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Abstract

This paper describes our experiences with implement-
ing and using a network monitor built with commodity
hardware and open source software to collect contigu-
ous, multi-day, full packet traces from 1 and 10 Gb/s net-
works. The length of the traces is primarily limited by the
capacity of the disks attached to the monitor, and the rate
and size of packets on the network. On a 10 Gb/s enter-
prise network our monitor sustained packet capture rates
of 160,000 pps (packets per second) and data capture
rates of 0.7 Gb/s, and burst capture rates up to 550,000
pps and 3.7 Gb/s respectively (with minimal packet loss).
In testing we have achieved sustained capture rates of up
to 676,000 pps and 1.4 Gb/s. We found that our tech-
nique (dr i ver dunp) can sustain capture rates between
1.86x (large packets) and 5.98x (small packets) higher
than the traditional t cpdunp program; compared to
the linux-specific | i ndunp program, we achieve rates
1.48x (large packets) and 2.25x (small packets) higher.
We describe the current bottlenecks with our monitor and
elaborate on how to address them. We also discuss our
tools and techniques for efficiently analyzing the multi-
terabyte traces we collected. In particular, we rely on
DataSeries, a highly efficient trace storage format.

1 Introduction

In the summer of 2003 we were involved in a project at
HP Labs to provide a remote computing service, and had
to determine the feasibility of offering such a service.
Since we would have to purchase millions of dollars of
equipment to support the service, we needed to be con-
fident in our assessment. As a result, we decided to col-
lect packet traces from a customer’s IT environment and
analyze the traces. The analysis determined what effect
reduced network bandwidth between file servers and re-
mote compute nodes had on the throughput of a remote
computing cluster. The challenge at the time was in col-

lecting contiguous, multi-day, full-packet traces from the
customer’s 2 Gb/s (trunked 1 Gb/s) network. In subse-
quent studies the challenge became even greater as we
needed to collect and analyze traces from 10 Gb/s net-
works, to understand the effects of both reduced network
bandwidth and increased latency.

In a remote computing cluster, such as for anima-
tion rendering, computer aided engineering, and seismic
analysis (e.g., reservoir simulation), jobs run in the com-
puting cluster, read data from fileservers, and write re-
sults back out to the fileservers. Customers usually pre-
fer an integrated solution wherein they only have to have
one set of fileservers over a separated solution where they
have to manually copy or partition their data. Therefore,
the remote compute nodes will access the customers file-
servers over a WAN. However, the increased latency and
reduced bandwidth of the WAN connection could limit
the performance of the remote compute nodes.

In our case, to assess the potential WAN bottleneck,
we traced a collection of the customers nodes that were
connected to their fileservers by two 1 Gb/s links. The
customer was using NES version 2, over UDP, but since
we believed we might have to examine file data, we
needed to capture all of the packet contents. This de-
sign decision was valuable, when we later had to analyze
NEFS version 3 over TCP traffic at a second customer site
because when NFS runs over TCP, multiple requests and
replies can be sent in a single IP datagram, requiring us
to capture the entire packet. In order to validate that there
would not be a WAN bottleneck at any time of the data,
we wanted to capture multiple days of contiguous activ-
ity as the customer had indicated there was substantial
daily cycles.

As network bandwidth increases, it becomes more dif-
ficult to monitor the traffic, and especially problematic to
record all of the packets. In some cases, tradeoffs can be
made in order to cope with the potentially larger volumes
of packets and data traversing the link. For example, only
selected packets or selected portions of the packets (e.g.,



TCP/IP headers) could be recorded. This reduces the
volume of data that must be recorded, but at the cost of
discarding data that may be needed. An alternative and
complementary approach is to record only higher level
information, such as characteristics of flows or connec-
tions. This approach can retain exactly the information
desired, but requires analyses that are fast enough to run
online. We felt that neither of these tradeoffs were ac-
ceptable for our situation, which left full-packet traces as
our only viable option.

This paper provides several important contributions.
First, it describes our experiences with designing, imple-
menting, validating, and utilizing a network monitor for
capturing contiguous, multi-day, full packet traces from
both 1 Gb/s and 10 Gb/s networks. Second, it discusses
the tools and techniques we used to efficiently analyze
all of the collected data. Finally, the paper provides an-
other example of how network monitoring can be used,
outside of traditional applications.

The remainder of this paper is organized as follows.
Section 2 examines related work. Section 3 discusses our
methodology. Section 4 presents the design and imple-
mentation of our network monitor. Section 5 describes
how we used and validated our monitor. Section 6 ex-
plains how we converted the raw data to a format more
conducive to (timely) analysis. Section 7 discusses the
types of analyses we performed, and illustrates the ben-
efits of the conversion step. Section 8 highlights some
of the learnings from this work. Section 9 concludes the
paper with a summary of our work and a list of future
directions.

2 Reated Work

There are a number of companies that manufacture spe-
cialized network analyzer hardware (e.g., [18]). We did
not choose this option for several reasons. First, these
devices tend to be very expensive. Second, these devices
are intended primarily for on-line analysis. This requires
not only that the analyses be known and implemented in
advance, but also that they be simple enough to run on
the analyzer at line speed. In addition, on-line analysis
does not permit “what if”” scenarios to be explored on the
same data set.

A more cost effective approach is to use a network
processor-based tool in a commodity server platform to
capture the network traffic. For example, Endace pro-
duces DAG (Data Acquisition and Generation) cards for
capturing packet headers on high speed networks such as
1 and 10 Gb/s links [2]. These cards have been used by
NLANR (National Laboratory for Applied Network Re-
search) to capture contiguous packet header traces from
10 Gb/s networks [20]. Degioanni and Varenni modify
the DAG card driver to improve the scalability of the card

by distributing load across multiple CPUs [4]. However,
we have not seen these types of devices used to capture
either (complete) application level headers or complete
packets for any duration of time.

