provides us insights into behaviors of virtualized desktop
service when a fail-stop error occurs to a component of the
service. However, in reality every component is subject to
errors and multiple components may fail during a period of
time. This subsection studies behaviors of the target computing
environment in multi-error scenarios by allowing multiple
components to fail in every experiment.

The experiment setup for multi-error scenarios is
summarized here:

• A hypothetical testbed of 4 PMs, with 5 VMs on each PM,
is employed in the experiments. We use the hypothetical
testbed instead of the real environment testbed because our
real testbed has 3 PMs and only one of them hosts VMs.
As conducting experiments on a one-PM testbed is not so
interesting, the hypothetical testbed is used in this study.

• During an experiment each instance of the entity classes
involved in the target use cases (physical machine, virtual
machine, RDP client, connection manager, and VM agent)
is injected with a fail-stop error with an MTTF of 2 days.

• All the other conditions are the same as those in single-
error scenarios.

Our previous study shows that, errors of the considered
components bring about impacts in two categories, VM failure
and VM wasting. Therefore, impacts of errors of multiple
components can be observed by monitoring how many VMs are
failed and how many VMs are wasted at an occasion. Usually
multiple errors may bring complicated error correlations.
However, as simple fail-stop errors are considered in our
experiments, there are only limited types of error propagations
(e.g. from a PM to the VMs and VM agents on the PM), and
other types of correlated errors are not considered

2
.

2
 Hopefully we will have more interesting and insightful results when correlated

errors are fully studied.

We conducted 1000 experiments with multiple errors. In
each experiment the numbers of failed VMs, wasted VMs, and
usable VMs are recorded every 2 hours. Then averages of these
VM numbers in the 1000 experiments are calculated and
depicted in Figure 8.

From the figure we see that, when the experiment starts, all
the VMs are usable (the environment has a total of 20 VMs). As
the experiment proceeds, users log on and log off VMs, and
components are subject to errors with the MTTF of 2 days (48
hours). Figure 8 shows that the number of usable VMs drops
quickly and the number of failed VMs increases quickly as
VMs and/or PMs fail independently. The number of usable
VMs drops faster than the increase of failed VMs, because
some VMs are wasted. An interesting observation is that, the
number of wasted VMs first increases, and then decreases after
it reaches the peak. This is because more failures of VM agents,
RDP clients and connection manager bring about more wasted
VMs, and these wasted VMs also fail as time continues. The
figure shows that, no VM can be used after 48 hours (consistent
with the uniform MTTF value), however, not all the VMs are
failed at that time (about 2.4 VMs are wasted), and only after
112 hours all the VMs in the environment are failed. The figure
also shows that after 14 hours the number of wasted VMs
reaches the peak value of 5.1.

0

5

10

15

20

25

0 8 16 24 32 40 48 56 64 72 80 88 96 10
4

11
2

12
0

time (hours)

n
u

m
b

e
r

o
f

V
M

s

Failed VMs

Wasted VMs

Usable VMs

Figure 8: Evolvement of VMs in a multi-error scenario

0

0.5

1

1.5

2

2.5

3

2 10 18 26 34 42 50 58 66 74 82 90 98 10
6

11
4

time (hours)

n
u

m
b

e
r

o
f

re
q

u
e
s
ts

Request

Request denied

Figure 9: Servicing user-logon requests in a multi-error scenario

The performance of servicing user-logon requests is
depicted in Figure 9, which illustrates how many requests are
initiated in every 2 hours and how many of them are denied.
Similar to Figure 8, the plotted values in Figure 9 are averages
of 1000 experiments. The figure shows that, around 2.5
requests are initiated by the 5 users in every 2 hours (consistent
with the experiment setup that a user requests a VM after an
exponentially distributed period with the mean value of 4

hours). As there are sufficient VMs in the environment for the 5
users, few requests are denied in error-free scenarios. When
components get failed as time goes along, more requests are
denied. Figure 9 shows that, after 54 hours almost all the
requests are denied.

With the objective to demonstrate the correctness and
effectiveness of the framework design, a simple setup is
exploited in our experiments, i.e. the environment components
have the same error characteristics (i.e. MTTF). In reality
different entity classes have different error characteristics, and
the parameters of the error characteristics should be collected
from the real environment to give an accurate modeling. If
these features are incorporated in the experiments, the results
will be very interesting and provide in-depth understanding of
error-present service behaviors on the real-world target
environment.

C. Error-free Scalability Study

The previous two subsections study the behaviors of the
computing environment in both single-error and multi-error
scenarios. Actually the simulation tool can be applied for
studies of error-free scenarios as well, including validation of
use-case designs, performance evaluation, and scalability study.
Here we give a simple example demonstrating how a scalability
study can be conducted through our model-based simulation
framework.

As the size of the computing environment grows to a large
scale, there arise challenges of effective and efficient
management of the environment. Also, the number of users
may easily increase and poses a major scalability problem for
existing services. Since management of the environment is not
involved in our target use cases, the scalability of the user
numbers is focused on in this subsection.

