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Abstract
Distributed systems continue to grow in scale and com-

plexity, resulting in increasingly more involved interactions
among components and increasingly more intricate failure
modes that are very hard to diagnose manually. This in-
creased vulnerability of larger systems, together with the
increased difficulty of failure diagnosis, has motivated ma-
chine learning approaches to automate the diagnosis task.
While preliminary encouraging results are achieved, scal-
ing up the existing approaches to large applications remains
challenging. With increase in scale, current approaches
suffer the curse of dimensionality exacerbated by the ex-
ploding set of system states and measured metrics. In this
paper, we significantly improve scalability of performance
diagnosis methods. Our contributions lie in the use of (i)
an intelligent partitioning of the metric space, coupled with
a cooperativetemporal segmentationalgorithm, dividing
system observations in time and in space to remove the
multiplicative explosion of system states, and (ii)transfer
learning techniques that improve accuracy by leveraging
dependencies among the partitions. We validate our ap-
proaches on several months of production traces from a
customer-facing geographically distributed, 24× 7, 3-tier
internet service. Our results show a significant accuracy
improvement (35% on average) over the naive partitioning
of the state space (without the new temporal segmentation
algorithm or transfer learning), and an order of magnitude
reduction in computational cost over the “brute force” ap-
proach of learning with no partitioning, without loss of ac-
curacy.

1 Introduction
The complexity of current computing systems and applica-
tions is quickly outgrowing the human ability to manage
it at an economic cost. It is common to find data centers
with thousands of hosts serving hundreds to thousands of
applications and components that provide web, computa-
tions and other services. In such environments, diagnosis
of failures and performance problems is an extremely diffi-
cult task for human operators. To facilitate diagnosis, com-
mercial and open source management tools measure and
collect data from systems, networks and applications in the
form of metrics and logs. However, with the large amounts
of data collected, the operator is faced with the daunting
task of manually going through the data, which is becom-
ing unmanageable.

These challenges have led researchers to propose the use
of machine learning and statistical learning theory meth-
ods to aid with the detection, diagnosis and repair efforts
of distributed systems and applications[6, 7, 11, 12, 19]. In
particular, our previous work [11, 12, 26] developed proba-

bilistic models that associate low-level system metrics with
application performance problems for a single instance of
a 3-tier internet service.

In this work, we present scalable machine-learning-
based techniques for diagnosis of performance problems
in internet services that are composed of multiple in-
stances (e.g., a distributed application replicated in multiple
data centers). Each service instance may contain multiple
servers and components such as 3-tier web services. Per-
formance problems are defined through violations of ser-
vice level objectives (SLOs). The SLOs define acceptable
thresholds on performance attributes such as average trans-
action response times, the maximum number of allowable
transaction failures in a given window of time, or combina-
tions of such metrics. Following our prior work in [11, 26],
the diagnosis task is to automatically point to the set of
most indicative internal symptoms related to a given exter-
nally observed performance problem, detected as an SLO
violation. These internal symptoms are a subset of con-
tinuously monitored data (comprising system metrics, ap-
plication metrics and logs collected) that can point to the
explanation of the performance problem. This automated
diagnosis is achieved through learning probabilistic mod-
els capturing the correlation between the collected data and
the SLO state.

Current automated diagnosis approaches work well on
small applications but do not scale to very large distributed
systems. The difficulties of scaling up the learning ap-
proaches stem from two reasons. First, with more compo-
nents in a large distributed system, there is a large increase
in possible causes of failure and hence an increase in the
data measurements (i.e., metrics) that must be collected to
pin-point them. These measurements together constitute a
state space in which each individual metric is a dimension.
Informally, regions in that state space must be identified
that correlate with performance problems. Since the space
grows exponentially in the number of metrics, more sam-
ples must be collected for the learning methods to populate
the space sufficiently to identify “bad regions” with accu-
racy. Current methods suffer what is known as the “curse
of dimensionality” [14]; a phenomenon in which they ex-
hibit a reduction in accuracy for a fixed-size training set,
as the number of metrics increases. With more data re-
quired and with the increase in the number of metrics, most
learning methods can also become too computationally ex-
pensive. For example, based on our evaluation, using ex-
isting learning-based diagnosis techniques it takes over 30
hours of execution on a dedicated server to process a 30-
day trace of an application with only 3 service instances
(Section 4.3).

A second difficulty for learning algorithms lies in com-
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bining different types of data, such as low level system
metrics, application metrics, and semi-structured data (e.g.,
text based log files). The property that various types of data
having different statistical characteristics (e.g., following
different statistical distributions) making it challenging to
combine them with existing learning methods.

In this work, we present automated diagnosis techniques
that scale well to large-scale distributed systems containing
many diagnostic information sources and replicated service
instances. More specifically, we divide the wide range of
metrics of different types (including both structured and
semi-structured metrics) into bounded partitions to reduce
learning overhead based on their semantics. A correspond-
ing reduction ensues in the size of the training-set data
needed to identify the problem regions. A key challenge
in partitioning the metrics is to identify when a set of met-
rics from one source contain no diagnostic information for
a given segment of the trace. We call this thetemporal
segmentationproblem. For solving this challenge, we pro-
pose a method calledmulti-source temporal segmentation
in which the inapplicability of metrics from a source on
parts of the trace is detected by the existence of accurate
models from other sources. This method significantly im-
proves learning accuracy and has low-overhead. In addi-
tion, for service instances that belong to the same appli-
cation, we take advantage of their similarities by apply-
ing transfer learning techniques, in which we allow models
trained on one instance to be used on others. This enables
further improvement in accuracy as well as leveraging ex-
isting diagnosis knowledge efficiently.

We validate our methods on several months of traces
collected from a real geographically distributed and multi-
instance 3-tier internet service. Our results show that our
metric partitioning along with temporal segmentation and
transfer learning approaches provide significant improve-
ments in classification accuracy and retrieval of annotated
performance problems over the naive method that ignores
dependencies and similarities between the data sources or
service instances. We also compare our methods to the
brute force approach of no data partitioning, showing that
our methods have much lower overhead but the same or
higher accuracy.

The rest of paper is organized as follows. In Section 2
we present the problem statement and our approaches. In
Section 3 we describe the traces we use to validate our
methods. Section 4 provides use cases and empirical re-
sults demonstrating the validity of our approach. Section 5
describes related work. We discuss some open issues of our
approaches in Section 6. The paper concludes with Sec-
tion 7.

2 Problem Statement and Approach
This paper presents scalable learning-based problem diag-
nosis techniques for large-scale complex distributed sys-
tems. As systems grow in scale and complexity, we nat-
urally need more diagnostic information sources to arrive
at accurate diagnosis. In the view of learning algorithms,
there will be more metrics. Learning from a large number
of metrics simultaneously requires a significant amount of
data and therefore a high computational cost. We call it
thebrute forceapproach. As scale increases, this approach

may suffer a lower accuracy or longer “learning curve”, in
part, because it takes longer to observe all combinations of
measured metrics (i.e., all system states) and correlate these
combinations with good or bad behavior.

Dividing the metrics into smaller partitions and applying
learning within each partition independently improves scal-
ability. We call this thenaive partitioningapproach. This
approach results in a different form of inaccuracy. Namely,
it ignores dependencies between partitions. Additionally,
it faces the issue of partitions that might not contain the
right metrics to explain a given problem. Without the abil-
ity to detect this issue for a partition of metrics, the learn-
ing algorithm, which implicitly assumes that problems are
correlated with (some) metrics, can produce inaccurate and
unpredictable results.

The challenge addressed in this paper is to maintain the
efficiency of the naive partitioning approach, while tak-
ing into account dependencies, as with the brute force ap-
proach. The resulting approach both achieves scalability
and improves diagnosis accuracy. We begin by describing
the brute force approach. It works well for smaller systems
and is the starting point of our extensions. Subsequent sec-
tions describe our extensions then conclude with an archi-
tectural summary that presents the overall picture of our
new scalable diagnosis method.