The simplest and most cost effective approach is to run
a software tool on a commodity server with off-the-shelf
NICs (Network Interface Cards) to capture and record
the network traffic. The obvious disadvantage of this
approach is a software solution is less efficient than a
hardware-based one. We initially tried t cpdunp [24],
although we quickly learned (as anecdotal information
had suggested) that it could not provide the desired func-
tionality at the network speeds we needed to work with.
We found an alternative software tool called | i ndunp
[9], which we used initially. We elaborate on its strengths
and weaknesses in Section 4.

An alternative approach is to use multiple computers
to do the collection, and reduce the volume of data that
eventually gets written to disk. This is the approach used
by NG-MON [7]. It uses several computers to split the
incoming traffic, and in stages reconstructs flows and de-
termines a variety of statistics about each. This approach
was not desirable in our case. First, we wanted as sim-
ple a solution as possible. Since the monitor was to be
installed temporarily in a customer’s environment, we
needed it to be quick to install and configure. In addi-
tion, using multiple servers to capture the data requires
accurate synchronization of the system clocks; although
feasible, this is another issue to address. Finally, we pre-
ferred to do off-line analyses, so we could run more so-
phisticated analyses.

There are numerous challenges in collecting full
packet traces at high speeds. Writing to disk is one poten-
tial bottleneck. Moore et al. attempt to avoid an I/O bot-
tleneck by performing some on-line processing to reduce
the volume of data that needs to be written to disk [17].
However, as Moore et al. observed, this can shift the bot-
tleneck to other resources, such as the CPU. Similarly,
high packet rates are an issue, as a CPU bottleneck can
result from handling the individual packets. Viken and
Heegaard also examine some other potential bottlenecks
when operating at 1 Gb/s and higher [27]. In Section 4
we describe how we addressed such issues.

There are other groups working or performing high
speed network monitoring, including Lobster [11], lamb-
daMon [15], Sprint IPMon [22], and AT&T Gigas-
cope [8]. While all of these efforts have collected data
from high speed networks, to the best of our knowledge,
none of them have attempted continuous collection of
full packets at high speed.



3 Methodology

In this section we describe the challenges we faced, and
our solution to capturing and analyzing the traffic on both
1 Gb/s and 10 Gb/s enterprise networks.

3.1 Challenges

As we discussed in Section 1, as part of a feasibility study
for providing a remote computing service we wanted to
analyze a customer’s actual network traffic to determine
whether or not it was technically possible to keep a 1,000
CPU cluster busy via a wide-area network link to the cus-
tomer’s file servers. We believed there were two options
available to us: analyze the network online, or capture
traces of the network activity and perform the analysis
offline. Each approach has its own advantages and dis-
advantages. In the first case, we avoid the need to cap-
ture voluminous raw data to disk. This avoids two po-
tential problems: the technical challenge of writing large
amounts of data to disk for an extended period of time,
and the pragmatic issue of protecting the sensitive in-
formation within the trace. However, developing, test-
ing and/or enhancing the analysis tools without any data
from a “real” network is extremely difficult; many un-
expected quirks occur in real traffic that are not antici-
pated, which will either cause the analysis tools to fail,
or worse, to return inaccurate results. Furthermore, the
complexity of the analysis that can be performed is lim-
ited by the capacity of the server monitoring the network.
In the second case (capture traces and analyze offline),
these challenges are inverted.

A related issue that also affected our decision was the
anticipated utilization of the network link. A 1 Gb/s
full duplex network has a theoretical capacity of 2 Gb/s.
In our situation, the trunked network had a theoretical
capacity of 4 Gb/s. If a such a network were heavily
utilized, it would be difficult to sustain full packet trac-
ing without incurring substantial packet loss, particularly
with the commodity hardware that existed in 2003. How-
ever, it is common knowledge that many network links
are not typically used at their full capacity all of the time,
particularly not in both directions simultaneously. Thus,
after some examination of the actual traffic in the ini-
tial environment, we believed that if we could develop a
monitor that could handle sustained rates of several hun-
dred Mb/s and burst rates near 1 Gb/s, that our system
would perform satisfactorily in most situations that we
would encounter. As a result of this conclusion, we de-
cided to adopt the “capture-to-disk” approach.

A final issue is (passive) visibility into a network. One
approach (port mirroring) is to have a switch forward
a copy of all packets to the monitor. An alternative is
to place a specialized device in the network (called a

tap). Both approaches have advantages and disadvan-
tages. We used port mirroring exclusively in our work,
but our monitor will work with either.

The complete methodology that we adopted involved
three stages. We elaborate on each stage in the following
sections.

3.2 DataCollection

Due to the speed of the network, we expected disk band-
width could be a bottleneck. We considered several op-
tions to address this concern: do not write all packets to
disk; do not write full packets to disk; compress pack-
ets before writing to disk; or some combination of these.
Since the traffic on the monitored link was (practically
speaking) exclusively NFS traffic, we felt that the first
option would not be particularly useful. Although sam-
pling the NFS traffic would have reduced the number of
packets written to disk, we would have wanted a sam-
pling of the NFS transactions and not a sampling of the
packets.

Similarly, we felt the second option could have helped,
but we decided against it for several reasons. First, we
would have needed to develop a tool for the online ex-
traction of the NFS headers. Without traces of actual
NFS traffic to assist with the development and testing
of such a tool, this would be challenging. We found
this problem when we converted our captured traces, but
were able to fix our tools and just re-run the conversion.
Second, we thought we might need more than just NFS
headers for our analyses because we might have to ex-
amine related-data compression techniques, such as data-
dependent chunking [14]. Third, some NFES replies, such
as directory reads, have important information through-
out the packet. As a result, our only viable option was
to compress the packets before writing them to disk. We
elaborate on this in Section 4.

