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Distributed systems continue to grow in scale and complexity, resulting in
increasingly more involved interactions among components and increasingly
more intricate failure modes that are very hard to diagnose manually. This
increased vulnerability of larger systems, together with the increased difficulty
of failure diagnosis, has motivated machine learning approaches to automate the
diagnosis task. While preliminary encouraging results are achieved, scaling up
the existing approaches to large applications remains challenging. With increase
in scale, current approaches suffer the curse of dimensionality exacerbated by
the exploding set of system states and measured metrics. In this paper, we
significantly improve scalability of performance diagnosis methods. Our
contributions lie in the use of (i) an intelligent partitioning of the metric space,
coupled with a cooperative temporal segmentation algorithm, dividing system
observations in time and in space to remove the multiplicative explosion of
system states, and (ii) transfer learning techniques that improve accuracy by
leveraging dependencies among the partitions. We validate our approaches on
several months of production traces from a customer-facing geographically
distributed, 24 x 7, 3-tier internet service. Our results show a significant
accuracy improvement (35% on average) over the naive partitioning of the state
space (without the new temporal segmentation algorithm or transfer learning),
and an order of magnitude reduction in computational cost over the “brute
force” approach of learning with no partitioning, without loss of accuracy.
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Abstract bilistic models that associate low-level system metridswi
m’;}pplication performance problems for a single instance of

Distributed systems continue to grow in scale and co o .
a 3-tier internet service.

plexity, resulting in increasingly more involved interacts ) ) )
among components and increasingly more intricate failure In this work, we present scalable machine-learning-
modes that are very hard to diagnose manually. This ift@sed techniques for diagnosis of performance problems
creased vulnerability of larger systems, together with th internet services that are composed of multiple in-
increased difficulty of failure diagnosis, has motivated maStances (e.g., a distributed application replicated irtiplal
chine learning approaches to automate the diagnosis tadiata centers). Each service mstance. may contam multiple
While preliminary encouraging results are achieved, scaf€vers and components such as 3-tier web services. Per-
ing up the existing approaches to large applications resnai,ﬁprmance prpble_ms are defined through V|qlat|ons of ser-
challenging. With increase in scale, current approach¥ce level objectives (SLOs). The SLOs define acceptable
suffer the curse of dimensionality exacerbated by the effrésholds on performance attributes such as average trans
ploding set of system states and measured metrics. In tfi§tion response times, the maximum number of allowable
paper, we significantly improve scalability of performancdransaction failures in a given window of time, or combina-
diagnosis methods. Our contributions lie in the use of (i?Ions of such metrics. Following our prior work in [11, 26],
an intelligent partitioning of the metric space, couplethwi the diagnosis task is to automatically point to the set of
a cooperativdemporal segmentatioalgorithm, dividing most indicative internal symptoms related to a given exter-
system observations in time and in space to remove tf&lly observed performance problem, detected as an SLO
multiplicative explosion of system states, and ignsfer ~Violation. These internal symptoms are a subset of con-
learning techniques that improve accuracy by leveragingnuously monitored data (comprising system metrics, ap-
dependencies among the partitions. We validate our aBI_lcatlon'metrlcs and logs collected) that can point to the
proaches on several months of production traces from&Planation of the performance problem. This automated
customer-facing geographically distributed, 2%, 3-tier dlagn05|s_|s achieved through learning probabilistic mod-
internet service. Our results show a significant accurac§/S capturing the correlation between the collected dada an
improvement (35% on average) over the naive partitioning'® SLO state.

of the state space (without the new temporal segmentationCurrent automated diagnosis approaches work well on
algorithm or transfer learning), and an order of magnitudemall applications but do not scale to very large distridute
reduction in computational cost over the “brute force” apsystems. The difficulties of scaling up the learning ap-
proach of learning with no partitioning, without loss of ac-proaches stem from two reasons. First, with more compo-

curacy. nents in a large distributed system, there is a large inereas
. in possible causes of failure and hence an increase in the
1 Introduction data measurements (i.e., metrics) that must be collected to

The complexity of current computing systems and applica?in-point them. These measurements together constitute a
tions is quickly outgrowing the human ability to managestate space in which each individual metric is a dimension.
it at an economic cost. It is common to find data center§iformally, regions in that state space must be identified
with thousands of hosts serving hundreds to thousands ¥t correlate with performance problems. Since the space
applications and components that provide web, computg@fows exponentially in the number of metrics, more sam-
tions and other services. In such environments, diagnogkes must be collected for the learning methods to populate
of failures and performance problems is an extremely diffithe space sufficiently to identify “bad regions” with accu-
cult task for human operators. To facilitate diagnosis, confacy. Current methods suffer what is known as the “curse
mercial and open source management tools measure @fdlimensionality” [14]; a phenomenon in which they ex-
collect data from systems, networks and applications in tHabit a reduction in accuracy for a fixed-size training set,
form of metrics and logs. However, with the large amountgs the number of metrics increases. With more data re-
of data collected, the operator is faced with the dauntinguired and with the increase in the number of metrics, most
task of manually going through the data, which is becomearning methods can also become too computationally ex-
ing unmanageable. pensive. For example, based on our evaluation, using ex-
These challenges have led researchers to propose the @9 learning-based diagnosis techniques it takes over 3
of machine learning and statistical learning theory metHiours of execution on a dedicated server to process a 30-
ods to aid with the detection, diagnosis and repair efforday trace of an application with only 3 service instances
of distributed systems and applications[6, 7, 11, 12, 19]. I(Section 4.3).
particular, our previous work [11, 12, 26] developed proba- A second difficulty for learning algorithms lies in com-



bining different types of data, such as low level systenmay suffer a lower accuracy or longer “learning curve”, in
metrics, application metrics, and semi-structured data,(e part, because it takes longer to observe all combinations of
text based log files). The property that various types of dataeasured metrics (i.e., all system states) and correlese th
having different statistical characteristics (e.g.,daling combinations with good or bad behavior.
different statistical distributions) making it challengito Dividing the metrics into smaller partitions and applying
combine them with existing learning methods. learning within each partition independently improves-sca
In this work, we present automated diagnosis techniquesility. We call this thenaive partitioningapproach. This
that scale well to large-scale distributed systems coimgin approach results in a different form of inaccuracy. Namely,
many diagnostic information sources and replicated servigt ignores dependencies between partitions. Additionally
instances. More specifically, we divide the wide range ait faces the issue of partitions that might not contain the
metrics of different types (including both structured andight metrics to explain a given problem. Without the abil-
semi-structured metrics) into bounded partitions to redudty to detect this issue for a partition of metrics, the learn
learning overhead based on their semantics. A corresporidlg algorithm, which implicitly assumes that problems are
ing reduction ensues in the size of the training-set datgorrelated with (some) metrics, can produce inaccurate and
needed to identify the problem regions. A key challenganpredictable results.
in partitioning the metrics is to identify when a set of met-  The challenge addressed in this paper is to maintain the
rics from one source contain no diagnostic information foéfficiency of the naive partitioning approach, while tak-
a given segment of the trace. We call this teenporal ng into account dependencies, as with the brute force ap-
segmentatioproblem. For solving this challenge, we pro-proach. The resulting approach both achieves scalability
pose a method calleahulti-source temporal segmentationand improves diagnosis accuracy. We begin by describing
in which the inapplicability of metrics from a source onthe prute force approach. It works well for smaller systems
parts of the trace is detected by the existence of accuraifid is the starting point of our extensions. Subsequent sec-
models from other sources. This method significantly imgons describe our extensions then conclude with an archi-

proves learning accuracy and has low-overhead. In addictural summary that presents the overall picture of our
tion, for service instances that belong to the same applie\y scalable diagnosis method.

cation, we take advantage of their similarities by apply-
ing transfer learning techniques, in which we allow model®.1 The Brute Force Approach

trained on one instance to be used on others. This enables . Kon| ina-based perf blem di
further improvement in accuracy as well as leveraging ex= urprior work on learning-based performance probiem di-
isting diagnosis knowledge efficiently. agnosis [11, 26, 12] was shown to be successful for diag-