2.1 The Brute Force Approach

Our prior work on learning-based performance problem di-
agnosis [11, 26, 12] was shown to be successful for diag-
nosing problems on individuals instances of an internet ser-
vice, using system metrics. The brute force approach is
basically applying these approaches directly on all the met-
rics together. In this subsection, we briefly describe the
prior learning methods.

In [11, 26], we automatically build probabilistic mod-
els that identify the set of metrics that correlate with each
particular instance of the SLO state (compliance or viola-
tion). We use this information for constructing signatures
that correctly characterize and distinguish different causes
of SLO violations.

The methods work as follows. The input is a data log
containing vectors~M of measurements of system metrics
and the stateS∈ {s+,s−} (compliance or violation) of the
system. For each regular epoch (e.g., 5-minute intervals)
we have one such vector. Each elementmi of vector ~M
for an epoch contains the value of the specific metric, and
Scontains a discrete value depending on whether the SLO
was violated or not. Using pattern classification techniques,
given a training window containing multiple epochs with
both instances of violations and compliance, we learn prob-
abilistic models [15] characterizing the behavior of a subset
of the metrics that are most representative of the SLO state.
A model is essentially a classifier functionF mapping the
universe of possible values for~M to the range of system
state:F : ~M →{s+,s−}. Specifically, a modelN represents
the conditional distributionPN(S|~M)—the distribution of
probabilities for the system state given the observed values
of metrics. The classifierF uses this distribution to evalu-
ate whetherPN(s+|~M) > PN(s−|~M) to arrive at a prediction
of the SLO state. The accuracy of a model at predicting the
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SLO state is measured to establish the ability of the model
to capture the service state.

With continuously collected traces, the algorithm in [26]
produces anensembleof probabilistic models. The ensem-
ble is augmented dynamically with new models that are
better at explaining the current problem. A model is good
at explaining a problem if it can predict good and bad be-
havior with high accuracy given the measured metrics. In-
formally, a good model defines a cube with the state space
of metrics that is highly correlated with bad behavior. The
hope from constructing the ensemble is to arrive at a portfo-
lio of models that can explain a large number of problems
over time. Models that have not been good at explaining
problems for a while are weeded out.

The current ensemble is used for describing the most re-
lated metrics to each SLO violation. Given a period of an
SLO violation,s−, the ensemble of models is used to iden-
tify which metrics (because of their values) are more likely
to have been generated from their distribution during vi-
olation periods. This process is calledmetric attribution.
Formally, for a given instance of SLO violation and each
model in the ensemble,PNj (~M,S), a metricmi is flagged as
“attributable” if:

PNj (mi |s
−) > PNj (mi |s

+),

i.e., for model Nj , mi ’s value is more likely to come
from the “violation” distribution (PNj (mi |s−)) than from
the “compliance” distribution (PNj (mi |s+)). This process
hence identifies a subset of metrics that are the most rele-
vant to the SLO violation according to the ensemble.

In [12], we have shown that we can use metric attribu-
tion for constructing signatures. These signatures describe
the symptoms of SLO violations in terms of the metrics
that are attributed (and those that are not); a signature is es-
sentially a vector of attributions of the metrics. Since dif-
ferent instances of the same problem can generate models
with slightly different parameters, the signatures are then
subjected to automated clustering to group together those
that likely describe the same problem. Different clusters
can then be labeled by the problems they describe. When
a new instance of a problem is observed and a new model
is generated similarity-based retrieval can be performed to
identify the nearest cluster and hence determine the (previ-
ously learned) problem. This allows operators to identify
and quantify the frequency of recurrent problems and to
leverage previous diagnostic efforts.

2.2 Scaling for Multiple Data Sources:
Multi-source Temporal Segmentation

In our previous work, we have observed that there are pe-
riods of SLO violations for which no system metrics are
attributed. This observation is not surprising—not every
performance problem can be explained with system met-
rics. In general, the solution is to analyze different sources
of data, such as application metrics, event logs (e.g., appli-
cation errors, security, network), etc. Similarly, when more
software components (such as additional database servers)
are added, we also need to incorporate more data sources
to maintain accurate diagnosis. As the number of sources
of data increases, so does the number of metrics.

As the number of metrics increases, the brute force ap-

proach is to learn models with all metrics. Up to a certain
number of metrics and system states, there are efficient al-
gorithms that can produce results in reasonable time. To
offset the “curse of dimensionality” and maintain accuracy,
one would simply collect more training samples. However,
we argue that such an approach, even if computationally
feasible, will not produce accurate models. The reason is
that traces collected over time are not stationary in vari-
ous ways. For example, the traces contain different types
of performance problems (with unknown number), and/or
the underlying behavior of the application changes (e.g.,
due to configuration changes). Zhanget al. [26] demon-
strated that as more types of performance problems are
mixed in a training window, the accuracy of learning mod-
els decreases. The key challenge therefore is in segmenting
the traces into the different regions representing either dif-
ferent types of performance problems or regions with no
changes in the application behavior. However, as the num-
ber of metrics increases, this is a “chicken-and-egg” prob-
lem: with an increase in number of metrics, segments are
required to contain more samples to avoid the curse of di-
mensionality. However, with an increase in number of sam-
ples in a segment, the chances of mixing different types of
problems or different regions in application behavior in a
segment also increases, leading to a loss of accuracy. Thus,
to achieve scale while maintaining accuracy, the number of
metrics considered in the learning over a training window
needs to be bounded.

To enjoy the benefits of treating each source indepen-
dently, while taking the best advantage of the different
sources, we propose what we callmulti-source temporal
segmentation. The metrics are first partitioned based on
topology and metric types, similar to the naive approach
described above. We then automatically build an ensemble
of models [26] on each partition as follows. Each ensem-
ble maintains a training window which is a continuous se-
quence of training samples (measurements of the metrics).
When a new training sample comes in, it is taken into the
current training window. If the current training window
contains enough samples of both flagged as SLO compli-
ance and SLO violation, we perform a greedy selection fea-
ture selection [16] to pick the subset of metrics that is most
relevant to modeling the SLO, and induce a probabilistic
model [15] to capture the correlations between the subset
of metrics selected and the SLO state.

The accuracy of models is then measured by balanced
accuracy (BA) on the training window which is the average
of the probability of correctly identifying compliance and
probability of detecting a violation:

BA=
1
2
× [P(s− = F (~M)|s−)+P(s+ = F (~M)|s+)] (1)

Note that to achieve the maximal BA of 1.0,F must per-
fectly classify both SLO violation and compliance. If the
new model has a high balanced accuracy in capturing the
SLO state, and it is statistically significantly more accurate
than the existing models in the ensemble, it will be added
to the ensemble; otherwise it is discarded. Upon adding
the new model, the ensemble willreset its training win-
dow. Moreover, the ensemble will instruct ensembles of
other partitions (data sources) to reset their training win-
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dow as well, if they have not been able to create an accurate
enough model yet.

In this work, we use Naive Bayes models for the ensem-
bles of each data source partition. Naive Bayes models are
simple and efficient, and have sound semantics for produc-
ing metric attribution, a key feature required for explaining
SLO violations.

The intuition behind this algorithm is to avoid model in-
accuracies caused by training examples for which no met-
rics for a given data source are correlated with. In the
context of server clusters, when training a model based on
some data source, it is generally impossible to automati-
cally discount SLO violation samples that do not affect this
data source (i.e., for which no metrics of the data source are
attributed). This is the segmentation problem mentioned
earlier. The effect of including these samples in a train-
ing window is that they can skew the estimated statistics
of metrics that otherwise would capture other periods of
violation, leading to no models, or inaccurate ones. In our
algorithm, the message from a learner of a data source indi-
cating that it found attributable metrics for a given training
window indicates to the learners of the other sources that
the past epochs are of a problem that perhaps cannot be
captured by that source, and therefore requires the collec-
tion of a new training window. One limitation of this ap-
proach is in cases when none of the collected data sources
can produce an accurate model for some of the violations.
However, as more data sources are analyzed, the odds of
such occurrences is reduced.