3.3 Data Conversion

In our environment, we needed to remove all sensitive
information from the trace (e.g., the customer’s propri-
etary files). First, we extracted all of the IP, TCP and
NFS header information that we wanted, and discarded
all remaining data. This step removed sensitive data and
substantially reduced the size of the resulting trace. Sec-
ond, during the extraction of the IP, TCP and NFS infor-
mation, sensitive information such as file names were en-
crypted. Encryption allowed us to identify identical files,
hide sensitive actual names, and reconstruct filenames if
needed during discussions with the customer.

The raw packet traces are written in the standard
pcap format [24], making them compatible for use with
existing public domain tools such as t cpdunp [24],



et hereal [6], and t cptrace [25]. While we could
write the preprocessed traces into pcap format as well,
we chose to instead write them into DataSeries [3]. Since
we intended to perform numerous specialized analyses,
we felt that the benefits of DataSeries (described in Sec-
tion 3.3.1) outweighed the advantages of using the pcap
format for the final version of the traces and existing pub-
lic domain tools for performing the analyses. We did,
however, utilize publicly available tools to assist in the
QA testing of our conversion tools.

3.3.1 DataSeries

DataSeries is an open source, generic trace format de-
veloped at HP Labs [3]. It provides streaming access
to database-like tables, and was developed specifically
for handling large volumes of data. DataSeries was
originally developed to generalize the block disk I/O
trace specific format developed and used at HP Labs.
DataSeries has since been used to capture process data,
LSF scheduler information, sar data, e-mail messages
for indexing, and as described in this paper, NFS traces.
Since all of these trace types can be quite large, compres-
sion was integrated into DataSeries. At the same time,
DataSeries provides the ability to quickly read selected
fields within each trace. Finally, the DataSeries format
is quite extensible, as its adaptation to formats other than
block I/O traces has shown.

When data is stored in DataSeries, the following steps
occur. Initially, the data is placed in an in-memory data
structure called an extent. Each extent consists of two
arrays: an array of fixed-size records (e.g., a structure
for types such as integer and floating-point values), and
an array of variable-sized data (e.g., strings). When the
extent is ready to be written to disk, the data is packed
(based on type definition), checksummed, compressed,
checksummed again, and then written. The packing may
perform data-specific filtering to improve the compres-
sion, such as storing the timestamp of one record relative
to the timestamp in the previous record. Several different
compression algorithms can be used, depending on the
desired optimization. For example, to minimize storage
space, the bz 2 algorithm [1] can be utilized; to minimize
read time, the | z0 algorithm [13] can be used; or to min-
imize compression time, the | zf algorithm [12] can be
applied.

Reading an extent from disk involves verifying the
checksum of the packed data, uncompressing the fixed
and variable parts into memory, and verifying the check-
sum of the unpacked data. Besides the choice of com-
pression algorithm, there are several techniques for re-
ducing the time to retrieve values from a DataSeries file.
First, indexing can be used to reduce the number of ex-
tents that have to be read. Second, the size and contents

of each extent can be designed to improve the retrieval
times. Despite the emphasis on data integrity checking,
reading from DataSeries can be very fast. For example,
on a mid-range server (e.g., a two-way 2.8 GHz Xeon
server), simple scan-type queries can run as fast as the
extents can be uncompressed (30-100 MB/s in our expe-
rience).

Another advantage of DataSeries is the common in-
terface for developing analysis tools, regardless of the
trace type. Our experience with using DataSeries with
other trace types was another factor in our decision to use
DataSeries as the final trace format, rather than a ‘tradi-
tional” network trace format like pcap.

3.4 DataAnalysis

As we alluded to in Section 3.3, we developed our own
toolset for analyzing traces of NFS traffic. We started
our conversion tools based on those used in [5], but we
had to make substantial improvements to them to han-
dle the significantly larger data rates at the customer’s
site. For example, Ellard reports that in their busiest 7
day trace, they captured 26.7 million operations; con-
versely, in one 6.3 day period, we captured ~2.5 bil-
lion operations. Having roughly 100x more operations
was one of the reasons that we used DataSeries rather
than the text-based format used by their conversion and
analysis tools. Finally, although existing public domain
tools could have provided some of the simpler analyses,
we were not aware of any tools that provided all of the
analyses of interest, and we expected that initial analysis
would lead to additional questions and analysis that we
would need to develop.

4 Design and Implementation

In our initial feasibility study, we needed to capture full
packets to disk from a 2 Gb/s (trunked 1 Gb/s links) net-
work. Section 4.1 describes the hardware and software
components of our original 1 Gb/s monitor. In a subse-
quent study, we required similar functionality for a 10
Gb/s network. The alterations to our network monitor
are discussed in detail in Section 4.2.

4.1 Our 1Gb/sNetwork Monitor

We chose an HP DL580 G2 rack-mount server as the
platform for our network monitor. This was a state-of-
the-art x86-based server at the time of our initial feasibil-
ity study (summer 2003). The high-performance system
architecture of the DL580 G2 motivated our choice. This
system uses the Broadcom ServerWorks Grand Cham-
pion HE chipset, which supports up to four Intel Xeon



CPUs on a 400 MHz front-side bus. This chipset sup-
ports up to 64 GB of DDR-200 SDRAM (12.8 Gb/s per
channel), on a memory bus with (up to) 51.2 Gb/s band-
width. This chipset includes three Inter Module Bus
(IMB) I/0O interface units, each with a maximum 12.8
Gb/s bandwidth. Connected to each IMB is a PCI-X bus
which has a peak transfer rate of 8.5 Gb/s. Each PCI-X
bus has two slots. Two LSI Logitech LS153¢1030 Ul-
tra320 SCSI controllers were used, each providing peak
data rates of 1.28 Gb/s on each of two channels (four
channels in total).

Our monitor was configured with four 2.5 GHz In-
tel Xeon CPUs, four 2 GB DDR-200 SDRAM memory
modules, and an Intel Pro 1000 1 Gb/s copper-based net-
work interface card. The Intel Pro NIC occupied a slot
on one of the PCI-X buses.