We validate our methods on several months of tracé%osmg problems on individualsinstances ofan internetse.r
collected from a real geographically distributed and muliiY'Ce: USINg system metrics. The brut_e force approach is
instance 3-tier internet service. OUr results show that of2Sically applying these approaches directly on all the met
metric partitioning along with temporal segmentation and'®s together. In this subsection, we briefly describe the
transfer learning approaches provide significant imprové)-rlor learning methods. ) ) _
ments in classification accuracy and retrieval of annotated N [11, 26], we automatically build probabilistic mod-
performance problems over the naive method that ignor&s that identify the set of metrics that correlate with each
dependencies and similarities between the data sourcesP@rticular instance of the SLO state (compliance or viola-
service instances. We also compare our methods to tH8N)- We use this information for constructing signatures
brute force approach of no data partitioning, showing thdhat correctly characterize and distinguish differentsessu

our methods have much lower overhead but the same 8fSLO violations.
higher accuracy. The methods work as follows. The input is a data log
The rest of paper is organized as follows. In Section gontaining vector$/ of measurements of system metrics
we present the problem statement and our approaches. aid the stat& < {s*,s™} (compliance or violation) of the
Section 3 we describe the traces we use to validate ofystem. For each regular epoch (e.g., 5-minute intervals)
methods. Section 4 provides use cases and empirical M€ have one such vector. Each elementof vectorM
sults demonstrating the validity of our approach. Section ®r an epoch contains the value of the specific metric, and
describes related work. We discuss some open issues of &gontains a discrete value depending on whether the SLO
approaches in Section 6. The paper concludes with Se¢as violated or not. Using pattern classification technsgue

tion 7. given a training window containing multiple epochs with
both instances of violations and compliance, we learn prob-
2 Problem Statement and Approach abilistic models [15] characterizing the behavior of a stbs

This paper presents scalable learning-based problem diaj-the metrics that are most representative of the SLO state.
nosis techniques for large-scale complex distributed syé model is essentially a classifier functigh mapping the
tems. As systems grow in scale and complexity, we natniverse of possible values fodl to the range of system
urally need more diagnostic information sources to arrivetate:¥ :M — {s*,s™}. Specifically, amode\ represents

at accurate diagnosis. In the view of learning algorithmshe conditional distributiorPy(SM)—the distribution of
there will be more metrics. Learning from a large numbeprobabilities for the system state given the observed galue
of metrics simultaneously requires a significant amount a¥f metrics. The classifief uses this distribution to evalu-
data and therefore a high computational cost. We call éte whethePy(st|M) > Py(s™|M) to arrive at a prediction
thebrute forceapproach. As scale increases, this approaaf the SLO state. The accuracy of a model at predicting the



SLO state is measured to establish the ability of the modptoach is to learn models with all metrics. Up to a certain
to capture the service state. number of metrics and system states, there are efficient al-
With continuously collected traces, the algorithm in [26]gorithms that can produce results in reasonable time. To
produces aensemblef probabilistic models. The ensem- offset the “curse of dimensionality” and maintain accuracy
ble is augmented dynamically with new models that arene would simply collect more training samples. However,
better at explaining the current problem. A model is gootve argue that such an approach, even if computationally
at explaining a problem if it can predict good and bad befeasible, will not produce accurate models. The reason is
havior with high accuracy given the measured metrics. Irthat traces collected over time are not stationary in vari-
formally, a good model defines a cube with the state spac#is ways. For example, the traces contain different types
of metrics that is highly correlated with bad behavior. Thef performance problems (with unknown number), and/or
hope from constructing the ensemble is to arrive at a portféhe underlying behavior of the application changes (e.g.,
lio of models that can explain a large number of problemdue to configuration changes). Zhaegal. [26] demon-
over time. Models that have not been good at explainingfrated that as more types of performance problems are
problems for a while are weeded out. mixed in a training window, the accuracy of learning mod-
The current ensemble is used for describing the most rels decreases. The key challenge therefore is in segmenting
lated metrics to each SLO violation. Given a period of aithe traces into the different regions representing eitifer d
SLO violation,s™, the ensemble of models is used to idenferent types of performance problems or regions with no
tify which metrics (because of their values) are more likelghanges in the application behavior. However, as the num-
to have been generated from their distribution during viber of metrics increases, this is a “chicken-and-egg” prob-
olation periods. This process is callatbtric attribution  lem: with an increase in number of metrics, segments are
Formally, for a given instance of SLO violation and eactiequired to contain more samples to avoid the curse of di-
model in the ensembl@y, (M, S), a metricmy is flagged as mensionality. However, with an increase in number of sam-
“attributable” if: ples in a segment, the chances of mixing different types of
Py, (ms) > Py, (ms™), problems or different regions in application behavior in a
segment also increases, leading to a loss of accuracy. Thus,
to achieve scale while maintaining accuracy, the number of
metrics considered in the learning over a training window
Irégeds to be bounded.

i.e., for modelNj, m’s value is more likely to come
from the *“violation” distribution By, (m|s™)) than from
the “compliance” distributionRy; (mi[s™)). This process
hence identifies a subset of metrics that are the most re i _ ) )
vant to the SLO violation according to the ensemble. To enjoy the benefits of treating each source indepen-
In [12], we have shown that we can use metric attribudently, while taking the best advantage of the different
tion for constructing signatures. These signatures descriSources, we propose what we caililti-source temporal
the symptoms of SLO violations in terms of the metric$€gmentation The metrics are first partitioned based on
that are attributed (and those that are not); a signatuse is é0Pology and metric types, similar to the naive approach
sentially a vector of attributions of the metrics. Since dif described above. We then automatically build an ensemble
ferent instances of the same problem can generate modgfgnodels [26] on each partition as follows. Each ensem-
with slightly different parameters, the signatures arenthePl€ maintains a training window which is a continuous se-
subjected to automated clustering to group together tho§&€nce of training samples (measurements of the metrics).
that likely describe the same problem. Different cluster¥/hen a new training sample comes in, it is taken into the
can then be labeled by the problems they describe. Wh&H'TENt training window. If the current training window .
a new instance of a problem is observed and a new modgntains enough samples of both flagged as SLO compli-
is generated similarity-based retrieval can be perforraed #nce and SLO violation, we perform a greedy selection fea-
identify the nearest cluster and hence determine the (pref#ire selection [16] to pick the subset of metrics that is most
ously learned) problem. This allows operators to identifyelevant to modeling the SLO, and induce a probabilistic

and quantify the frequency of recurrent problems and tB10del [15] to capture the correlations between the subset

The accuracy of models is then measured by balanced

2.2 Scaling for Multiple Data Sources: accuracy (BA) on the training window which is the average

Multi-source Temporal Segmentation of the probability of correctly identifying compliance and
In our previous work, we have observed that there are pgrobability of detecting a violation:
riods of SLO violations for which no system metrics are 1 N e N e
attributed. This observation is not surprising—not every BA= 2 x[P(s”=F(M)Is") +P(s"=F(M)Is")] (1)

performance problem can be explained with system melote that to achieve the maximal BA of 1.0, must per-
rics. In general, the solution is to analyze different sesrc fectly classify both SLO violation and compliance. If the
of data, such as application metrics, event logs (e.g.j-apphew model has a high balanced accuracy in capturing the
cation errors, security, network), etc. Similarly, whenrso SLO state, and it is statistically significantly more actera
software components (such as additional database servatsn the existing models in the ensemble, it will be added
are added, we also need to incorporate more data sour¢eshe ensemble; otherwise it is discarded. Upon adding
to maintain accurate diagnosis. As the number of sourcéise new model, the ensemble witsetits training win-
of data increases, so does the number of metrics. dow. Moreover, the ensemble will instruct ensembles of
As the number of metrics increases, the brute force apther partitions (data sources) to reset their training-win



dow as well, if they have not been able to create an accuratggorithm 1 Multi-source ensemble algorithm with tem-
enough model yet. poral segmentation
In this work, we use Naive Bayes models for the ensem-"parameters: Minimum Number of Samples Per Class, Mini-
bles of each data source partition. Naive Bayes models aremum Model Accuracy
simple and efficient, and have sound semantics for produc-input: k data sourceBataSource
ing metric attribution, a key feature required for explami for each data sourd@ataSourcedo
SLO violations. initialize Ensembleto {¢} andTrainingwWindow to {¢}
The intuition behind this algorithm is to avoid model in- end for
accuracies caused by training examples for which no met-for every new sampldo
rics for a given data source are correlated with. In the for each data sourdeataSourcedo
context of server clusters, when training a model based on ~ add sample td rainingWindow