It is worth noting that the method does not prohibit
adding models from various data sources for roughly the
same training window, as long as the models in these en-
sembles are accurate enough. In fact, the method can pro-
duce a combination of metrics from various sources that
are attributed at the same time. In the production traces we
collected, we did observe such cases.

2.3 Scaling for Multiple Instances: Transfer
Learning

The second aspect of scaling the existing learning ap-
proaches is to accommodaten-replicated internet services,
with each replicated instance containing all or some of
the three tiers (web server, application server, database).
These instances can be directly load balanced, or replicated
across different data centers. Service instance replication
is widely used in large scale distributed systems to improve
throughput, reliability and dependability.

As the metrics from the different replicated instances are
typically highly correlated, partitioning the metric space
based on the topology of the service, i.e., to the different
replicated instances, is an intuitively appealing heuristic,
as it scales up with the number of instances (and metrics).
Learning in this approach is performed with the metrics of
each instance, independently of the other instances. How-
ever, this naive approach ignores the similarities between
the instances.

Our approach is to leverage the similarities between dif-
ferent instances through the transfer ofmodelsbetween the
different instances. The method works as follows: when
the learner on one instance learns an accurate model on a

Algorithm 1 Multi-source ensemble algorithm with tem-
poral segmentation

Parameters: Minimum Number of Samples Per Class, Mini-
mum Model Accuracy
Input: k data sourcesDataSource1,...k
for each data sourceDataSourcei do

initialize Ensemblei to {φ} andTrainingWindowi to {φ}
end for
for every new sampledo

for each data sourceDataSourcei do
add sample toTrainingWindowi
if TrainingWindowi has Minimum Number of Samples
Per Classthen

train new Naive Bayes modelM onTrainingWindowi
compute accuracy ofM using cross validation
if accuracy ofM is higher than Minimum Model Ac-
curacyand accuracy ofM is significantly higher than
the accuracy of all models in theEnsemblei then

addM to Ensemblei
resetTrainingWindowi to {φ}
notify other data sources

end if
end if
if receive notification from any other data sourcethen

resetTrainingWindowi to {φ}
end if

end for
end for

training window for that instance, it transfers that model to
all other instances of the internet service to be evaluated
locally. A transferred model is used for attribution if it is
deemed accurate. This transfer of models between different
instances produces more accurate ensembles compared to
the naive method of simply learning ensembles on each in-
stance, ignoring the similarities and dependencies that exist
between the instances.

Transferring models is a form of transfer learning [24].
The intuition behind transfer learning theory is that it is
possible to transfer what is learned about one classification
problem to related ones. When transfer learning is possi-
ble, it reduces the amount of training examples the learner
needs to observe to obtain accurate classification models.
In the case of multiple instances of an internet service, the
similarities are in the fact that the instances display sim-
ilar behavior. Transferring models between the instances
reduces the amount of samples required to be seen on each
instance of a particular problem, since if that problem was
already previously observed on another instance and pro-
duced a model, it is directly and immediately applied. Our
results (in Section 4) show significant improvements in the
ensemble accuracy using this transfer learning approach
compared to the naive method.

In addition, we hypothesize that transferring models also
produces more consistent signatures (Section 2.1) of simi-
lar performance problems between the different instances,
leading to improved retrieval of signatures across different
instances. Our empirical analysis supports this hypothesis
(Section 4).

The added complexity in transferring models in minimal:
models have very small footprint (< 1KB) and evaluation
of a model on an epoch takes few milliseconds. One re-
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quirement for transferring models is that the mapping be-
tween the collected metrics between the different instances
be known (e.g., application server CPU utilization metrics
are mapped to each other, even if they are named differently
on each system). This requirement is easily met when the
same data collection tools are used on all instances (such
as HP OpenView).

2.4 Information Extraction From Event Logs
Unlike the system metrics and application metrics, which
consist of structured numeric data, the application event
logs are semi-structured and contain free text information.
The event logs are essentially messages written by the de-
velopers of the application. There are potentially many dif-
ferent messages. For example, in the logs collected on one
instance of FT system in a 9-month period, there are more
than 280,000 distinct messages (after removing timestamps
and fields containing numerical symbols only). Hence, we
need to distill the smaller set of “prototypical” feature mes-
sages from the event logs. With this set of feature mes-
sages defined, we count the number of times each feature
message appeared in a given time interval (set to match the
interval of the SLO metric), and use these counts as the in-
put metrics for the learning algorithms. In this section, we
present a novel algorithm for sequentially and efficiently
distilling the prototypical feature messages from text logs.

A natural approach to distill prototypical feature mes-
sages is to perform text clustering [25]. Messages that are
similar enough will be combined to form a cluster. For
example, messages generated by the samefprintf state-
ments with slightly different parameters could probably be
clustered. Basically, message clustering reverse engineers
the “templates” generating these messages and ignore the
minor differences. While text clustering has been exten-
sively studied in literature, a unique challenge in our sce-
nario is that the clustering must be performed in an incre-
mental fashion because over the lifetime of the system, sev-
eral code changes are pushed into production and new mes-
sages appear. It is infeasible to wait until all possible mes-
sages are seen in collected logs before they are clustered.

We developed a similarity based sequential clustering al-
gorithm. We measure the similarity between two text mes-
sages with the cosine distance:

Dcos(A,B)=
∑i match(ai,bi)

√

|A| · |B|
,match(ai,bi)=

{

1 if ai = bi
0 otherwise

whereA andB are the messages,| · | represents the number
of words in a message, andai is the i’th word in message
A. The cosine distance is a number between 0 and 1. When
Dcos = 1, the two messages,A and B, are identical, and
whenDcos= 0, the two messages are completely different.
Upon seeing a new message, the clustering algorithm com-
pares the message with the existing clusters. If there exists
a cluster to which the cosine distance is larger than a pre-
defined threshold (we used 0.85 in our experiments), then
the message will simply be merged to the existing clus-
ter. Otherwise, a new cluster will be created using this new
message. For example, messages

• java.net.connectexception: db server connection
refused; error host001

• java.net.connectexception: db server connection

refused; error code

are clustered together because their cosine distance is 0.857
(> 0.85).

This method is simple, efficient, and does clustering in-
crementally. Empirically, we found that it significantly re-
duces the number of distinct messages (to clustered pro-
totypical messages), and yields clusters with good quality.
There are, however, limitations and issues with this sim-
ple approach such as information loss caused by clustering
and too many distinct messages for large systems. We shall
discuss these issues in Section 6.

As stated earlier, with a small number of feature mes-
sages extracted from the raw logs, we then count the ap-
pearances of the feature messages during 5-minute inter-
vals, and use the counts as the metrics to learn the ensemble
of models. It is worth noting that the statistical properties of
these feature message based metrics is different compared
to system utilization based metrics or application metrics.
Indeed, in applying our methods on these metrics we use a
different distribution in the probabilistic models. For sys-
tem metrics we use the normal distribution, while for mes-
sage based metrics we use a modified Gamma distribution,
which we observed to fit better than the normal and other
distributions. Formally, the modified Gamma distribution
follows

P(x = X) =

{

pz if X = 0

(1− pz)Xk−1 e−X/θ

Γ(k)θk otherwise

Note thatx is always a non-negative integer. The modified
Gamma distribution fits the feature message counts better
because these counts exhibit a heavy tail with an additional
large concentration of 0 counts.