Connected to the SCSI controller were one or two HP
MSA30 disk trays. Each tray contained 14x147 GB 10k
RPM SCSI drives; this provided a total of 2 or 4 TB
of raw storage capacity. In total, our monitor consumed
10U of rack space; four for the server, three each for the
disk trays. This is about one quarter of a standard two
meter rack. We felt this was not too intrusive to host in a
customer’s environment.

We installed a Linux 2.4.24 kernel on our monitor.
This was a current kernel version at the time of our initial
study. The only tuning we did was to set large default re-
ceive socket buffers, to balance the interrupts for the dif-
ferent devices across the CPUs, and to disable swapping.

As we mentioned in Section 2, we initially tried to use
t cpdunp to capture network traffic to disk. We quickly
learned (as anecdotal evidence suggested we would) that
t cpdunp dropped a substantial number of packets as
the traffic rates increased. This caused us to look for
alternative packet capture tools, and eventually led us
to | i ndunp. In initial testing, we found | i ndunp
dropped far fewer packets than t cpdunp when captur-
ing full packets to disk at relatively fast rates. Our mea-
surements indicated that | i ndunp used about 1/3 of
the CPU per packet that t cpdunp used. We modified
I i ndunp to create a continuous series of trace files of
roughly equivalent sizes. We used 200 MB as the ap-
proximate size for each file in the trace. We then mod-
ified | i ndunp to use mmap to write each file directly
to the t npf s file system [26]. This change improved
performance by avoiding either per packet writes to the
output file or an additional copy to an intermediate buffer
to perform larger writes. The files in t npf S were then
compressed before they were written to disk, enabling us
to take advantage of all four CPUs on the system. In an
attempt to further reduce the chance of an I/O bottleneck,
the writes were scheduled in a round-robin fashion, the
hypothesis being that a SCSI channel would be ready to
use again by the time the other three channels had been

written to. At any point in time, one file in t npf s was
being written to by | i ndunp, and the remainder were
being compressed or written to disk. The actual num-
ber of files in t npf s varied according to the sustained
and burst packet rates. We utilized 7 GB of memory for
t npf s; this could buffer almost one minute of sustained
1 Gb/s traffic. We had to disable swapping to prevent the
contents of t Npf s from being swapped during traffic
bursts (which caused memory pressure).

As mentioned, the ability to compress the traces before
writing them to disk both decreases the I/O bandwidth
used and increases the duration of the collection. Our
compression process worked in the following manner.
Once a completed trace file was written to t npf s, if no
other trace file was being compressed, the new trace file
was compressed with gzi p - 9 (best compression) and
then written to disk. If another trace file was already be-
ing compressed, the new trace file was compressed using
gzi p -1 (fastest compression). If two gzi p processes
were already running, the new trace file was just copied
to disk. Up to four simultaneous copies were allowed at
a time. The constants used in this process were experi-
mental, and mainly an artifact of having four CPUs and
four SCSI channels; other settings or approaches might
work better.

By compressing the captured packets before they are
written to disk, we increase the effective storage capac-
ity of our monitor. Obviously the duration of a trace is
still dependent on both the transfer rate and the achieved
compression rate. If we assume a sustained transfer rate
of 30 MB/s (240 Mb/s) and a 50% compression rate,
then our monitor (with both disk trays attached) has suf-
ficient capacity for 2.3 days of contiguous network activ-
ity, which would meet our goal.

4.2 Our 10 Gb/sNetwork Monitor

For a subsequent study, we attempted to re-use our 1
Gb/s network monitor. Unfortunately, when we analyzed
the resulting traces, we discovered that there were many
missing NFS replies in the traces. Analysis of the bursti-
ness in the captured traces showed that we were measur-
ing bursts above 300,000 pps (packets per second), and
discussions with networking experts taught us that the
switch used by the first customer had per-card buffering
whereas the switch used by the second customer had per-
port buffering. Although the overall rate on a 0.1 second
granularity was similar between the two customers, the
per-port buffers were too small to absorb the bursts, and
so traffic was being dropped.

Therefore, we needed to upgrade our monitor to sup-
port 10 Gb/s networks. The obvious change we had to
make was to replace the 1 Gb/s NIC with a 10 Gb/s NIC.
The new NIC was an Intel Pro 10 Gb LR (alpha), a fiber-



based card. We also enabled NAPI, to address poten-
tial livelock issues [10]. Initially, we hoped that the only
software change that would be needed was to replace the
€1000 driver with the i xgb driver. However, when we
tested this solution, we discovered that | i ndunp was
not able to keep up with the higher burst rates, and so we
were merely going to succeed in moving the drops from
the switch to the host.

Thus, an alternative approach was needed. Our solu-
tion was to modify the i Xxgb driver to perform the packet
capture (the code added to the driver disabled the nor-
mal packet reception for efficiency reasons, so a separate
driver would be needed for normal connectivity). The
packet capture now mostly bypassed the normal kernel
network processing stack. Using this modified driver, we
were able to capture packets at higher rates with much
lower loss. In the same manner as with our 1 Gb/s mon-
itor, the captured packets were written into equally sized
files in the t npf s file system. These files were then
compressed and written to disk using the same process
as before.

In our opinion, implementing packet capture as part
of the device driver is a significant yet necessary depar-
ture from the traditional approach. In the following sub-
sections we elaborate on the motivations to move packet
capture to the driver, and describe our specific implemen-
tation. In the remainder of this paper we refer to this
approach as dr i ver dunp.

4.21 Why Capturein the Device Driver

Capturing the data in the device driver is inherently more
efficient than capturing the data at user level. There are
a number of reasons for this. First, we can eliminate a
copy between the kernel and user level. The user level
programs will receive the data either through a socket
interface (t cpdunp), or through an mmapped kernel
buffer (I i ndunp). However in either case the kernel
must copy the data into the buffer or to user level, and the
user level program has to copy the data from that buffer
into the file. Capturing data directly in the device driver
allows us to eliminate one of those copies and copy the
data directly into the file.