some data source, it is generally impossible to automati- if TrainingWindow has Minimum Number of Samples
cally discount SLO violation samples that do not affect this Per Classhen o
data source (i.e., for which no metrics of the data source are train new Naive Bayes modél onTrainingWindow

compute accuracy d¥l using cross validation

if accuracy oM is higher than Minimum Model Ac-

curacyand accuracy oM is significantly higher than

the accuracy of all models in tHensemblethen
addM to Ensemble

attributed). This is the segmentation problem mentioned
earlier. The effect of including these samples in a train-
ing window is that they can skew the estimated statistics
of metrics that otherwise would capture other periods of
violation, leading to no models, or inaccurate ones. In our resetT rainingWindowto {@}
algorithm, the message from a learner of a data source indi- notify other data sources
cating that it found attributable metrics for a given trami end if
window indicates to the learners of the other sources that
the past epochs are of a problem that perhaps cannot be if receive natification from any other data soutisen
captured by that source, and therefore requires the collec- resetT rainingWindowto {g}

tion of a new training window. One limitation of this ap- end if

proach is in cases when none of the collected data sources gnd for

can produce an accurate model for some of the violations. gnd for

However, as more data sources are analyzed, the oddsof - - -
such occurrences is reduced. training window for that instance, it transfers that model t

?I other instances of the internet service to be evaluated

end if

It is worth noting that the method does not prohibi
adding models from various data sources for roughly th
same training window, as long as the models in these e
sembles are accurate enough. In fact, the method can p
duce a combination of metrics from various sources tha!
are attributed at the same time. In the production traces
collected, we did observe such cases.

cally. A transferred model is used for attribution if it is
eemed accurate. This transfer of models between different
stances produces more accurate ensembles compared to
e naive method of simply learning ensembles on each in-
fance, ignoring the similarities and dependencies thstt ex
etween the instances.
Transferring models is a form of transfer learning [24].
2.3 Scaling for Multiple Instances: Transfer The intuition behind transfer learning theory is that it is
Learning possible to transfer what is learned about one classifitatio
problem to related ones. When transfer learning is possi-
The second aspect of scaling the existing learning apye, it reduces the amount of training examples the learner
proaches is to accommodateeplicated internet services, needs to observe to obtain accurate classification models.
with each replicated instance containing all or some ah the case of multiple instances of an internet service, the
the three tiers (web server, application server, databasejmilarities are in the fact that the instances display sim-
These instances can be directly load balanced, or replicatgar behavior. Transferring models between the instances
across different data centers. Service instance regitatireduces the amount of samples required to be seen on each
is widely used in large scale distributed systems to improvi@stance of a particular problem, since if that problem was
throughput, reliability and dependability. already previously observed on another instance and pro-
As the metrics from the different replicated instances aréuced a model, it is directly and immediately applied. Our
typically highly correlated, partitioning the metric sgac results (in Section 4) show significant improvements in the
based on the topology of the service, i.e., to the differergnsemble accuracy using this transfer learning approach
replicated instances, is an intuitively appealing heigist compared to the naive method.
as it scales up with the number of instances (and metrics). In addition, we hypothesize that transferring models also
Learning in this approach is performed with the metrics oproduces more consistent signatures (Section 2.1) of simi-
each instance, independently of the other instances. Hovar performance problems between the different instances,
ever, this naive approach ignores the similarities betwedbading to improved retrieval of signatures across difiere
the instances. instances. Our empirical analysis supports this hyposhesi
Our approach is to leverage the similarities between dif-Section 4).
ferent instances through the transfenoddelshetween the ~ The added complexity in transferring models in minimal:
different instances. The method works as follows: whemodels have very small footprink(1KB) and evaluation
the learner on one instance learns an accurate model olwfaa model on an epoch takes few milliseconds. One re-



quirement for transferring models is that the mapping be-  refused; error code
tween the collected metrics between the different instancare clustered together because their cosine distancesig 0.8
be known (e.g., application server CPU utilization metricg> 0.85).
are mapped to each other, even if they are named differently This method is simple, efficient, and does clustering in-
on each system). This requirement is easily met when thgementally. Empirically, we found that it significantly-re
same data collection tools are used on all instances (sughices the number of distinct messages (to clustered pro-
as HP OpenView). totypical messages), and yields clusters with good quality
. . There are, however, limitations and issues with this sim-
2.4 Information Extraction From Event Logs ple approach such as information loss caused by clustering
Unlike the system metrics and application metrics, whiclgnd too many distinct messages for large systems. We shall
consist of structured numeric data, the application eve@iscuss these issues in Section 6.
logs are semi-structured and contain free text information As stated earlier, with a small number of feature mes-
The event logs are essentially messages written by the di#&ges extracted from the raw logs, we then count the ap-
velopers of the application. There are potentially many difoearances of the feature messages during 5-minute inter-
ferent messages. For example, in the logs collected on ov@ls, and use the counts as the metrics to learn the ensemble
instance of FT system in a 9-month period, there are mogd models. Itis worth noting that the statistical propestoé
than 280,000 distinct messages (after removing timestamiitese feature message based metrics is different compared
and fields containing numerical symbols only). Hence, w0 system utilization based metrics or application metrics
need to distill the smaller set of “prototypical” featuresne Indeed, in applying our methods on these metrics we use a
sages from the event logs. With this set of feature meglifferent distribution in the probabilistic models. Forssy
sages defined, we count the number of times each featuifgn metrics we use the normal distribution, while for mes-
message appeared in a given time interval (set to match tha@ge based metrics we use a modified Gamma distribution,
interval of the SLO metric), and use these counts as the iihich we observed to fit better than the normal and other
put metrics for the learning algorithms. In this section, welistributions. Formally, the modified Gamma distribution
present a novel algorithm for sequentially and efficientljollows
distilling the prototypical feature messages from texslog Pz if X=0

A natural approach to distill prototypical feature mes- (x=X) = (1— pz)xk—lﬂ‘; otherwise

: . NGE

sages is to perform text clustering [25]. Messages that a

similar enough will be combined to form a cluster. Fo o I
Gamma distribution fits the feature message counts better

example, messages generated by the dgmient f state- - O o
mentspwith slightlgi/ dif?erent pararrz/eters éﬂ”d probably b ecause these counts exhibit a heavy tail with an additional
rge concentration of O counts.

clustered. Basically, message clustering reverse engine
the “templates” generating these messages and ignore the5 Summary of System Architecture

minor differences. While text clustering has been extern)-. . .
9 igure 1 depicts the software architecture of our automated

sively studied in literature, a unique challenge in our sc jiagnosis solution. Each service instance may contain mul
nario is that the clustering must be performed in an incre%g 9 . y

mental fashion because over the lifetime of the system, seV Ie.servers and software components (e.g., a 3-tier web
eral code changes are pushed into production and new m g_rwce). Thesg servers and cqmponents are mstrqmented
sages appear. It is infeasible to wait until all possible-me 0 measure a wide range of metrics, collect various kinds of

sages are seen in collected logs before they are clusterec?.vent logs, as well as monitor the service SLO state. Sem!—
L ; . tructured data such as text-based logs are processed using
We developed a similarity based sequential clustering

orithm. We measure the similarity between two text me _ﬁe algorithm describe in Section 2.4 to distill diagnostic
9 . X ; ) y Shformation. These metrics coming in periodically are first
sages with the cosine distance:

. partitioned, as mentioned earlier, based on knowledge of
Deos(A,B) = 2i matcr(ai’bi)jmatcr(ai’bi) _ { Lifa =bi topology of the components and type information of the
VAl |B| 0 otherwise metrics. The partitioning yields multiple metric partiti®
whereA andB are the messagels| represents the number (€.9., System metrics, application metrics, and evenpJogs
of words in a message, amglis thei'th word in message €ach having a bounded number of metrics.
A. The cosine distance is a number between 0 and 1. WhenWIth the metric partitions and the monitored SLO state,
Deos = 1, the two messaged and B, are identical, and We automatically learn an ensemble of models for each par-
whenDcos= 0, the two messages are completely differentition using the multi-source temporal segmentation tech-
Upon seeing a new message, the clustering algorithm comidque (Algorithm 1). Metric partitions that successfully
pares the message with the existing clusters. If theresexigienerate accurate enough new models instruct other par-
a cluster to which the cosine distance is larger than a prétions to reset their training windows. This mechanism
defined threshold (we used 0.85 in our experiments), thdl¢lps the ensembles to better divide the continuous mea-
the message will simply be merged to the existing clussurements into training windows to facilitate generatiag a
ter. Otherwise, a new cluster will be created using this negurate models. Furthermore, transfer learning techniques
message. For example, messages are applied by exporting the to the ensembles using the
. . . same metric partition on other service instances (e.di; rep
® |ava. net. connect exceptl on: db server connection . .
refused: error host001 cated service in other data centers).
e java. net.connectexception: db server connection Using the ensembles of models, metric attribution is per-

ote thatx is always a non-negative integer. The modified



Service Instance i

Signature
retrieval

L < | Metic

___________ Operators attribution

Signature

e Figure 1: System architecture of our scalable di-

Other service | 1agnosis solution. Various types of metrics from
instances different components are divided into partitions.
Ensembles are built on each partition and influ-
ence each other using the multi-source temporal
segmentation algorithm. Models induced on one

models

N N Ensemble of system metrics

Transfer model

Metric t Text logs SLO_tstz_ate 5 Ensemble of application metrics— 5| from/to other service instance can pe transferred tq other in-
measurement || processing J| monttoring instances stances of the application. All models in the en-
f]’ — L Ensemble of event logs ™ sembles contribute to the metric attribution which
Metric partitioning (based on topology Transfer . . .
and metric types) Multi-source Temporal Segmentation Learning generates signatures for the SLO violations. The
signatures help operators with troubleshooting.
formed for each SLO violation epoch. As there are multiple| Region | Average Average | SLO Violation
models in an ensemble, the models are fused for predict- Transactions| Response| Percentage
ing the SLO state using the Brier score [26, 8, 10]. The _ per min Time
Brier score is the mean squared error between a model’s Americas | 57.1 2.35s 14.6%
probability of the SLO state given the current metrics and| ASi& 21.7 3.84s 16.9%

the actual value of the SLO state. Formally, for ever able 1: Summary of FT application traces. Trace collections

model N: in the ensemble. on a short window of recentoVver 3 months for the 3 Americas and 2 Asia application in-
dataD _J {ck 1} ' stances. This data represents averages over each instaace i
- 7W) b - 1

w region. The final column is the percentage of 5-minute wirglow
BSy (D) = z [PNJ- (S’|I\7I' _ d—'k) (= sf)]z ) with SLO violations.

k=1 3.1 Trace Characteristics
wherePy; (s~ IM = dy) is the probability of the SLO state
being in violation of modeN; given the vector of metric
measurementdy andl(sc = s) is an indicator function,
equal to 1 if the SLO state at tinleis s~ and 0 otherwise.
The attributions from all models in the ensembles are fil
tered by using only the most accurate models in terms
their Brier score on the most recent samples prior to th
violation. Similarly, for models transferred from other in
stances, they can be used for metric attribution when th
Brier scores are good.

The traces contain various types of data about the applica-
tion. These data types comprise the different data sources.
There are system-level metrics, including resource atiliz
tion measures (e.g., CPU utilization) from both the appli-
tion and database tiers. There are application event and
rror logs. Also, there are application-level performance
ata, including volume, response time, and failure counts
eff?r each transaction and sub-transaction, aggregatedover
minute windows. From key metrics in the application-level
) . data, SLOs are defined. The criterion for SLO violation
This process generates signatures (represented as vec{gghether the average response time over all transactions
of metric attributions) for each violation epoch. Signaur jn 5 5-minute period exceeds 3 seconds or the transaction
are stored in a database and can subject to clustering aadure count is greater than 20.
si_milarity based retrieval [12]. The subset of metrics at- p OpenView Performance Agent (OVPA) provides
tributed by the ensemble allow the operators to focus 0f stem.level metrics for application server and database
a small numb'er of possible troubleshootm_g optlon's.. ThBosts. The FT application is instrumented using ARM [23]
signature retrieval further enables leveraging previdus d; provide the application-level metrics. OVPA and ARM
agnosis efforts [12]. data are aggregated into 5-minute windows. The applica-
Note that our solution does not limit to the three mettion event logs come from each of the application server
ric partitions shown in Figure 1. Our data partitioning andnstances and are in text form.
transfer learning techniques are highly scalable and canThe FT traces are summarized in Table 1. The trans-
support the system to learn with a large number of dataction volumes seen in the traces demonstrate the non-

sources without loss of learning accuracy. trivial workloads of the FT installations. We have system
and application measurement data for all three Americas
3 Trace Collection and Processing instances and two Asia instances, and event logs for the

America instances.
Our empirical results are based on detailed traces collecte Some of our 5-minute samples exhibiting performance
from a distributed application in a globally-distributeghp  problems are “annotated”. They correspond to times when
duction environment. The application, called “FT” forwe know, based on operators’ troubleshooting documenta-
confidentiality reasons, serves business-critical custsm tion, that a specific performance problem occurred whose
across the globe 24 hours per day, 365 days per year. ttsot cause was subsequently diagnosed. In the traces used
system architecture therefore incorporates redundartty aim this paper, annotations are provided to seven periods,
failover features both locally and globally. FT is distied  ranging from 2 to 15 hours of SLO violations. The causes
across three regions: Americas, Asia, and Europe. Eacii these problems included both local (file system full in
region consists of a 3-tiered architecture that includels muone case), and external (availability problems of another
tiple client web front ends, 3 application server instanceservice on which the FT service relies for some transac-
and 2 backend database servers. tions) components.



16406 p————————————————————— system since it captures how well the models describe the
SLO state on all the data. Although a high classification
accuracy does not immediately translate to high diagnosis
accuracy, it serves as strong evidence that the ensemble can
have better diagnosis performance. Plus, it has the advan-
tage that it can be applied to all of the data. In our problem,
accuracy comprises of (BLO violation detection ratele-

fined as the percentage of SLO violations that are correctly
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Time fined as percentage of SLO compliance samples that are
Figure 2: Accumulated number of distinct messages vs numbefaisely identified as violations by the ensemble. In all of
of feature messages ] our experiments, we compute the classification accuracy
3.2 Event Logs Processing sequentially given a new sample at tintethe existing en-

We use the clustering algorithm for information extractiors€MPle beforeis used to predict the SLO state, after which
from text-based logs described in Section 2.4 to process tH& Sample is potentially added to a training window. This
event logs of the FT service instances. Figure 2 and TableP5'Sures that there is no overlap between the training set and
summarize the performance evaluation of our clustering €St Sét used to compute the classification accuracy of an
gorithm. Figure 2 plots the accumulated number of disensemble. It also produces a time series of accuracy, which
tinct messages and number of feature messages (clust v]des additional insights |_nto changesin pehaworqf th .
over time for one of the instances of FT. As can be seen SEfVice, as we demonstrate in the case studies described in

the figure, while there are a large number of distinct medhe following sections. _ _

sages in the event logs, our clustering algorithm success-A Sécond measure of success in comparing the methods
fully clusters them to a small number of feature message$ the retrieval accuracy of annotated problems using the
for this data set, there are 212 feature messages, comparigature. Annotated problems are those that have known
to 281,405 distinct messages. problem types labeled by the operators. Retrieval accuracy

To understand how good the clustering results are, W8€asures the capability of identifying similar performanc

validated our sequential algorithm against a widely usefroPlems using the signatures generated by metric attribu-
clustering algorithm called Hierarchical Tree Clusteringt!®" with the ensemble we build. While this measure is the

which operates on the batch of data, rather than sequeR©St accurate measure of success for diagnosis, it hinges
tially. We compare the clustering results of our seque on the availability of accurately annotated problems, Wwhic

tial clustering algorithm and that of Hierarchical Treegan @r€ difficult to obtain in most traces, as operators do not di-
measure the difference using a metric in literature [179NOS€ every problem, and do not always diligently record
This metric is a real number in the range [6f1]; O in- heir actions. We report retrieval accuracy for a subset of

dicates an exact match of the two and 1 indicates they af8® Performance problems in our traces for which annota-
complete different. From our experiments, the differencHONS Were provided by the operators of the service.

for the logs on the three instances are all very small, and Ve @lso provide detailed case studies, analyzing the use-
the average is 0.067. fulness of our methods for diagnosing specific incidents

that appeared in our traces.