2.5 Summary of System Architecture
Figure 1 depicts the software architecture of our automated
diagnosis solution. Each service instance may contain mul-
tiple servers and software components (e.g., a 3-tier web
service). These servers and components are instrumented
to measure a wide range of metrics, collect various kinds of
event logs, as well as monitor the service SLO state. Semi-
structured data such as text-based logs are processed using
the algorithm describe in Section 2.4 to distill diagnostic
information. These metrics coming in periodically are first
partitioned, as mentioned earlier, based on knowledge of
topology of the components and type information of the
metrics. The partitioning yields multiple metric partitions
(e.g., system metrics, application metrics, and event logs),
each having a bounded number of metrics.

With the metric partitions and the monitored SLO state,
we automatically learn an ensemble of models for each par-
tition using the multi-source temporal segmentation tech-
nique (Algorithm 1). Metric partitions that successfully
generate accurate enough new models instruct other par-
titions to reset their training windows. This mechanism
helps the ensembles to better divide the continuous mea-
surements into training windows to facilitate generating ac-
curate models. Furthermore, transfer learning techniques
are applied by exporting the to the ensembles using the
same metric partition on other service instances (e.g., repli-
cated service in other data centers).

Using the ensembles of models, metric attribution is per-
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Figure 1: System architecture of our scalable di-
agnosis solution. Various types of metrics from
different components are divided into partitions.
Ensembles are built on each partition and influ-
ence each other using the multi-source temporal
segmentation algorithm. Models induced on one
service instance can be transferred to other in-
stances of the application. All models in the en-
sembles contribute to the metric attribution which
generates signatures for the SLO violations. The
signatures help operators with troubleshooting.

formed for each SLO violation epoch. As there are multiple
models in an ensemble, the models are fused for predict-
ing the SLO state using the Brier score [26, 8, 10]. The
Brier score is the mean squared error between a model’s
probability of the SLO state given the current metrics and
the actual value of the SLO state. Formally, for every
model Nj in the ensemble, on a short window of recent
dataD = {dt−w, ...,dt−1},

BSNj (D) =
t−w

∑
k=t−1

[PNj (s
−|~M = ~dk)− I(sk = s−)]2 (2)

wherePNj (s
−|~M = ~dk) is the probability of the SLO state

being in violation of modelNj given the vector of metric
measurementsdk and I(sk = s−) is an indicator function,
equal to 1 if the SLO state at timek is s− and 0 otherwise.
The attributions from all models in the ensembles are fil-
tered by using only the most accurate models in terms of
their Brier score on the most recent samples prior to the
violation. Similarly, for models transferred from other in-
stances, they can be used for metric attribution when their
Brier scores are good.

This process generates signatures (represented as vectors
of metric attributions) for each violation epoch. Signatures
are stored in a database and can subject to clustering and
similarity based retrieval [12]. The subset of metrics at-
tributed by the ensemble allow the operators to focus on
a small number of possible troubleshooting options. The
signature retrieval further enables leveraging previous di-
agnosis efforts [12].

Note that our solution does not limit to the three met-
ric partitions shown in Figure 1. Our data partitioning and
transfer learning techniques are highly scalable and can
support the system to learn with a large number of data
sources without loss of learning accuracy.

3 Trace Collection and Processing

Our empirical results are based on detailed traces collected
from a distributed application in a globally-distributed pro-
duction environment. The application, called “FT” for
confidentiality reasons, serves business-critical customers
across the globe 24 hours per day, 365 days per year. Its
system architecture therefore incorporates redundancy and
failover features both locally and globally. FT is distributed
across three regions: Americas, Asia, and Europe. Each
region consists of a 3-tiered architecture that includes mul-
tiple client web front ends, 3 application server instances,
and 2 backend database servers.

Region Average
Transactions
per min

Average
Response
Time

SLO Violation
Percentage

Americas 57.1 2.35s 14.6%
Asia 27.7 3.84s 16.9%

Table 1: Summary of FT application traces. Trace collections
cover 3 months for the 3 Americas and 2 Asia application in-
stances. This data represents averages over each instance in a
region. The final column is the percentage of 5-minute windows
with SLO violations.

3.1 Trace Characteristics

The traces contain various types of data about the applica-
tion. These data types comprise the different data sources.
There are system-level metrics, including resource utiliza-
tion measures (e.g., CPU utilization) from both the appli-
cation and database tiers. There are application event and
error logs. Also, there are application-level performance
data, including volume, response time, and failure counts
for each transaction and sub-transaction, aggregated over5
minute windows. From key metrics in the application-level
data, SLOs are defined. The criterion for SLO violation
is whether the average response time over all transactions
in a 5-minute period exceeds 3 seconds or the transaction
failure count is greater than 20.

HP OpenView Performance Agent (OVPA) provides
system-level metrics for application server and database
hosts. The FT application is instrumented using ARM [23]
to provide the application-level metrics. OVPA and ARM
data are aggregated into 5-minute windows. The applica-
tion event logs come from each of the application server
instances and are in text form.

The FT traces are summarized in Table 1. The trans-
action volumes seen in the traces demonstrate the non-
trivial workloads of the FT installations. We have system
and application measurement data for all three Americas
instances and two Asia instances, and event logs for the
America instances.

Some of our 5-minute samples exhibiting performance
problems are “annotated”. They correspond to times when
we know, based on operators’ troubleshooting documenta-
tion, that a specific performance problem occurred whose
root cause was subsequently diagnosed. In the traces used
in this paper, annotations are provided to seven periods,
ranging from 2 to 15 hours of SLO violations. The causes
of these problems included both local (file system full in
one case), and external (availability problems of another
service on which the FT service relies for some transac-
tions) components.
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Figure 2: Accumulated number of distinct messages vs number
of feature messages

3.2 Event Logs Processing
We use the clustering algorithm for information extraction
from text-based logs described in Section 2.4 to process the
event logs of the FT service instances. Figure 2 and Table 2
summarize the performance evaluation of our clustering al-
gorithm. Figure 2 plots the accumulated number of dis-
tinct messages and number of feature messages (clusters)
over time for one of the instances of FT. As can be seen in
the figure, while there are a large number of distinct mes-
sages in the event logs, our clustering algorithm success-
fully clusters them to a small number of feature messages:
for this data set, there are 212 feature messages, compared
to 281,405 distinct messages.

To understand how good the clustering results are, we
validated our sequential algorithm against a widely used
clustering algorithm called Hierarchical Tree Clustering,
which operates on the batch of data, rather than sequen-
tially. We compare the clustering results of our sequen-
tial clustering algorithm and that of Hierarchical Tree, and
measure the difference using a metric in literature [17].
This metric is a real number in the range of[0,1]; 0 in-
dicates an exact match of the two and 1 indicates they are
complete different. From our experiments, the difference
for the logs on the three instances are all very small, and
the average is 0.067.

Instance1 Instance2 Instance3
Total Days of Logs 125 204 121
Total Size of Logs 2.5GB 3.5GB 2.1GB
# of Log Entries 4,989K 7,262K 3,887K

# of Distinct Msgs 43,321 281,405 46,203
# of Feature Msgs 197 212 177
Processing Time 281 sec 540 sec 287 sec

Table 2: Event logs of three FT instances

4 Results
We present a performance evaluation of the techniques we
propose, namely multi-source temporal segmentation for
learning using multiple data sources, and transfer learn-
ing for scalable diagnosis with multiple service instances.
We use the traces collected from the FT service, described
in the previous section. We validate that our techniques
achieve scalability and improve accuracy of the diagnosis.

We demonstrate the success of our methods with classifi-
cation accuracy, retrieval accuracy, efficiency analysis and
through detailed case studies.