Second we can eliminate some of the OS overhead. In
the simplest case, we can avoid sending the packet up the
network processing stack, thereby avoiding any locking
in the stack before the packet is simply dropped. In a
more advanced implementation, we can recycle the ker-
nel network structures (st ruct sk_buff in Linux)
immediately in the driver by re-initializing the structure,
thereby avoiding any locking in the kernel memory al-
location techniques. Further, since we know that only
some of the fields have been affected by the driver, we
only need to initialize those fields. Finally, we can even

avoid adjusting the buffers at all and simply update the
NIC data structures to tell the device that the packet is
now available avoiding any PCI page mapping overhead.

The primary downside of eliminating the OS overhead
is that now the NIC can only be used for packet capture,
whereas in a tool like t cpdunp or | i ndunp, the NIC
can still be used for normal network traffic. However
since we have multiple NICs on most machines, this is
a minor downside to increase performance. The down-
side of the additional steps of eliminating overhead de-
scribed above is that each one is more invasive in the
implementation. Since each optimization is strictly an
improvement over the previous, we implemented the last
one described above.

4.2.2 Implementation Details

For our implementation, we have to make seven mod-
ifications to get the driverdumping (i.e., packet cap-
ture in the NIC driver) working. Three of those
are to connect the dri ver dunp code with the NIC
driver, in particular including the header file, adding the
dri ver dunp structure to the NIC structure, and in-
cluding the dri ver dunp implementation in the NIC
implementation. Four of the modifications hook into
the driver. The first two hook into the initialization and
cleanup so that we can initialize the dr i ver dunp struc-
ture and free the dr i ver dunp data when the module is
unloaded. The third hooks into the driver’si oct | rou-
tine to allow the user-level program to control dumping.
The fourth hooks into the packet reception code to call
the dr i ver dunp reception code instead of the normal
kernel path if driverdumping is enabled.

The majority of the dri ver dunp implementation
(about 1,000 lines of code, including comments) is
driver-independent, and thus can be reused when porting
to different drivers. In practice, the simplest implemen-
tation requires about 10 lines of (driver-specific) code be
added to the driver. Eliminating all of the OS overhead
(as described above), increases the number of changes.
In the i xgb driver ~100 lines of driver-specific code
were added or changed to enable driverdumping. The
most time consuming task was determining what modifi-
cations were needed to directly adjust the NIC data struc-
tures.

All control of dumping is handled through a single
i oct|. The implementation has two main code-paths,
the path that copies packets into the output files, and
the path that sets up output files for writing. The por-
tion that handles packet reception is relatively simple: it
gets the current time, sets the capture and wire length
values in the pcap- header structure, and copies that
and the packet data into the output file. The one piece
of complexity that occurs is that the file appears as dis-



contiguous pages, and on the 1386 architecture not all of
those pages can be mapped into the kernel address space
at the same time. Therefore, the code for copying the
data to the file has to handle the page boundary splits and
the mapping and unmapping of pages.

The code that sets up the output files for writing is
more complicated. It has to open the file specified by
user level, set up all of the page data structures for the
entire file, and initialize all of the buffer variables. It
then marks the data structure as empty and available, and
goes to sleep. Up to three buffers are used; an empty
buffer available for use; an active buffer, to which pack-
ets are written; and a filled buffer, which is waiting to be
removed and written to disk. The packet capture code-
path will notice that there is an empty buffer, make it the
active buffer, and begin copying packets into it. Once the
active buffer is full, the capture code makes it the filled
buffer and wake up the file handling thread. That thread
will then remove itself from the filled variable, clean up
the page structures, close the output file and return. If an
empty buffer is not available, or the filled buffer is still
present when the active buffer is full, then the driver will
simply discard the packets.

The use of up to three buffers in the kernel allows us
to avoid most drops as a result of running out of buffers.
It also allows us to perform as much work as possible on
another CPU, leaving only the mapping and unmapping
of the file pages to the CPU actually processing packets.

5 Collection Results & Validation

In this section we examine the behavior of our network
monitor. Section 5.1 provides empirical results from use
in two customer deployments. Section 5.2 describes the
tests we have conducted to quantify the performance of
our monitor.

5.1 Empirical Results

Table 1 provides a high level summary of the empirical
traces that we have collected. Overall, we have collected
1,556 hours (64.8 days) of traces on either 1 Gb/s or 10
Gb/s networks in live environments. A number of the ini-
tial traces we collected were quite short, as we were still
testing the capabilities of the monitor. Some of the traces
were collected on network links with lower utilization,
which allowed us to collect reasonably long (full-packet)
traces. The longest trace we collected was trace g in the
1 Gb/s environment; this trace is 286 hours in duration
(~12 days), and contains 8.4 billion packets and 2 TB of
data. Most of the traces on the 1 Gb/s network did not fill
the disk trays. There are several reasons for this. In some
cases we stopped the tracing to begin the conversion and
analysis of that trace, or to to begin tracing a different

[ Network [ Trace | Duration (h) | Packets (M) [ Data (GB) |

T Gbls a 030 15.77 5.03

b 0.12 13.63 137

c 0.45 18.49 405

d 0.28 13.17 3.08

5 625 381.61 92.63

i 45.48 2,644.63 631.95

g 286.03 8,396.52 2,023.98

h 137.78 485195 1,169.95

i 4530 1,002.08 180.68

i 3.07 613.75 106.40

K 101.13 1,694.29 289.48

T 73.48 36017 322.59

m 12.95 1,952.03 777.16

n 117.87 5,628.07 1,857.26

o 151.73 6,464.10 3,070.41

P 6.58 952.69 304.69

q 28.30 2,180.93 754.00

r 34.67 338171 880.18

5 91.27 8,866.93 2,959.46

t 26.32 2,998.53 876.12

u 124.05 148.14 80.64

v 39.60 1,297.96 75257

W 32.68 3,520.44 2,545,26

X 20.33 1,884.48 1317.43
[10Gbs | A | 7788 | 758848 [ 560501 |
| | B | 7537 | 7.031.86 | 492939 |
[ Total | [ 155578 | 7400242 ] 31,543.76 ]

Table 1: Summary Trace Statistics

link in the customer’s environment. In others, the col-
lection ended when the monitor was unable to handle a
large burst of traffic.