User behavior under this study is the same as in the previous
two studies. We vary the number of users from 5 to 1280 in our
experiments, and then monitor how the requests from these
users are serviced by the environment. For this purpose, the
averages of the numbers of requests which are initiated,
serviced, and declined during 2-hour intervals in each
experiment are calculated (the numbers during multiple 2-hour
intervals are stable in each experiment in error-free scenarios,
and hence can be averaged), and these per-experiment values
are averaged among multiple experiments with the same user
number. Then the results, or the average numbers of requests
which are initiated, serviced, and declined during 2 hours, are
plotted in Figure 10 vs. different numbers of users (note that the
horizontal axis has a logarithmic scale).

Figure 10 shows that, there exists a threshold of the user
number such that, when the user number is less than the
threshold almost no request is declined and every request is
serviced (the “declined” lines lie on the horizontal axis, and the
“serviced” lines coincide with the “initiated” lines); when the
user number is larger than the threshold, only a fixed number of
requests can be serviced and the extra requests are declined (the
“declined” lines leave the horizontal axis after some point and
jump high with the “initiated” lines, while the “serviced” lines
depart from the “initiated” lines and remain quite stable as the
user number increases). For example, when there are 20 VMs in
the environment, the threshold is between 20 and 80, according
to the figure.

0

100

200

300

400

500

600

700

5 20 80 320 1280

requests

denied requests (20 VMs)

serviced requests (20 VMs)

denied requests (100 VMs)

serviced requests (100 VMs)

Figure 10: Servicing user-logon requests for different numbers of users

In an environment with more VMs, the threshold is
increased. Figure 10 shows that, when the number of VMs in
the environment increases from 20 to 100, the threshold then
falls between 80 and 320.

The rationale behind the threshold is that, the computing

environment has a service capacity. Let n, m, λ, and µ denote
number of users, number of VMs, per-user request rate, and
per-VM service rate, then the following inequation must hold
for incoming workloads to be contained in the service capacity
of the environment:

nλ ≤ mµ

where mµ is the service capacity. In our experiments, λ =

1/4, µ = 1/2, then the maximum user number is 40 for 20 VMs,
and 200 for 100 VMs. This explains the thresholds
demonstrated in Figure 10.

VII. RELATED WORK

Reliability of IT services is a research focus nowadays in
academy and industry with popularity of IT services.
Traditional research work targets reliability of the specific web
service. For example, Tsai et al. [1] propose a service-oriented
model to evaluate reliability of web services by employing a
particular testing technique, and IBM [2] applies the semantic
of object transaction to web service for providing web service
reliability. These models and solutions are specific to web
service and can not be easily adapted to other IT services.

Utility computing and Grid computing make IT service
popular and generic approaches on reliability of IT services
grow prosperous. Dai et al. [3] provide a theoretical analysis of
Grid service reliability by simplifying real-world Grid services
into virtual-tree structures and applying graph theory and
Bayesian analysis onto the structures. This is a theoretic work
which ignores the complexity of real-world computing
environments. Candea et al. [4] propose a general methodology
to improve availability of component-based systems, typically
computing environments for IT services. The methodology
handles only the failures that can be recovered from reboots,
and the idea is to reboot only the components that need to be
rebooted for recovering from such a failure. The research has
the limit that it only considers a specific category of errors, and
moreover, it emphasizes on recovery mechanism provided the
overall view of fault propagation paths is known, but does not

try to propose a solution for analyzing error behavior of
complicated environments.

Some related works exist in error model classification and
representation. A thorough and complete classification of error
models is given in [5], and a classical approach, fault tree
analysis [6], is widely accepted for failure analysis of
complicated system. Our approach builds the error model
classification into standard information models (CIM and
UML) which are popularly employed in industry, and, unlike
the fault tree analysis which targets analysis of abstract system
composition/specification, our approach closely binds itself to
real-world computing environments and provides concrete
service behaviors in presence of a variety of errors.

Dependability modeling and simulation is another related
research area and has lots of interesting works. Stochastic
models, e.g. Markov chain, Petri Net, SAN, are widely used. [7]
models a satellite network for dependability evaluation, and [8]
designs a stochastic model for scalability study of deploying
coordinated checkpointing protocols in large-scale systems,
with emphasis on system dependability and performance. These
models are either best-effort recreation of computing
environments or simply hypothetical ones, and can not expose
concrete service behaviors in various error scenarios.

There is also work done for evaluating reliability/
availability of real systems/environments. Fault injection is
popularly used for this purpose. NFTAPE [9] is a dedicated
software toolset for injecting errors into real systems and
assessing system dependability, and has been applied in
analyzing dependability of a variety of libraries, platforms, and
system composites. For example, [10] studies error behaviors of
Ensemble, a reliable group communication library, and [11]
characterizes Linux kernel behaviors under errors, by deploying
NFTAPE toolset.