Instancel| Instance2| Instance3
Total Days of Logs| 125 204 121 4.1 Multi-source Temporal Segmentation
Total Size of Logs| 2.5GB 3.5GB 2.1GB . . . .
Fof Log Entries | 4,989K 7 262K 3887K We begl_n by evaluating our learning method for c_ombm-
#of Distinct Msgs | 43,321 | 281,405 | 46,203 ing muluple data sources with temporal segmentation. We
# of Feature Msgs 197 212 177 provide separate re.sult_s for each of the three Americas in-
Processing Time | 281 sec | 540sec | 287 sec stancei of our application and three data sources collected
on each.

Table 2: Event logs of three FT instances

4 Results We start with evaluating the accuracy of ensembles ob-
We present a performance evaluation of the techniques wa&ined from individual data sources. Since an ensemble
propose, namely multi-source temporal segmentation f@ontains multiple models, we use the weighted vote (using
learning using multiple data sources, and transfer learBrier score as the weight) of the three best scoring models
ing for scalable diagnosis with multiple service instancegusing the Brier score) to arrive at a single prediction ef th
We use the traces collected from the FT service, describgl O state (compliance or violation). Figure 3 shows the
in the previous section. We validate that our techniquesnline accuracy(broken into violation detection rate and
achieve scalability and improve accuracy of the diagnosidalse alarm rate) of the ensembles for one instance of the
We demonstrate the success of our methods with classifiT service. A separate curve is shown for each of three
cation accuracy, retrieval accuracy, efficiency analysi$ a data sources; namely, system metrics, application metrics
through detailed case studies. and event logs. These sources are used in isolation. We
The classification accuracy of ensembles in predictinmake three observations here. First, we see how the vio-
the SLO state is our first measure of success. Classificiation detection rates increase and decrease at certain per
tion accuracy is a proxy for the usefulness of our diagnosisds. An increase follows the addition of each new model to

4.1.1 Ensemble Accuracy
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application metrics, and event logs. o5 [ viion petceion === ‘ ‘
the ensemble. A decrease occurs when no accurate modé;Ef 1
exists or can be trained in the ensemble. The curves grad<: L L ﬂ m ]
ually stabilize after a sufficient amount of time. This is ™ caion eenions e race iepecen JJempor
partly because the online accuracy is the aggregate of all (©) Instance 3

the previous samples and hence impact of erroneous p?—%ure 4: Overall ensemble online accuracy of single-source en-

dictions diminishes as number of samples increases. In adsmpjes and multi-source ensembles using different msttiod
dition, as more models are added to the ensembles, thgy, F1 service instances. Accuracies are provided with 8fth

accommodate more types of problems, and therefore avgidrcentile confidence intervals.

fluctuations in the detection rate. Second, while overall tha yqitional results for the other two FT instances are sum-
ensemble using just system metrics _has a _higher detectigiyrized in Figure 4. We again see that accuracy using all
rate than the other two, over the entire period, we See Py iti.source methods is significantly better than any sing|
riods where one data source outperforms the others. Tl iqual source. In addition, we observe significantaiol
implication of this observation is that some combination of,,, qetection improvements with our temporal segmenta-
the multiple data sources should improve overall accuracyy method although the method exhibits slightly higher
Finally, we see that the detection accuracy of individughise alarm rates in some instances. Note that even with
sources is not very high. This observation further motsateese data sources, some SLO violations are not captured
combining multiple sources. (the best violation detection is 75% in Figure 4). Other
Next we compare our multi-source ensemble learningources of data would be required to capture those SLO
algorithm (Algorithm 1) with the two baseline algorithmsviolations, which in turn would aggravate the scalability
discussed in Section 2: the unscalable brute force methpdoblem of the brute force method.
that combines all metrics from all sources together to form Further demonstrating the advantage of our temporal
one single ensemble, and the efficient method which gengfegmentation method, Figure 6(a-c) shows the online ac-
ates an ensemble independently for each source. We hegéracy curves for each source, comparing the ensemble for
after call them “brute force” and “independent”, respecthat source generated with our method (passing messages
tively. Note that the brute force method generates one egetween the different sources), and the independent method
semble, while independent and temporal segmentation gesf-generating the ensemble for that source. The curves for
erate one ensemble for each data source. Similar to the caise ensembles of the independent method are basically the
of a single ensemble, to obtain a single prediction of theurves shown in Figure 3. Note that in this experiment
SLO state with multiple ensembles, we use the weightegle do online testing on the ensembles for each data source
vote (using Brier score as the weight) of the three best scajenerated by the temporal segmentation method as if they
ing models (using the Brier score) from all ensembles.  are separate ensembles. The purpose of this experiment

Figure 5 shows the online accuracy for the three differis to demonstrate that temporal segmentation not only im-
ent multi-source methods on a single FT instance. FirsBroves the accuracy of the combined ensemble (as shown
compared to the online accuracy curves in Figure 3, we sé@& Figure 5), but also improves accuracy of individual en-
that all three methods produce more accurate predictiof§mbles.
compared to the accuracy of any single source individu- As can be observed in the figures, all ensembles of
ally. Among the three multi-source methods, our temporaiur temporal segmentation method achieve better viola-
segmentation algorithm clearly reaches a much higher vidion detection than the purely independent method, with
lation detection rate than the others, while the false alarithe exception that the ensemble of system metrics suffers
rates of the three are roughly the same. On average, temslightly higher false alarm rate.
poral segmentation achieves a 35% improvement over the . .
independent method in SLO violation detection rate. In- 1.2 Metrics Attributed
terestingly, our algorithm outperforms even the bruteséor We present statistics of metrics attributed by the ensem-
(much more computationally intensive) approach of nobles built with multi-source temporal segmentation in Ta-
partitioning the metric space. This is probably due to théle 3. In the table, we give the total number of metrics and
curse of dimensionality: there is simply not enough datenetrics that are attributed by the ensembles for each data
to obtain good models in such a high-dimensional spaceource and service instance. Note that the numbers of met-
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08 ‘ ‘ ‘ ‘ ‘ ‘ ‘ appeared in the traces that using multiple data sources
o7} , provides more meaningful diagnostic results than single
source, and the temporal segmentation technique enables
wsl e e —e the generation of a very useful model.
i Our traces contain a period in which a disk on one of
| the application servers for one of the FT instances became
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sk 1Y TiimporalSeomenigion Vioaion betecion — | full. The full disk caused the failure of a component to
oz I Naag g ghdependent False Alam —— launch (CORBA wrapper) because it could not write some
ol [ ) ij,i\l,mA - necessary files to disk. This component failure caused high

e ] response times and high transaction failure counts because
oot 06r2e - 07ioe o712 some transactions were hung, eventually timing out, wait-

Figure 5: Online accuracy of ensembles using multiple datdng on responses from the failing components.

sources. Ensemble with temporal segmentation achievésrbet The ensemble trained using event messages quickly

accuracy than brute force and independent. created a model that attributed the following message:

CORBA access failure: |1DL HPSE wrapper can not
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System| Application | Event L ' .