For the remainder of this section we select two traces
from Table 1 to examine in more detail. From the 1 Gb/s
network we use trace s. This trace is 91 hours in duration
(3.8 days), and contains 8.9 billion packets and 2.9 TB of
data. For the 10 Gb/s network, we use trace A, which is
78 hours in duration (3.25 days) and 5.6 TB in size. For
the remainder of this paper, we refer to these two traces
as the 1 Gb/s trace and the 10 Gb/s trace, respectively.

Before describing more detailed characteristics of
these traces and their implications on the design of a high
speed monitor, it is important to discuss the limitations
of our approach (i.e., in using collected traces to discuss
characteristics of the observed network). One potential
problem is that our traces may not contain all of the pack-
ets that actually traversed the network link. This would
cause both the packets per second and Mb/s rates to ap-
pear lower than they actually were. This problem could
occur if either the switch mirroring the traffic or our mon-
itor become overloaded and drop packets as a result. We
determined that the driver dropped about 0.20% of the
packets in the 1 Gb/s trace, and have lost the record of
drops for the 10 Gb/s trace, however in both cases, we be-
lieve the aggregate loss rates between the driver and the
switch are negligible, primarily because we were able to
rebuild the NFS transactions in the traces. In preliminary
tests on the 10 Gb/s network, we were not able to rebuild
a substantial portion of the NFS transactions, which in-



formed us that our initial traces were missing a signifi-
cant number of packets. This observation led us to de-
velop packet-capture in the NIC driver, which remedied
the problem we encountered. A second problem that can
be encountered is skew in the timestamps that happens
because the packets are timestamped when processed by
the driver, not when they are received by the NIC. We
can see this issue in the analysis results of the 1 Gb/s
trace during periods of significant activity, and we expect
that it occurred to some degree in the 10 Gb/s trace based
on our measurements of the limits of the packet capture
code. Skew can also be created in the network switch;
if two packets come in on different links and leave on
different links, they can transit a non-blocking switch at
the same time. However, when the switch forwards the
packets to the monitoring port, it will be forced to seri-
alize them, thereby delaying one of the two packets. We
discuss the timestamp issue in more detail below.

Figure 1 show the packets per second and Mb/s ob-
served for the two enterprise traces. For the 1 Gb/s trace,
the driver dropped about 0.20% of the packets, and we
believe based on our analysis matching up request and re-
sponse RPC messages that the switch dropped relatively
few packets. Our record of drops for the 10 Gb/s trace
have been lost, but based on our analysis matching up
request and response RPC messages, we believe that this
capture also experienced a negligible number of drops.
Each graph shows the minimum, average, and maximum
rate over a one hour period, using non-overlapping one
minute samples. As expected, there is a clear daily trend
in each data set. For the purpose of our feasibility stud-
ies, it was important to capture this, in order that we
could more accurately assess whether a remote comput-
ing service could be kept busy, or if the network band-
width or latency would become a bottleneck at any point
in time (e.g., during sustained periods of activity).

Figure 1 reveals a number of interesting observations
which we anticipated, and which affect the design of a
monitor for providing full packet capture-to-disk func-
tionality. First, there can be a substantial number of
(small) packets per second; Figure 1(a) shows we ob-
served more than 160,000 packets per second, sustained
over a one minute interval. Second, although we ex-
pected the network would not be fully utilized, there are
times when it is quite busy. For example, in both traces
we see one minute intervals where the sustained rate is
over 700 Mb/s. Both of these characteristics need to be
considered in the design of the monitor.

Another characteristic of high speed networks that not
only affects the design of the monitor, but is important to
capture are the bursts of packets over short time scales.
Figure 2 shows the observed data rates over a range of
time scales. For the 1 Gb/s trace, Figure 2(b) shows
that there were bursts well above the peak sustained rate.

For example, when we examine the trace in 100 ms in-
tervals, approximately 0.001% of the intervals had data
rates of ~ 982 Mb/s, essentially the maximum we could
observe since we received the traffic over a half-duplex
1 Gb/s link from the switch performing the port mirror-
ing. If we consider even shorter intervals (e.g., 1 or 10
ms), the graph suggests that larger bursts occurred, both
in the number of packets per second (Figure 2(a)) and the
bandwidth (Figure 2(b), but in fact these are a result of
occasional delays in the processing that caused multiple
packets to be timestamped in the operating system closer
together in time than they actually arrived.

Figure 2(d) reveals that much larger bursts occurred
over short time scales in the 10 Gb/s trace. For example,
if we consider 1 ms intervals, Figure 2(d) shows that ap-
proximately 0.1% of all intervals were 2.3 Gb/s or above.
With an interval length of 100 us, 0.01% of all intervals
had data rates of approximately 3.4 Gb/s. The largest
burst we observed was nearly 3.8 Gb/s.

5.2 Test Results

Subsequent to our experiences with full packet capture-
to-disk tracing on deployed 1 Gb/s and 10 Gb/s net-
works, we have made several changes to the software
on our monitor. In particular, we upgraded the kernel
to version 2.6.16.15. We made the change to 2.6 from
2.4 for several reasons: the 2.6 kernel is reported to
have better I/O performance, and it automatically bal-
ances IRQs (which we previously had to do manually).
An unexpected benefit of the upgrade was oprofil e
support. Using opr of i | e [21] we identified a perfor-
mance problem in the original implementation; the ker-
nel functions that map and unmap pages in the interrupt
handler used more CPU time than we had expected. We
found that over 40% of the CPU time was spent in those
kernel functions. Once we optimized the copy imple-
mentation to only map pages when a new page was being
accessed (and being careful to re-map if we had left the
interrupt handler), only 1-3% of the CPU time was spent
in those routines.