The classification accuracy of ensembles in predicting
the SLO state is our first measure of success. Classifica-
tion accuracy is a proxy for the usefulness of our diagnosis

system since it captures how well the models describe the
SLO state on all the data. Although a high classification
accuracy does not immediately translate to high diagnosis
accuracy, it serves as strong evidence that the ensemble can
have better diagnosis performance. Plus, it has the advan-
tage that it can be applied to all of the data. In our problem,
accuracy comprises of (1)SLO violation detection rate, de-
fined as the percentage of SLO violations that are correctly
identified by the ensemble; and (2)False alarm rate, de-
fined as percentage of SLO compliance samples that are
falsely identified as violations by the ensemble. In all of
our experiments, we compute the classification accuracy
sequentially: given a new sample at timet, the existing en-
semble beforet is used to predict the SLO state, after which
the sample is potentially added to a training window. This
ensures that there is no overlap between the training set and
test set used to compute the classification accuracy of an
ensemble. It also produces a time series of accuracy, which
provides additional insights into changes in behavior of the
service, as we demonstrate in the case studies described in
the following sections.

A second measure of success in comparing the methods
is the retrieval accuracy of annotated problems using the
signature. Annotated problems are those that have known
problem types labeled by the operators. Retrieval accuracy
measures the capability of identifying similar performance
problems using the signatures generated by metric attribu-
tion with the ensemble we build. While this measure is the
most accurate measure of success for diagnosis, it hinges
on the availability of accurately annotated problems, which
are difficult to obtain in most traces, as operators do not di-
agnose every problem, and do not always diligently record
their actions. We report retrieval accuracy for a subset of
the performance problems in our traces for which annota-
tions were provided by the operators of the service.

We also provide detailed case studies, analyzing the use-
fulness of our methods for diagnosing specific incidents
that appeared in our traces.

4.1 Multi-source Temporal Segmentation
We begin by evaluating our learning method for combin-
ing multiple data sources with temporal segmentation. We
provide separate results for each of the three Americas in-
stances of our application and three data sources collected
on each.

4.1.1 Ensemble Accuracy

We start with evaluating the accuracy of ensembles ob-
tained from individual data sources. Since an ensemble
contains multiple models, we use the weighted vote (using
Brier score as the weight) of the three best scoring models
(using the Brier score) to arrive at a single prediction of the
SLO state (compliance or violation). Figure 3 shows the
online accuracy(broken into violation detection rate and
false alarm rate) of the ensembles for one instance of the
FT service. A separate curve is shown for each of three
data sources; namely, system metrics, application metrics,
and event logs. These sources are used in isolation. We
make three observations here. First, we see how the vio-
lation detection rates increase and decrease at certain peri-
ods. An increase follows the addition of each new model to
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Figure 3: Online accuracy of ensembles using system metrics,
application metrics, and event logs.

the ensemble. A decrease occurs when no accurate model
exists or can be trained in the ensemble. The curves grad-
ually stabilize after a sufficient amount of time. This is
partly because the online accuracy is the aggregate of all
the previous samples and hence impact of erroneous pre-
dictions diminishes as number of samples increases. In ad-
dition, as more models are added to the ensembles, they
accommodate more types of problems, and therefore avoid
fluctuations in the detection rate. Second, while overall the
ensemble using just system metrics has a higher detection
rate than the other two, over the entire period, we see pe-
riods where one data source outperforms the others. The
implication of this observation is that some combination of
the multiple data sources should improve overall accuracy.
Finally, we see that the detection accuracy of individual
sources is not very high. This observation further motivates
combining multiple sources.

Next we compare our multi-source ensemble learning
algorithm (Algorithm 1) with the two baseline algorithms
discussed in Section 2: the unscalable brute force method
that combines all metrics from all sources together to form
one single ensemble, and the efficient method which gener-
ates an ensemble independently for each source. We here-
after call them “brute force” and “independent”, respec-
tively. Note that the brute force method generates one en-
semble, while independent and temporal segmentation gen-
erate one ensemble for each data source. Similar to the case
of a single ensemble, to obtain a single prediction of the
SLO state with multiple ensembles, we use the weighted
vote (using Brier score as the weight) of the three best scor-
ing models (using the Brier score) from all ensembles.

Figure 5 shows the online accuracy for the three differ-
ent multi-source methods on a single FT instance. First,
compared to the online accuracy curves in Figure 3, we see
that all three methods produce more accurate predictions
compared to the accuracy of any single source individu-
ally. Among the three multi-source methods, our temporal
segmentation algorithm clearly reaches a much higher vio-
lation detection rate than the others, while the false alarm
rates of the three are roughly the same. On average, tem-
poral segmentation achieves a 35% improvement over the
independent method in SLO violation detection rate. In-
terestingly, our algorithm outperforms even the brute-force
(much more computationally intensive) approach of not
partitioning the metric space. This is probably due to the
curse of dimensionality: there is simply not enough data
to obtain good models in such a high-dimensional space.
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(c) Instance 3
Figure 4: Overall ensemble online accuracy of single-source en-
sembles and multi-source ensembles using different methods, for
two FT service instances. Accuracies are provided with their 95th
percentile confidence intervals.

Additional results for the other two FT instances are sum-
marized in Figure 4. We again see that accuracy using all
multi-source methods is significantly better than any single
individual source. In addition, we observe significant viola-
tion detection improvements with our temporal segmenta-
tion method, although the method exhibits slightly higher
false alarm rates in some instances. Note that even with
these data sources, some SLO violations are not captured
(the best violation detection is 75% in Figure 4). Other
sources of data would be required to capture those SLO
violations, which in turn would aggravate the scalability
problem of the brute force method.

Further demonstrating the advantage of our temporal
segmentation method, Figure 6(a-c) shows the online ac-
curacy curves for each source, comparing the ensemble for
that source generated with our method (passing messages
between the different sources), and the independent method
of generating the ensemble for that source. The curves for
the ensembles of the independent method are basically the
curves shown in Figure 3. Note that in this experiment
we do online testing on the ensembles for each data source
generated by the temporal segmentation method as if they
are separate ensembles. The purpose of this experiment
is to demonstrate that temporal segmentation not only im-
proves the accuracy of the combined ensemble (as shown
in Figure 5), but also improves accuracy of individual en-
sembles.

As can be observed in the figures, all ensembles of
our temporal segmentation method achieve better viola-
tion detection than the purely independent method, with
the exception that the ensemble of system metrics suffers
a slightly higher false alarm rate.

4.1.2 Metrics Attributed

We present statistics of metrics attributed by the ensem-
bles built with multi-source temporal segmentation in Ta-
ble 3. In the table, we give the total number of metrics and
metrics that are attributed by the ensembles for each data
source and service instance. Note that the numbers of met-
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Figure 6: Accuracies of ensembles created for each data source using independent learning approach and temporal segmentation
approach.
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System Application Event Logs

Inst1
Total 55 25 197

Attributed 22 10 23

Inst2
Total 55 25 212

Attributed 16 9 24

Inst3
Total 55 25 177

Attributed 15 9 21

Shared Attributed 8 7 19
Table 3: Metrics attributed for different data sources and service
instances by ensembles built with multi-source temporal segmen-
tation for the 3-month trace.
rics attributed shown in the table arenot for a single SLO
violation. Instead, they are the union of metrics attributed
for all the SLO violation epochs during the 3-month pe-
riod. In fact, on average 4 metrics are attributed for each
SLO violation.

As we can see, overall a significant portion of the met-
rics (17-20%) are attributed for some of the SLO violations,
signifying that the system experienced many different types
of performance problems. Another observation is that the
set of metrics attributed by different service instances are
not exactly the same (number of shared metrics are shown
in the last row of the table). This suggests that during the
period of the traces some problems occurred in some in-
stances but not the others. Therefore, transferring the mod-
els for those problems (Section 2.3, 4.2) will be useful for
the other instances in the future when they encounter those
problems.

4.1.3 Case Study 1

We present a case study observed in our traces that fur-
ther illustrates the benefits of both leveraging multiple data
sources and the efficacy of our temporal segmentation tech-
nique. Specifically, we describe a performance problem

appeared in the traces that using multiple data sources
provides more meaningful diagnostic results than single
source, and the temporal segmentation technique enables
the generation of a very useful model.