T R R start. The ensemble using system metrics generated a

Instl | \vibuted | 22 10 23 model using the file space utilization metric (which, in this

s Total 55 25 212 case, indicated that the file system was full). Obviously,
SEZ | Attributed | 16 9 24 the combination of these sources provides a much clearer
Inst3 Total 55 25 177 diagnostic picture to the operator. This example shows the
Attributed | 15 9 21 need to use multiple data sources for accurate diagnosis,

[ Shared] Attributed | 8 | 7 19

as it reveals to the operator not only that the file space

Table 3: Metrics attributed for different data sources and SerViC%tiIization is attributed (and full), but also the effect of
instances by ensembles built with multi-source temporgirss- that system condition on the application (failure of a

tation for the 3-month trace. component to launch). However, capturing these relevant

n'cosla&tl'tct)rébultnesdtes;é)m?em ;rr‘g ttr?glenag?\t;?rrr?efrlr::%k;t?}k? temetrics did not require the pooling of all metrics to create
violation. , they uni ! 'OUE 3 single ensemble.

for all the SLO violation epochs during the 3-month pe-

riod. In fact, on average 4 metrics are attributed for each 'S Problem was in fact a recurring problem. It hap-
SLO violation. pened once before for a short duration (1.5 hours), which

As we can see, overall a significant portion of the met@S not sufficient for creating a model. The problem oc-

rics (17-20%) are attributed for some of the SLO violationscurred again for a duration of over 10 hours about 10 days
fter the models were created. This time, the ensemble cap-

signifying that the system experienced many differentsype® X )
ofgpeyforgr]nance pro{)Iems. Apnother observgtion is thg?htéjred the problem and attributed related metrics correctly
set of metrics attributed by different service instances ar Additionally, certain application metrics were also re-
not exactly the same (number of shared metrics are shoi@fed to the problem (namely, the value of some of the
in the last row of the table). This suggests that during thansactions counts). With our temporal segmentation al-
period of the traces some problems occurred in some ig0rithm, as the ensembles using system metrics and event
stances but not the others. Therefore, transferring the md@9s generated new models during this time period, the en-
els for those problems (Section 2.3, 4.2) will be useful fopemble using application metrics reset its training window

the other instances in the future when they encounter tholstart collecting samples from this period. It then crdate
problems. models with the related application metrics. The models

generated turned out to be very helpful in predicting SLO
4.1.3 Case Study 1 state, as can be seen in the large jump in detection accuracy
We present a case study observed in our traces that fdior the application ensemble marked in Figure 6(b). In con-
ther illustrates the benefits of both leveraging multipleada trast, the independently trained ensemble with applioatio
sources and the efficacy of our temporal segmentation teametrics did not produce any model for this period of viola-
nique. Specifically, we describe a performance problemion, because it failed to reset its previous training windo




(which contained periods of violations that were not relate

to the problem). As can be seen in Figure 6(b), without any
model that captures this problem, the detection accuracy of
the ensemble declines and remains much lower compared
to the ensemble trained with temporal segmentation.

L Violation Detection without Transfer Learning
Violation Detection with Transfer Learning
False Alarm without Transfer Learning
False Alarm with Transfer Learning
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4.2 Evaluation of Transfer Learning

We now evaluate applying our transfer learning technique
(Section 2.3) on multiple replicated FT service instances.
We study the improvement in terms of ensemble accuracy
and signature retrieval performance.

03

02

0.1

[N~

e

05/27

L L L L
07/22 08/05 08/19 09/02

Time

Figure 8: Online accuracy of an instance using transfer learning
on multiple data sources with temporal segmentation.
) ] ] Evaluation results for applying model transfer technique
We start with studying the efficacy of model transfer bepn other data source and instances are summarized in Fig-
tween geographically co-located load-balanced instancgge 9. Compared to the data reported in Figure 4, we ob-
These instances are most similar in the sense that the¥rve that for single-source ensembles, transfer learning
have similar workloads, run on similar hardware and €Xconsistently improves ensemble accuracy. The improve-
hibit similar problems when the source of the problem ignent is substantial in some cases (e.g., on Instance 3). In
non-instance specific. In this experiment, we use the thregrms of multi-source ensembles, the improvement of using
FT instances in America. These instances have similgfansfer learning is not as prominent, but never has signif-
hardware configurations, and are load-balanced. We apppant negative impact either. We conjecture that for load
model transfer to learning with a single data source for thgajanced instances, the overall gain in accuracy is not al-
sake of separating concerns. We then apply it to learningays significant because it is likely that all instancesesuff
with multiple data sources to understand the composabiiom similar problems at the same time, if those are related
ity of our techniques for multi-source and multi-instanceg workload or availability problems of shared resources
learning. (e.g., network, auxiliary databases). However, the owsthe
Figure 7 shows the online accuracy of one instance whejf transferring models and adding models to an ensemble

applying model transfer with an ensemble based on aps small, making it always worth it to perform transfer of
plication metrics. We marked some of the periods whemodels.

models were transferred from other instances. As we can
observe from the figure, initially, the learning algorithm#-2-2 Ensemble Accuracy for Instances Across Data
was not able to train good models, and hence had a nearly ~ Centers

zero violation detection rate. However, eventually, modnext, we apply our transfer learning technique to service
els transferred from other instances SUCCQSSfU”y ideditifi instances across geographica”y distributed data centers
a Significant pOI’tiOﬂ of the SLO violations. Overall, thethe FT ser\/ice, we have System metrics and app”cation
comparison shows that transfer learning significantly immetrics measurement data on two of the instances inAsia
proves the accuracy in this case. We report our experience of transferring models trained on
Figure 8 plots the online accuracy of one instance whefhe instances in America to instances in Asia in Table 4. As
model transfer is applied together with multi-source temthe tables show, transfer learning improves violationdete
poral segmentation, compared to that in the absence @$n across all of the cases. For the ensemble of system met-
transfer learning. Recall that, in Section 4.1, we demorrics on Inst2, we see a substantial improvement. In terms of

strated that our multi-source temporal segmentation teckalse alarms, transfer learning slightly reduces falsenaa
nigue greatly improves accuracy over single data sourgg most cases.

L L L
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4.2.1 Ensemble Accuracy for Load-Balanced In-

stances

and other multi-source approaches. Here, as can be ob- Data Source| Vio Detection| False Alarm
served from the figure, transfer learning further achieves | |nst1 System | 0.744+0.009 | 0.154+0.004
appreciable improvement in terms of accuracy. Application | 0.625+0.008 | 0.078+0.004
‘V\olatlon‘ Delecuoﬁ without 'I"ransfer L‘earnmg . |nSt2 SyStem 0629:t 0008 0101:|: 0004
05| Violation Detection with Transer Learning Application | 0.701+0.008 | 0.1314+0.004
False Alarm with Transfer Learning (a) Without Transfer Learning

o4r Data Source| Vio Detection | False Alarm
Instl System 0.779+0.009 | 0.087+0.003
oo N Application | 0.655-£0.008 | 0.056-+0.003
oo | o Inst2 | System | 0.786+0.008 | 0.164+0.004
\ Application | 0.719+0.008 | 0.101+0.004
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Figure 7: Online accuracy of an instance using transfer learning

on application metrics.

10

Table 4: Ensemble accuracy of FT instances in Asia with/without
- ‘ models transferred from instances in America.
Note that although the instances in Asia and America are

Lunfortunately, we do not have event logs of these instances.
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Figure 9: Overall ensemble online accuracy with transfer learningied on load-balanced instances.
replicas of the same service, they run on different hardware 1

configurations and are subjected to different workloads (as
users of the service in Asia have a different usage profile of
the service). However, despite these differences, oustran
fer learning method exhibits the ability to improve ensem-
ble accuracy. In fact, we observe higher accuracy improve-
ments, when transferring models across data centers, com-
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pared to load-balanced instances in the same data center. 02t With Transfer Learning
We hypothesize that because the former are operationally
more independent (but exhibit similar problems), theyntrai °5 02 04 06 08 1
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igure 10: Recall-precision graph of one retrieval experiment.