A few changes were also needed to the capture driver.
First, we had changed NICs on our monitor, from the al-
pha version Intel NIC we had borrowed from one of our
colleagues to a commercially released version of the Ne-
terion XFrame I card. Therefore we had to switch to the
S2i 0 driver rather than the i xgb driver. One unfortu-
nate side effect of moving to the S2i 0 driver is that the
interface between the driver and the card is more com-
plicated than in the i xgb driver. As a result, we have
not yet implemented the updating of the ring pointers to
bypass all of the OS overhead, and are just re-initializing
the part of the sk_buf f structure that is affected by the
driver. Second, several bugs were discovered that were
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Figure 1: 1 Gb/s (a,b) and 10 Gb/s (c,d) trace results : (a,c) Packets per second; (b,d) Data transferred per second.

not triggered in the 2.4 kernel. Third, a significant part
of the capture driver had to be rewritten as the interface
to t mpf s in the kernel changed between 2.4 and 2.6.

We also modified the compression process. After the
completion of our feasibility studies, we became aware
of the | zf compression algorithm. We found that this
algorithm was very fast, so we modified our compres-
sion process to use | zf in the cases where we had pre-
viously written uncompressed traces to disk (i.e., when
there were already agzi p -9 andagzi p - 1 process
in progress).

Once all of these changes were complete, we per-
formed a set of experiments to evaluate the performance
of the monitor under controlled conditions, as well as to
quantitatively compare the performance of our monitor
tot cpdunp and | i ndunp. Section 5.2.1 describes our
test environment. Section 5.2.2 discusses our experimen-
tal methodology. Section 5.2.3 summarizes our results.

5.2.1 Experimental Environment

Figure 3 shows the test bed we used for our experi-
ments. We used six DL360 G3 servers, each with two

2.8 GHz Intel Xeon processors as the load generating
clients. Each client had a dual port Broadcom 1 Gb/s
network interface. Each client ran Linux (Debian stable
with the 2.4-686 kernel), and used the t g3 driver. The
clients were connected to an HP Procurve 9304 switch.
The clients generated UDP datagrams sent to a sixth
DL360G3 server, that just responded to ARPs so that the
load-generating clients could send it data; this server was
also connected via a 1 Gb/s link; as a result, the switch
dropped traffic to the server under load. Our monitor was
connected to the switch by a 10 Gb/s link. The switch
mirrored all of the traffic to or from any of the load gen-
erating clients to our monitor.

Each client ran a custom written perl script to gener-
ate the network traffic. The script filled each packet as
half random, half zeros, in order that our monitor would
achieve a realistic compression ratio (about 50%) on the
resulting packet traces. In early testing we used pack-
ets filled with only zeros; for obvious reasons the result-
ing trace files were highly compressible as well as quick
to compress. This skewed the performance results, and
prompted the change in packet contents. Our script was
also capable of generating traffic according to a schedule
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Figure 2: 1 Gb/s Trace (a,b) and 10 Gb/s (c,d) Observed Burstiness (a) packets per second; (b) Data transferred
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Figure 3: test environment

so that all six machines could burst for the same second,
and then run at a slower rate otherwise. The machines
synchronized according to their clocks, which were syn-
chronized using NTP.

5.2.2 Experimental Methodology

Our experiments involve two different tests (small packet
test, large packet test) and compare three different tools
for capturing full packets to disk (t cpdunp, | i ndunp
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and dri ver dump).

For the small packet test, all six clients generated 64
byte packets as quickly as they could (~150,000 pps
each), which was sufficient to saturate all of the tools
when capturing to disk. This test stresses the tool’s abil-
ity to keep up with packet arrival events, and also em-
ulates what would happen if we were only capturing
packet headers. For the large packet test, we only used
two clients; each generated 1514 byte packets as quickly
as possible (~1 Gb/s each), which was sufficient to sat-
urate all of the tools when capturing to disk. This test
stresses the compression and write to disk operations.
With the tools under study, we attempt to capture as
many of the packets as possible. The switch reports the
number of packets it is mirroring, which we use to deter-
mine how many packets a particular tool is dropping.

In an attempt to provide as fair a comparison as possi-
ble, we try to use the tools in the same manner. In par-
ticular, since | i ndunp and dr i ver dunp break up the
stream of captured packets into multiple small (e.g., 200
MB) traces, we have t cpdunp behave in a similar man-
ner. With all tools the trace files are written to t npf s,
where our compression process then compresses them



| Tool | 64 byte packets | 1514 byte packets |

t cpdunp 113,000 pps 763 Mb/s
I'i ndunp 300,000 pps 957 Mb/s
dri verdunp 676,000 pps 1,430 Mb/s

Table 2: comparison of capture-to-disk tools

and writes them to disk in the manner discussed in Sec-
tion 4.1.

Finally we tested behavior under bursts with the
dri ver dumnp tool. Each of six separate machines fol-
lowed the same schedule of generating packets for 10
seconds, and idling for ten seconds. In the first on in-
terval, three servers generated 1514 bytes packets as
quickly as they could. (We could have used all six,
but since dri ver dunp could only sustain about 1.5
Gbps, there was no point). In the second on interval,
all six servers generated 64 byte packets as quickly as
they could. Finally in the third on interval the six servers
each generated packets at 60,000 pps, with one server as-
signed to generating packets each of 64, 200, 576, 768,
1024, and 1514 byte packets.