Our traces contain a period in which a disk on one of
the application servers for one of the FT instances became
full. The full disk caused the failure of a component to
launch (CORBA wrapper) because it could not write some
necessary files to disk. This component failure caused high
response times and high transaction failure counts because
some transactions were hung, eventually timing out, wait-
ing on responses from the failing components.

The ensemble trained using event messages quickly
created a model that attributed the following message:
CORBA access failure: IDL HPSE wrapper can not
start. The ensemble using system metrics generated a
model using the file space utilization metric (which, in this
case, indicated that the file system was full). Obviously,
the combination of these sources provides a much clearer
diagnostic picture to the operator. This example shows the
need to use multiple data sources for accurate diagnosis,
as it reveals to the operator not only that the file space
utilization is attributed (and full), but also the effect of
that system condition on the application (failure of a
component to launch). However, capturing these relevant
metrics did not require the pooling of all metrics to create
a single ensemble.

This problem was in fact a recurring problem. It hap-
pened once before for a short duration (1.5 hours), which
was not sufficient for creating a model. The problem oc-
curred again for a duration of over 10 hours about 10 days
after the models were created. This time, the ensemble cap-
tured the problem and attributed related metrics correctly.

Additionally, certain application metrics were also re-
lated to the problem (namely, the value of some of the
transactions counts). With our temporal segmentation al-
gorithm, as the ensembles using system metrics and event
logs generated new models during this time period, the en-
semble using application metrics reset its training window
to start collecting samples from this period. It then created
models with the related application metrics. The models
generated turned out to be very helpful in predicting SLO
state, as can be seen in the large jump in detection accuracy
for the application ensemble marked in Figure 6(b). In con-
trast, the independently trained ensemble with application
metrics did not produce any model for this period of viola-
tion, because it failed to reset its previous training window
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(which contained periods of violations that were not related
to the problem). As can be seen in Figure 6(b), without any
model that captures this problem, the detection accuracy of
the ensemble declines and remains much lower compared
to the ensemble trained with temporal segmentation.

4.2 Evaluation of Transfer Learning
We now evaluate applying our transfer learning technique
(Section 2.3) on multiple replicated FT service instances.
We study the improvement in terms of ensemble accuracy
and signature retrieval performance.

4.2.1 Ensemble Accuracy for Load-Balanced In-
stances

We start with studying the efficacy of model transfer be-
tween geographically co-located load-balanced instances.
These instances are most similar in the sense that they
have similar workloads, run on similar hardware and ex-
hibit similar problems when the source of the problem is
non-instance specific. In this experiment, we use the three
FT instances in America. These instances have similar
hardware configurations, and are load-balanced. We apply
model transfer to learning with a single data source for the
sake of separating concerns. We then apply it to learning
with multiple data sources to understand the composabil-
ity of our techniques for multi-source and multi-instance
learning.

Figure 7 shows the online accuracy of one instance when
applying model transfer with an ensemble based on ap-
plication metrics. We marked some of the periods when
models were transferred from other instances. As we can
observe from the figure, initially, the learning algorithm
was not able to train good models, and hence had a nearly
zero violation detection rate. However, eventually, mod-
els transferred from other instances successfully identified
a significant portion of the SLO violations. Overall, the
comparison shows that transfer learning significantly im-
proves the accuracy in this case.

Figure 8 plots the online accuracy of one instance when
model transfer is applied together with multi-source tem-
poral segmentation, compared to that in the absence of
transfer learning. Recall that, in Section 4.1, we demon-
strated that our multi-source temporal segmentation tech-
nique greatly improves accuracy over single data source
and other multi-source approaches. Here, as can be ob-
served from the figure, transfer learning further achieves
appreciable improvement in terms of accuracy.
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Figure 7: Online accuracy of an instance using transfer learning
on application metrics.
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Figure 8: Online accuracy of an instance using transfer learning
on multiple data sources with temporal segmentation.

Evaluation results for applying model transfer technique
on other data source and instances are summarized in Fig-
ure 9. Compared to the data reported in Figure 4, we ob-
serve that for single-source ensembles, transfer learning
consistently improves ensemble accuracy. The improve-
ment is substantial in some cases (e.g., on Instance 3). In
terms of multi-source ensembles, the improvement of using
transfer learning is not as prominent, but never has signif-
icant negative impact either. We conjecture that for load
balanced instances, the overall gain in accuracy is not al-
ways significant because it is likely that all instances suffer
from similar problems at the same time, if those are related
to workload or availability problems of shared resources
(e.g., network, auxiliary databases). However, the overhead
of transferring models and adding models to an ensemble
is small, making it always worth it to perform transfer of
models.

4.2.2 Ensemble Accuracy for Instances Across Data
Centers

Next, we apply our transfer learning technique to service
instances across geographically distributed data centers. In
the FT service, we have system metrics and application
metrics measurement data on two of the instances in Asia1.
We report our experience of transferring models trained on
the instances in America to instances in Asia in Table 4. As
the tables show, transfer learning improves violation detec-
tion across all of the cases. For the ensemble of system met-
rics on Inst2, we see a substantial improvement. In terms of
false alarms, transfer learning slightly reduces false alarms
in most cases.

Data Source Vio Detection False Alarm
Inst1 System 0.744±0.009 0.154±0.004

Application 0.625±0.008 0.078±0.004
Inst2 System 0.629±0.008 0.101±0.004

Application 0.701±0.008 0.131±0.004
(a) Without Transfer Learning

Data Source Vio Detection False Alarm
Inst1 System 0.779±0.009 0.087±0.003

Application 0.655±0.008 0.056±0.003
Inst2 System 0.786±0.008 0.164±0.004

Application 0.719±0.008 0.101±0.004
(b) With Transfer Learning

Table 4: Ensemble accuracy of FT instances in Asia with/without
models transferred from instances in America.

Note that although the instances in Asia and America are

1Unfortunately, we do not have event logs of these instances.
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Figure 9: Overall ensemble online accuracy with transfer learning applied on load-balanced instances.

replicas of the same service, they run on different hardware
configurations and are subjected to different workloads (as
users of the service in Asia have a different usage profile of
the service). However, despite these differences, our trans-
fer learning method exhibits the ability to improve ensem-
ble accuracy. In fact, we observe higher accuracy improve-
ments, when transferring models across data centers, com-
pared to load-balanced instances in the same data center.
We hypothesize that because the former are operationally
more independent (but exhibit similar problems), they train
models for those problems at different periods, hence lever-
aging each other’s models more often.

4.2.3 Retrieval Accuracy

Another important benefit of transfer learning is that
through transferring models, instances end up with a more
homogeneous set of models. This is important for diagnos-
ing problems that are shared by multiple instances. Ob-
viously, if a common problem occurred on multiple in-
stances, we would like a similar set of metrics to be at-
tributed on all these instances. Hence, when it came to di-
agnosis, one would easily identify that multiple instances
had the same problem. In practice, however, instances
train models independently. This can lead to different in-
stances attributing a slightly different set of metrics be-
cause there could exist multiple metrics that capture the
problem. Using model transfer, however, can alleviate this
phenomenon. When a model trained on one instance is
transferred to other instances, it will be used to attributethe
problem it was trained for on other instances, given it is ac-
curate enough (with high enough Brier score). Therefore,
the probability that the same problem will be attributed
with the same set of metrics is enhanced, which is very
important for diagnosing large scale systems.