Model transferring improves retrieval precision.
4.2.3 Retrieval Accuracy common practice in the information retrieval community,

Another important benefit of transfer learning is thatV® increaseN and measure the precision/recall pair, un-

through transferring models, instances end up with a mo gwe_ achieve a recall of 1.0. We then .pI.Ot precision as a
homogeneous set of models. This is important for diagno unction of rega_ll, to produce the PreC|s_|0_n-RecaII curve.
ing problems that are shared by multiple instances. OB perfect precision/recall curve has precision of 1.0 for al
viously, if a common problem occurred on multiple in-Values of recall. - _
stances, we would like a similar set of metrics to be at- During the period that we have measurement data avail-
tributed on all these instances. Hence, when it came to diPle, there are over 700 annotated SLO violation epochs on
agnosis, one would easily identify that multiple instancel!® three America instances for 3 different types of recur-
had the same problem. ~In practice, however, instancé§9 performance problems. We use signatures generated
train models independently. This can lead to different in®" One instance for these problems to retrieve annotated
stances attributing a slightly different set of metrics beSignatures in other instances, and repeat this for every in-
cause there could exist multiple metrics that capture thgance. Itis worth noting that the 3 types of problems are
problem. Using model transfer, however, can alleviate thig'St & small part of the all the problems experienced by the
phenomenon. When a model trained on one instance [EStances: only 700 epochs out of 11,000 epochs are anno-
transferred to other instances, it will be used to attritioee t2t€d by the operators. Figure 10 plots the Recall-Pratisio
problem it was trained for on other instances, given it is acUrves of one of our experiments. We use multi-source en-
curate enough (with high enough Brier score). Thereforé€Mmbles, and compare the retrieval precision with and with-
the probability that the same problem will be attributecPUt transfer leaming applied. From the figure, we can see
with the same set of metrics is enhanced, which is Ve&at both methods achieve high precision, which is related
important for diagnosing large scale systems. o0 the fact that our multi-source ensembles have very good

We evaluate this advantage of our transfer learning tecRcUracy. Comparing the two, model transfer has clear ad-
nique through signature retrieval [12]. Using metric attri V2Ntage compared to when transfer learning is absent.
bution, we generate signatures [12] SLO violation epochs, T0o measure the overall retrieval performance, we use an
and store them in a database for retrieval. The proced§dregate metric called AUC [21], which is the area un-
of retrieval proceeds as follows: given a signature, returfier the recall-precision curve. The value of AUCGs1],
the N closest signatures to it from the existing signatur&vith 1 being the best possible retrieval. We further aggre-
database. Retrieval accuracy measures the ability of usiggte these AUC over all our retrieval experiments and use
the signatures to accurately identify problems of the saniba@s the indicator for overall retrieval performance. The
type. Formally, given known annotations both to the querfdgregated AUC of using multi-source ensemble without
signature and the signatures in the database, we compif@nsfer learning is 0.7656. With transfer learning the AUC
the two standard measures of retrieval quality: Precisiof§ 0-8587, a significantimprovement.
and Recall [25]. Precision measures what fraction of th
N returned items have the matching annotation (1.0 is pe%—'z'4 Case Study 2
fect); recall measures the percentage of signatures in tfide intuition behind our transfer learning technique ig tha
database with the same annotation as the query that are sitice replicated service instances are similar in funetion
tually retrieved. AN increases recall goes up but precisiorality (and architecture), it is likely that the instancesl wi
typically goes down, as it becomes harder to retrieve onlgxperience roughly same set of problems. However, they
signatures that have a matching annotation. Following theay not always experience the same problem at the same

models for those problems at different periods, hencedlev
aging each other’'s models more often.
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time. Furthermore, even when a new problem emerges on # metrics | run time
multiple instances at the same time, it is not necessaly th System 55 6min
case that all the instances would be able to train good mogingle-source Application 25 4min
els for the problem. Transferring models can help instances Event Logs 212 73min
to quickly identify performance problems and arrive at cort Brute Force 292 145min
rect metric attributions. multi-source Independent 292 83min

During the period reflected in our traces, there was la Temporal Segmentation 292 86min
recurring problem with timeout on accessing an auxiliary Brute Force 826 2018min
database. This database is shared by the instances in AmME[: si_instance Independent 826 252min
ica. In early March, Instance2 experienced this problem Temporal Segmentation o, 270min
for a period of several contiguous hours. Instance2 hence w/ Transfer Learning

trained a good model of this problem. At roughly the samdable 5: Ensemble training time of different methods. Partition-

time, Instancel also experienced the same problem, K@ data (independent or temporal segmentation) significaer

with a much smaller scale—only 10 sporadic epochs. Thi&ICes runtime. i

was related to the type of transactions the instance prgc@lé, the brute force approach would simply break down.

cessed during that period. Besides the computational advantages of partitioning the
When training each instance independently, since thefBetric space, the actual learning can be distributed to sev-

were not enough SLO violations on Instancel, it did nogral machines, or done locally on servers of each instance.

generate a model for this problem. It was not until late AuJ "€ communication overhead for distributing the learning

gust that Instance1 successfully generated the model whignVery low. The messages passed with our multi-source

the auxiliary database had a similar problem for a suffit€mporal segmentation algorithm are just a few bytes (id

ciently long time. However, for 90 epochs (a total of 7.5°f source, time stamp, model flag), and the typical model

hours) in which the problem occurred prior to learning thatf@nsferred in our transfer learning algorithm is no more

model, Instancel had no accurate model capturing them than 1KB in size. Similarly, composition of signatures and
In contrast, when the transfer learning was used, If&triéval can be done in a distributed fashion, achieving

stance2 transferred its model for the database timeout prdBUch higher efficiency over central analysis.

lem to Instancel immediately after the model was created.

With this model, Instancel was able to identify the prob—g Related Work

lem, and correctly attribute related metrics. In fact, witHecause our research is multi-disciplinary, this section s

the model transferred from Instance2, Instancel succe¥&ys related work both in systems as well as machine learn-

fully identifies and attributed 91% of the 90 epochs whichng. Particularly, we cite related work on automated anal-

were missed with independent learning. ysis of distributed systems and from machine learning, is-
ffici - . sues with dimensionality and transfer learning.
4.3 Efficiency and Scalability Evaluation There has been a lot of research in the area of automated

The previous results establish the ability of our methods tanalysis of distributed systems in the past few years. Ours
produce accurate models and diagnosis. Next, we presésipne of the first to deal with scalability of such methods.
computational cost for different learning methods in ourdi  Two recent papers by Bod#t al. [7, 6] address issues
agnosis framework. The computational complexity of moswith scale for analysis of problems at large internet siges u
learning algorithms does not grow linearly with the numbeing visualization and feedback from operators. Baetikl.

of metrics. For example, a simple greedy feature sele¢#] proposed an automated statistical analysis tool along
tion algorithm [16] would beéD(n?). Other methods can be with a visualization tool to aid operators to detect and lo-
more expensive. As the number of metrics increases, oaoalize failures in a large-scale internet service baseden u
method of partitioning the metrics into small and boundedccess patterns. In another work, Bodtlal. proposes vi-
subsets is expected to be significantly more efficient thasualization tools to aid operators in troubleshooting prob
the method using all of the metrics. lems in large-scale internet services [6]. One tool provide

In Table 5 we give the ensemble training time for a 30a visual mapping of components and dependency relation-
day trace, with samples every 5 minutes. The experimensfips to make it easier to decipher the propagation of fail-
were run on a Pentium4 3.5GHz PC with 1GB memory. ures. It also allows operators to zoom in on “important”

From the table, it is clear that using all metrics togethemetrics for each component. In contrast, in our work, rel-
for learning incurs a higher computational cost than paevant metrics are automatically detected through the met-
titioning the metrics. While the absolute run time for theric attribution and signature construction mechanisms. An
brute force method on a single instance is not prohibitivegther tool aids in the troubleshooting of recurrent prob-
it has very poor scalability. When the brute force methotems by monitoring clickstreams of those operators who
was run on combined metrics from the three instances, fiésolve the problems the first time. Our work uses search-
took about 1.5 days to train models for the 30 day trace. lable, indexable signatures, generated automaticallyg-to r
contrast, our partitioning techniques manages to keep titieve similar occurrences along with operator annotation
run time within a few hours. for previously resolved problems.