VIII. CONCLUSION & FUTURE WORK

IT services as a novel computing model for E-business are
prevalent nowadays and commercial utility computing
environments are emerging to provide support to this
computing model. Reliability is a crucial property of such
computing environments for service delivery. In this paper, a
model-based simulation framework is designed to analyze
behaviors of these environments under different error models,
ranging from simple fail-stop to sophisticated partial failure,
performance degradation, and timing error. The framework
combines error models with component models existing in
current design of real-world utility computing environments,
and hence, achieves the goal of providing a practical way to
accurately evaluate error behavior of real-world computing
environments. Besides error analysis on existing components in
the environments, projected system designs/changes and use-
case scenarios can also be tested on this framework.
Experiment results demonstrate that the framework is effective
for analyzing error behavior of complicated computing
environments.

Current framework prototype implements only fail-stop
errors. We are incorporating partial failure, performance
degradation and other error models into the implementation.
Moreover, error models are considered in the framework as a
specific example of general environment changes. So we will
apply the framework to deal with other environment changes in

real computing environments, e.g. server upgrading, service
specification change, service patching, etc., in the future.

REFERENCES

[1] W.T. Tsai, D. Zhang, Y. Chen, H. Huang, R. Paul, and N. Liao (USA),
“A Software Reliability Model for Web Services”, Proceeding of
Software Engineering and Applications, MIT Cambridge, Nov. 2004.

[2] Thomas Mikalsen, Isabelle Rouvellou, Stefan Tai, “Reliability of
Composed Web Services : From Object Transactions to Web
Transactions”, white paper, IBM T.J. Watson Research Center, Oct.
2004.

[3] Yuan-Shun Dai, G. Levitin, “Reliability and performance of tree-
structured grid services”, IEEE Transactions on Reliability, Vol 55, Issue
2, June 2006.

[4] George Candea, James Cutler, Armando Fox, “Improving Availability
with Recursive Microreboots” A Soft-State System Case Study”,
Performance Evaluation Journal, vol. 56, nos. 1-3, March 2004.

[5] Avizienis, A.; Laprie, J.-C.; Randell, B.; Landwehr, C., “Basic concepts
and taxonomy of dependable and secure computing”, IEEE Transactions
on Dependable and Secure Computing, Vol 1, Issue 1, 2004.

[6] Richard E. Barlow, “Reliability and Fault Tree Analysis”, published by
Society for Industrial and Applied Mathematic, 2nd Ed., 1982.

[7] E. Athanasopoulou, P. Thakker, and W. H. Sanders “Evaluating the
Dependability of a LEO Satellite Network for Scientific Applications”,
Proceedings of the 2nd International Conference on the Quantitative
Evaluation of Systems (QEST), Torino, Italy, September 19-22, 2005,
pp. 95-104.

[8] Long Wang, et al., “Modeling Coordinated Checkpointing for Large-
Scale Supercomputers”, DSN 2005.

[9] D. Stott, B. Floering, D. Burke, Z. Kalbarczyk, and R. Iyer,
“Dependability assessment in distributed systems with lightweight fault
injectors in NFTAPE”, Proc. Of the Dependable Computing for Critical
Applications Conf., 1998.

[10] Claudio Basile, Long Wang, Zbigniew Kalbarczyk, and Ravi Iyer,
"Group Communication Protocols under Errors," Proc. 22nd Symposium
on Reliable Distributed Systems, SRDS'03, Florence, Italy, 2003.

[11] Weining Gu, Zbigniew Kalbarczyk, Ravi Iyer and Zhenyu Yang,
“Characterization of Linux Kernel Behavior under Errors”, DSN'03, San
Francisco, CA, June 22-25, 2003.

[12] Zbigniew Kalbarczyk, Ravi Iyer, Long Wang, “Application Fault
Tolerance Employing ARMOR Middleware”, IEEE Internet Computing,
Special Issue on Recovery-Oriented Computing, March/April 2005, pp
28-37.

[13] Long Wang, Zbigniew Kalbarczyk, Weining Gu, Ravi Iyer, “An OS-
level Framework for Providing Application Aware Reliability”, PRDC
2006.

[14] Xuezheng Liu, Aimin Pan, Wei Lin, Zheng Zhang, “Using model
checker and replay facility to debug complex distributed system”, poster
session, Proceedings of the twentieth ACM symposium on Operating
systems principles, Brighton, United Kingdom, 2005.

[15] B. Page, E. Neufeld. “Extending an object oriented Discrete Event
Simulation Framework in Java for Habour Logistics”, International
Workshop on Habour, Maritime & Multimodal Logistics Modelling and
Simulation – HMS 2003, Riga, Latvia, Sept. 2003, pp. 79-85.

[16] B. Page, W. Kreutzer. “The Java Simulation Handbook. Simulating
Discrete Event Systems with UML and Java”, Shaker Publ., Aachen,
Germany 2005.