We evaluate this advantage of our transfer learning tech-
nique through signature retrieval [12]. Using metric attri-
bution, we generate signatures [12] SLO violation epochs,
and store them in a database for retrieval. The process
of retrieval proceeds as follows: given a signature, return
the N closest signatures to it from the existing signature
database. Retrieval accuracy measures the ability of using
the signatures to accurately identify problems of the same
type. Formally, given known annotations both to the query
signature and the signatures in the database, we compute
the two standard measures of retrieval quality: Precision
and Recall [25]. Precision measures what fraction of the
N returned items have the matching annotation (1.0 is per-
fect); recall measures the percentage of signatures in the
database with the same annotation as the query that are ac-
tually retrieved. AsN increases recall goes up but precision
typically goes down, as it becomes harder to retrieve only
signatures that have a matching annotation. Following the
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Figure 10: Recall-precision graph of one retrieval experiment.
Model transferring improves retrieval precision.

common practice in the information retrieval community,
we increaseN and measure the precision/recall pair, un-
til we achieve a recall of 1.0. We then plot precision as a
function of recall, to produce the Precision-Recall curve.
A perfect precision/recall curve has precision of 1.0 for all
values of recall.

During the period that we have measurement data avail-
able, there are over 700 annotated SLO violation epochs on
the three America instances for 3 different types of recur-
ring performance problems. We use signatures generated
on one instance for these problems to retrieve annotated
signatures in other instances, and repeat this for every in-
stance. It is worth noting that the 3 types of problems are
just a small part of the all the problems experienced by the
instances: only 700 epochs out of 11,000 epochs are anno-
tated by the operators. Figure 10 plots the Recall-Precision
curves of one of our experiments. We use multi-source en-
sembles, and compare the retrieval precision with and with-
out transfer learning applied. From the figure, we can see
that both methods achieve high precision, which is related
to the fact that our multi-source ensembles have very good
accuracy. Comparing the two, model transfer has clear ad-
vantage compared to when transfer learning is absent.

To measure the overall retrieval performance, we use an
aggregate metric called AUC [21], which is the area un-
der the recall-precision curve. The value of AUC is[0,1],
with 1 being the best possible retrieval. We further aggre-
gate these AUC over all our retrieval experiments and use
it as the indicator for overall retrieval performance. The
aggregated AUC of using multi-source ensemble without
transfer learning is 0.7656. With transfer learning the AUC
is 0.8587, a significant improvement.

4.2.4 Case Study 2

The intuition behind our transfer learning technique is that
since replicated service instances are similar in function-
ality (and architecture), it is likely that the instances will
experience roughly same set of problems. However, they
may not always experience the same problem at the same
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time. Furthermore, even when a new problem emerges on
multiple instances at the same time, it is not necessarily the
case that all the instances would be able to train good mod-
els for the problem. Transferring models can help instances
to quickly identify performance problems and arrive at cor-
rect metric attributions.

During the period reflected in our traces, there was a
recurring problem with timeout on accessing an auxiliary
database. This database is shared by the instances in Amer-
ica. In early March, Instance2 experienced this problem
for a period of several contiguous hours. Instance2 hence
trained a good model of this problem. At roughly the same
time, Instance1 also experienced the same problem, but
with a much smaller scale—only 10 sporadic epochs. This
was related to the type of transactions the instance pro-
cessed during that period.

When training each instance independently, since there
were not enough SLO violations on Instance1, it did not
generate a model for this problem. It was not until late Au-
gust that Instance1 successfully generated the model when
the auxiliary database had a similar problem for a suffi-
ciently long time. However, for 90 epochs (a total of 7.5
hours) in which the problem occurred prior to learning that
model, Instance1 had no accurate model capturing them.

In contrast, when the transfer learning was used, In-
stance2 transferred its model for the database timeout prob-
lem to Instance1 immediately after the model was created.
With this model, Instance1 was able to identify the prob-
lem, and correctly attribute related metrics. In fact, with
the model transferred from Instance2, Instance1 success-
fully identifies and attributed 91% of the 90 epochs which
were missed with independent learning.

4.3 Efficiency and Scalability Evaluation
The previous results establish the ability of our methods to
produce accurate models and diagnosis. Next, we present
computational cost for different learning methods in our di-
agnosis framework. The computational complexity of most
learning algorithms does not grow linearly with the number
of metrics. For example, a simple greedy feature selec-
tion algorithm [16] would beO(n2). Other methods can be
more expensive. As the number of metrics increases, our
method of partitioning the metrics into small and bounded
subsets is expected to be significantly more efficient than
the method using all of the metrics.

In Table 5 we give the ensemble training time for a 30-
day trace, with samples every 5 minutes. The experiments
were run on a Pentium4 3.5GHz PC with 1GB memory.

From the table, it is clear that using all metrics together
for learning incurs a higher computational cost than par-
titioning the metrics. While the absolute run time for the
brute force method on a single instance is not prohibitive,
it has very poor scalability. When the brute force method
was run on combined metrics from the three instances, it
took about 1.5 days to train models for the 30 day trace. In
contrast, our partitioning techniques manages to keep the
run time within a few hours.

Note that our trace is from a relatively small scale appli-
cation. Based on our personal communication with a large
scale internet service, large scale internet services can have
over a million measurement metrics. For systems of that

# metrics run time

single-source
System 55 6min

Application 25 4min
Event Logs 212 73min

multi-source
Brute Force 292 145min
Independent 292 83min

Temporal Segmentation 292 86min

multi-instance

Brute Force 826 2018min
Independent 826 252min

Temporal Segmentation
826 270min

w/ Transfer Learning
Table 5: Ensemble training time of different methods. Partition-
ing data (independent or temporal segmentation) significantly re-
duces run time.
scale, the brute force approach would simply break down.

Besides the computational advantages of partitioning the
metric space, the actual learning can be distributed to sev-
eral machines, or done locally on servers of each instance.
The communication overhead for distributing the learning
is very low. The messages passed with our multi-source
temporal segmentation algorithm are just a few bytes (id
of source, time stamp, model flag), and the typical model
transferred in our transfer learning algorithm is no more
than 1KB in size. Similarly, composition of signatures and
retrieval can be done in a distributed fashion, achieving
much higher efficiency over central analysis.

5 Related Work
Because our research is multi-disciplinary, this section sur-
veys related work both in systems as well as machine learn-
ing. Particularly, we cite related work on automated anal-
ysis of distributed systems and from machine learning, is-
sues with dimensionality and transfer learning.

There has been a lot of research in the area of automated
analysis of distributed systems in the past few years. Ours
is one of the first to deal with scalability of such methods.

Two recent papers by Bodı́ket al. [7, 6] address issues
with scale for analysis of problems at large internet sites us-
ing visualization and feedback from operators. Bodı́ket al.
[7] proposed an automated statistical analysis tool along
with a visualization tool to aid operators to detect and lo-
calize failures in a large-scale internet service based on user
access patterns. In another work, Bodı́ket al.proposes vi-
sualization tools to aid operators in troubleshooting prob-
lems in large-scale internet services [6]. One tool provides
a visual mapping of components and dependency relation-
ships to make it easier to decipher the propagation of fail-
ures. It also allows operators to zoom in on “important”
metrics for each component. In contrast, in our work, rel-
evant metrics are automatically detected through the met-
ric attribution and signature construction mechanisms. An-
other tool aids in the troubleshooting of recurrent prob-
lems by monitoring clickstreams of those operators who
resolve the problems the first time. Our work uses search-
able, indexable signatures, generated automatically, to re-
trieve similar occurrences along with operator annotations
for previously resolved problems.