Note that our trace is from a relatively small scale appli- There have been additional work on performance diag-
cation. Based on our personal communication with a largeosis and debugging. Aguileet al. describe two algo-
scale internet service, large scale internet services@am h rithms for isolating performance bottlenecks in distrémlit
over a million measurement metrics. For systems of thatystems of opaque software components [2]. Their “con-
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volution” algorithm employs statistical signal-processi is a simpler form of transfer learning, feasible because it
techniques to infer causal message paths that transactiamapplied to the replicated instances of the internet servi
follow among components, which are not assumed to comwith similar metrics.
municate via RPC-like request/reply pairs. At the opposit . .
extreme of this knowledge-lean approach, Magpie charag— Discussion and Future Work
terizes transaction resource footprints in fine detail but r In this section we discuss several issues and observations
quires that application logic be meticulously encoded ifirom our results and experiences with the daily operations
“event schema” [3]. The Pinpoint system of Cheinal. of the real internet services. We also suggest future direc-
analyzes run-time execution paths of complex distributetions for our work stemming from those observations.
applications to automatically detect failures by identity Transfer learning The positive results using our trans-
statistically abnormal paths; faulty paths can then aid-a hder learning of models are very encouraging, but it is im-
man analyst in diagnosing the underlying cause [9]. Kiciportantto note that the transferring of models leverages th
man and Fox describe in greater detail the use of probaimilarities between the instances, but does not necessar-
bilistic context-free grammars to detect anomalous paths ily account for direct dependencies between the instances
Pinpoint [19]. Our approach shares with Pinpoint the usthat could aid in diagnosing a particular problem. For ex-
of statistical technigues, but the instrumentation we irequ ample, if a problem on instance(e.g., overloaded CPU)
is more readily available and we seek to diagnose perfotauses performance problems on a neighboring instance
mance problems rather than faults.All these methods haydue to the load balancer), the dependency ofi x is not
so far largely ignored the scalability issue. captured by transferring of models. We can account for
P2 [20] is a novel way of building distributed applica-SUch dependencies by extending our method to learn mod-
tions by expressing network-oriented functionality as-corf!S Of instance adding the metrics collected on instance
tinuous queries over program and network state. More r& another set of data sources (and metrics from any other
cently, Singhet al.[22] proposed a logging and monitoring Instances for which there are known dependencies). Such
facility built on top of P2 that provides a concise and pow& Method is scalable when using our multi-source temporal
erful to express operations necessary to monitor and locstggmentation. We have tested this method on our traces.

faults in large distributed systems. However, this solutio However, we did not find that using metrics of dependent
is limited to systems built using P2. instances provided any benefits, even though in some cases

The scalability issue. besides being a com utationthere were meaningful models trained. In these cases, we
y k 9 P I%lbserved that it was not necessary to use metrics from re-

8irr%t()alr?g]ér:zliltnml\r;lzﬁal|r¥1edtlr]:fcl)fjuslthzsgabu;:nOsfutheegtuer;?notlated instances, as the metrics of the instance already pro-
. y. Many . 99 : b/?ded all the required diagnostic information. We believe
machine learning literature to deal with the curse of dImer}'hat use of related instance metrics should thus be used se-

sionality. Generally, these methods reduce the dimensiof)-_.. : X )
ality of the problem by either projecting the metric spac%a'vely to produce models, perhaps with rules triggering

: : he analysis of those metrics when no plausible problem
to a lower dimensional space, such as PCA [18], ICA [1 ignatures are produced by the metrics of the instance.

328iLZT?:;?u?g?:ggr%gfgi’sﬁ{oay[ig;ecung a subset of the We also_ note tha_t our transfe;r Iearning_method can be
o ) ' ) __ used to quickly provide diagnostic capabilities to newly de
Projection methods use a linear or non-linear projectiop|oyed service instances. This is very important virtual ma
of the metrics to a lower dlmer)3|onal space. These metBhines are used more frequently in data centers to dynam-
ods work well on many machine learning problems, bufally add and remove capacity. A new instance, which
the features in the lower dimensional space have no Sgrks any historical data, can leverage the models learned
mantic meaning, making interpretation difficult for oper-gn previous instances to quickly and correctly identify-per
ators. Besides, they are computationally expensive (cubi§rmance problems, which would otherwise require long
or quadratic in the number of metrics), and requires cefrace collection. The success of transfer learning hinges
tral collection of all original metrics. The second appioac o known similarities between the instances; we intend to
involves selecting a subset of the metrics using some Opyyestigate the limits of this transfer as more differences
t|mal|ty criterion (feature Selection) [16] These metbkod hardware, ConfigurationS, etcl) are introduced.
preserve the semantic meaning of the metrics. In our wor Log processingWe showed the method for processing
we use greedy search algorithms for selecting a small suxt event logs described in Section 2.4 was very efficient
ever, most feature selection methods are at least quadraiigyts on logs collected from very large data centers, with
in the number of features and the number of samples. Agyide variety of services and error messages. To the reader
methods also become computationally expensive. sults are perhaps surprising. First, our method takes into
Finally, in this work we use transfer learning methodsiccount the order of words in the message and does not al-
for leveraging similarities between different instanc&s. low for insertions or deletions of words; this can make very
our knowledge, our work is the first to use transfer learningimilar messages appear far with our distance measure. We
methods for diagnosing performance in computer systemisave seen little sensitivity to this issue in our logs. Also,
Most related to our work is [4], in which models for email extending our method to account for these is easy and there
virus detection are trained using a transfer learning ntethare well established methods we intend to use. Second,
called Latent Dirichlet Allocation (LDA) [5]. Our method in natural language, small changes in a sentence can have
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very different meanings, e.g., “memory is not sufficient’another. Our techniques were evaluated using production
vs. “memory is sufficient”, or “database system is down'tlusters with multiple sites distributed across a wide area
vs. “webserver system is down”; with our method, the twanetwork. In addition to showing improvements in learn-
messages can appear near and get clustered together. Hmg-accuracy, retrieval quality, and scalability, we prese
ever, cases of the first examples are less likely, as logs typpecific case studies that illustrate the prescriptive powe
ically refer to errors. Cases such as the second example afethe approach in identifying practical problems in large-
more plausible (although we have not seen such casessoale multi-instance real-life applications. We beliee t
our logs). For this problem we can enhance our approagtoposed approach is the first learning-based systems con-
with some domain specific keywords (potentially suppliedribution that allows automated diagnosis to scale well to
by the operators). Having different keywords prevents meshe size of realistic enterprise applications.

sages from being grouped together. We intend to invesiReferences

gate these extensions as part of our future work.

A second limitation of our approach is that we treat all
error messages from the application asirggle partition.  [2]
Large applications can have a lot of unique error messages,
which maps to a large metric space. This poses the scalgg)
bility issue again. We plan to develop an automatic way of
partitioning metrics from the same data source, if the datd*
source contains too many metrics.

7 Conclusions [5]

This paper presented a scalable approach for automateg
identification of probable causes of performance problems
in large server systems with geographically replicatesssit
multiple tiers, and multiple system instances per tier. We{7]
demonstrated scalable use of learning to automatically as-
sociate performance problems (identified by SLO viola-
tions) with the system, application, or log attributes trat
most relevant to them. The resulting service yields possibl (8]
explanations that greatly aid with system troubleshooting|9]
It removes the need for manual inspection of large volumes
of performance data in search of anomalies that might ex-
plain the performance problem. [10]
We have demonstrated three major architectural inﬁl]
provements that lead to the scalability of our approach.
First, our algorithms divide the space of analyzed mei—
rics into bounded partitions that reduce learning overhe i
while preserving accuracy. The conflicting goals of low
overhead and high accuracy were jointly achieved thank¥!
to the multi-source temporal segmentation algorithm, run
among the learners of these partitions. It was shown that IbiA]
simply allowing one learner to inform others when a goo 5
model was found, learning accuracy could be significantl
improved. This improvement is attributed to the fact thal16]
another learner (with only a poor model) could then kno
to give up and reset its window, hence preventing distortio
of models when the metrics analyzed by the learner have Ifis]
correlation with the problem observed. Further, by combin29]
ing the best models from the set of learners a much superior
ability to associate metrics with problems is achieved.  [20]
Second, we have illustrated the use of multiple quali[-21]
tatively different metrics to potentially explain problem
In particular, in addition to system and application metf22]
rics, we have demonstrated the use and analysis of Iogg,o,]
Since logs often contain expressive human-readable mes-
sages, they can be particularly indicative of the nature of
[24]
problems.

) . [25]
Finally, we demonstrated the use of transfer Iearnlné,
whereby different learners exchange models of common
problems. It was shown that indeed models learned in o
server installation can help identify similar problems on
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