There have been additional work on performance diag-
nosis and debugging. Aguileraet al. describe two algo-
rithms for isolating performance bottlenecks in distributed
systems of opaque software components [2]. Their “con-
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volution” algorithm employs statistical signal-processing
techniques to infer causal message paths that transactions
follow among components, which are not assumed to com-
municate via RPC-like request/reply pairs. At the opposite
extreme of this knowledge-lean approach, Magpie charac-
terizes transaction resource footprints in fine detail but re-
quires that application logic be meticulously encoded in
“event schema” [3]. The Pinpoint system of Chenet al.
analyzes run-time execution paths of complex distributed
applications to automatically detect failures by identifying
statistically abnormal paths; faulty paths can then aid a hu-
man analyst in diagnosing the underlying cause [9]. Kici-
man and Fox describe in greater detail the use of proba-
bilistic context-free grammars to detect anomalous paths in
Pinpoint [19]. Our approach shares with Pinpoint the use
of statistical techniques, but the instrumentation we require
is more readily available and we seek to diagnose perfor-
mance problems rather than faults.All these methods have
so far largely ignored the scalability issue.

P2 [20] is a novel way of building distributed applica-
tions by expressing network-oriented functionality as con-
tinuous queries over program and network state. More re-
cently, Singhet al.[22] proposed a logging and monitoring
facility built on top of P2 that provides a concise and pow-
erful to express operations necessary to monitor and locate
faults in large distributed systems. However, this solution
is limited to systems built using P2.

The scalability issue, besides being a computational
problem, is intrinsically difficult because of the curse of
dimensionality. Many methods have been suggested in the
machine learning literature to deal with the curse of dimen-
sionality. Generally, these methods reduce the dimension-
ality of the problem by either projecting the metric space
to a lower dimensional space, such as PCA [18], ICA [1]
and random projection [13], or by selecting a subset of the
original features in some fashion [16].

Projection methods use a linear or non-linear projection
of the metrics to a lower dimensional space. These meth-
ods work well on many machine learning problems, but
the features in the lower dimensional space have no se-
mantic meaning, making interpretation difficult for oper-
ators. Besides, they are computationally expensive (cubic
or quadratic in the number of metrics), and requires cen-
tral collection of all original metrics. The second approach
involves selecting a subset of the metrics using some op-
timality criterion (feature selection) [16]. These methods
preserve the semantic meaning of the metrics. In our work
we use greedy search algorithms for selecting a small sub-
set of most relevant metrics in constructing models. How-
ever, most feature selection methods are at least quadratic
in the number of features and the number of samples. As
we demonstrated, without partition of the metrics, these
methods also become computationally expensive.

Finally, in this work we use transfer learning methods
for leveraging similarities between different instances.To
our knowledge, our work is the first to use transfer learning
methods for diagnosing performance in computer systems.
Most related to our work is [4], in which models for email
virus detection are trained using a transfer learning method
called Latent Dirichlet Allocation (LDA) [5]. Our method

is a simpler form of transfer learning, feasible because it
is applied to the replicated instances of the internet service
with similar metrics.

6 Discussion and Future Work
In this section we discuss several issues and observations
from our results and experiences with the daily operations
of the real internet services. We also suggest future direc-
tions for our work stemming from those observations.

Transfer learning: The positive results using our trans-
fer learning of models are very encouraging, but it is im-
portant to note that the transferring of models leverages the
similarities between the instances, but does not necessar-
ily account for direct dependencies between the instances
that could aid in diagnosing a particular problem. For ex-
ample, if a problem on instancex (e.g., overloaded CPU)
causes performance problems on a neighboring instancey
(due to the load balancer), the dependency ofy on x is not
captured by transferring of models. We can account for
such dependencies by extending our method to learn mod-
els of instancey adding the metrics collected on instancex
as another set of data sources (and metrics from any other
instances for which there are known dependencies). Such
a method is scalable when using our multi-source temporal
segmentation. We have tested this method on our traces.
However, we did not find that using metrics of dependent
instances provided any benefits, even though in some cases
there were meaningful models trained. In these cases, we
observed that it was not necessary to use metrics from re-
lated instances, as the metrics of the instance already pro-
vided all the required diagnostic information. We believe
that use of related instance metrics should thus be used se-
lectively to produce models, perhaps with rules triggering
the analysis of those metrics when no plausible problem
signatures are produced by the metrics of the instance.

We also note that our transfer learning method can be
used to quickly provide diagnostic capabilities to newly de-
ployed service instances. This is very important virtual ma-
chines are used more frequently in data centers to dynam-
ically add and remove capacity. A new instance, which
lacks any historical data, can leverage the models learned
on previous instances to quickly and correctly identify per-
formance problems, which would otherwise require long
trace collection. The success of transfer learning hinges
on known similarities between the instances; we intend to
investigate the limits of this transfer as more differences
(hardware, configurations, etc.) are introduced.

Log processing: We showed the method for processing
text event logs described in Section 2.4 was very efficient
and accurate in processing our logs. We observed similar
results on logs collected from very large data centers, with
a wide variety of services and error messages. To the reader
familiar with natural language processing, these positivere-
sults are perhaps surprising. First, our method takes into
account the order of words in the message and does not al-
low for insertions or deletions of words; this can make very
similar messages appear far with our distance measure. We
have seen little sensitivity to this issue in our logs. Also,
extending our method to account for these is easy and there
are well established methods we intend to use. Second,
in natural language, small changes in a sentence can have
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very different meanings, e.g., “memory is not sufficient”
vs. “memory is sufficient”, or “database system is down”
vs. “webserver system is down”; with our method, the two
messages can appear near and get clustered together. How-
ever, cases of the first examples are less likely, as logs typ-
ically refer to errors. Cases such as the second example are
more plausible (although we have not seen such cases in
our logs). For this problem we can enhance our approach
with some domain specific keywords (potentially supplied
by the operators). Having different keywords prevents mes-
sages from being grouped together. We intend to investi-
gate these extensions as part of our future work.

A second limitation of our approach is that we treat all
error messages from the application as asinglepartition.
Large applications can have a lot of unique error messages,
which maps to a large metric space. This poses the scala-
bility issue again. We plan to develop an automatic way of
partitioning metrics from the same data source, if the data
source contains too many metrics.

7 Conclusions
This paper presented a scalable approach for automated
identification of probable causes of performance problems
in large server systems with geographically replicated sites,
multiple tiers, and multiple system instances per tier. We
demonstrated scalable use of learning to automatically as-
sociate performance problems (identified by SLO viola-
tions) with the system, application, or log attributes thatare
most relevant to them. The resulting service yields possible
explanations that greatly aid with system troubleshooting.
It removes the need for manual inspection of large volumes
of performance data in search of anomalies that might ex-
plain the performance problem.

We have demonstrated three major architectural im-
provements that lead to the scalability of our approach.
First, our algorithms divide the space of analyzed met-
rics into bounded partitions that reduce learning overhead
while preserving accuracy. The conflicting goals of low
overhead and high accuracy were jointly achieved thanks
to the multi-source temporal segmentation algorithm, run
among the learners of these partitions. It was shown that by
simply allowing one learner to inform others when a good
model was found, learning accuracy could be significantly
improved. This improvement is attributed to the fact that
another learner (with only a poor model) could then know
to give up and reset its window, hence preventing distortion
of models when the metrics analyzed by the learner have no
correlation with the problem observed. Further, by combin-
ing the best models from the set of learners a much superior
ability to associate metrics with problems is achieved.

Second, we have illustrated the use of multiple quali-
tatively different metrics to potentially explain problems.
In particular, in addition to system and application met-
rics, we have demonstrated the use and analysis of logs.
Since logs often contain expressive human-readable mes-
sages, they can be particularly indicative of the nature of
problems.

Finally, we demonstrated the use of transfer learning,
whereby different learners exchange models of common
problems. It was shown that indeed models learned in one
server installation can help identify similar problems on

another. Our techniques were evaluated using production
clusters with multiple sites distributed across a wide area
network. In addition to showing improvements in learn-
ing accuracy, retrieval quality, and scalability, we presented
specific case studies that illustrate the prescriptive power
of the approach in identifying practical problems in large-
scale multi-instance real-life applications. We believe the
proposed approach is the first learning-based systems con-
tribution that allows automated diagnosis to scale well to
the size of realistic enterprise applications.
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