5.2.3 Experimental Results

Table 2 provides the average performance results we
achieved for each tool. For the small packet test,
t cpdunp had (as expected) the poorest performance,
averaging 113,000 packets per second over a 30 minute
test. | i ndunp averaged 300,000 packets per second, a
~2.65x improvement over t cpdunp. Our driver cap-
ture tool dri ver dunp achieved a further 2.25x im-
provement, averaging 676,000 packets per second cap-
tured to disk. In the dri ver dunp test we let the ex-
periment run until the monitor ran out of disk space; this
occurred after 50 hours and 23 minutes, during which
time the tool captured almost 120 billion packets to disk.

One limiting factor in the t cpdunp test is the driver
path; only 385,000 pps on average are getting into the
kernel. t cpdunp itself then drops a significant number
of the remaining packets. An interesting side effect of the
reduced capture rate is that the CPU utilization required
for compression is also reduced. We observed that gzi p
- 1 is able to compress trace files faster than t cpdunp
can capture them, so our compression process never uses
the | zf algorithm with t cpdunp. We also observed
that t cpdunp is using 100% of two CPUs to capture
113,000 pps, whereas dr i ver dunp only used 100% on
one CPU to capture at ~ 6x faster. In the t cpdunp case,
one CPU is dedicated to running the thread that is copy-
ing packets from the driver to a user-level buffer, while
the second CPU is completely occupied by t cpdunp,
copying the packets from the buffer to a file in t npf s.
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With dr i ver dunp we avoid one copy which reduces
the CPU utilization, as well as the memory bandwidth
consumption.

In the tests with | i ndunp, 100% of the CPU running
the interrupt handler is used, and about 90% of the (sec-
ond) CPU is used by the | i ndunp process to capture at
a rate of 300,000 pps. In this case the monitor was not
able to compress all of the files, as there are not enough
spare CPUs available.

We also examined how fast the OS itself could receive
packets. We ran t cpdunp in a mode to just drop all
of the packets (selecting for a non-existent host), and
found that the OS peaked at about 550,000 pps to just
receive and discard the packets. Comparing this result to
the dr i ver dunp performance illustrates how efficient
our optimized capture code is; it is actually capturing and
writing packets to disk faster than the standard OS net-
work code could receive and discard the packets. This
effect is achieved because the standard OS code needs
to allocate, initialize and de-allocate memory for each
packet, and in addition needs to perform a number of
locks in order to transfer the packets up the networking
stack so they can be discarded. Conversely, our dumping
code avoids all of the allocation, de-allocation, and net-
work stack locking. It also avoids most of the per-packet
initialization costs. The cost of performing the copies
for small packets is sufficiently less that these other costs
that our driver can capture packets faster than the stan-
dard OS can drop them.

The large packet experiments indicate less of a differ-
ence between the tools. | i ndunp is only 1.25x faster
than t cpdunp, and dri ver dunp is only 1.49x faster
than | i ndunp. This is occurring because the capture
is memory bandwidth limited. Measurements indicate
that we only have about 6 Gb/s of copy bandwidth when
performing small copies. Since dri ver dunp is mak-
ing at least two copies (one from the network to t npf s,
and one from t npf s to disk) plus half a copy as the
NIC writes the packet into memory, we can account for
about 3.5 Gb/s of copy bandwidth being used. Since we
are also using memory bandwidth to perform spin locks,
page remapping, filesystem operations, process creation,
etc., it is easy to see that the machine is becoming limited
by its available memory bandwidth.

Another interesting effect which is penalizing
dri ver dunp is that as the capture rate increases, the
fraction of the data that can be compressed is reduced.
Fort cpdunp we used one gzi p - 1 process and up to
two | zf compress processes. The two spare CPUs were
enough to keep up with the compression rate. | i ndunp
was similar. When we tried to run dr i ver dunp with
that configuration, we found that the compression was
unable to keep up with the rate of data acquisition, and
t npf s overflowed. We instead had to move to using



up to two | zf compressions and up to 10 straight file
copies to keep from overflowing the temporary staging
area. Therefore dr i ver dunp was both capturing more
data and using more memory bandwidth. If we ran
t cpdunp with | zf and copies, we reduced its capture
performance by about 10%.

The other interesting difference was around the pri-
ority assigned to the thread polling the network inter-
face. Linux implements both an interrupt-based and a
polling based access to network devices, and dynam-
ically chooses between them based on load to elimi-
nate wasted network processing when the application
is falling behind [10, 16]. For both t cpdunp and
[ i ndunp, leaving this thread at the lowest priority is
the best choice because otherwise it performs a lot of
useless work. Conversely for dri ver dunp, the best
choice is to make this thread highest priority because the
code copying out to disk will adapt by using more copies
and less compression. We accidentally left the priority of
the thread as low for testing dr i ver dunp and observed
that the compression processes were taking priority over
the packet capture. However, making the polling thread
high priority for either | i ndunp or t cpdunp caused
the polling thread to overrun the user level process and
waste time dropping packets.

Figure 4 shows the results of our burstiness experi-
ments. We took a long trace of the data and calculated
the average, minimum and maximum captured and of-
fered rate at each point in the cycle. The offered rate was
calculated by running driverdump in a “drop all” mode,
and since the capture CPU remained below 100% busy
for the entire time, we believe that the rates indicated are
accurate. Figure 4 shows that under a bursty workload,
dri ver dunp is able to capture more than the sustained
rate. In particular, the captured rate for 64 byte pack-
ets remains well above the sustained rate, although it is
clearly slowing down over the burst interval. Similarly,
on the bandwidth graph, the rate is above the sustained
rate for a fraction of the measured period, although by the
end of the burst it has slowed down to the sustained rate.
The reason that dri ver dunp slows down to the sus-
tained rate for the larger packets by the end of the burst is
because more data is being generated, so more compres-
sion and copying processes are started, and hence more
interference occurs. Conversely the smaller packets only
generate a few files to compress (at most 3 over the en-
tire 10 second burst) and hence the compression does not
interfere as much with the capture process. One possible
implication of this result would be that the compression
process should attempt to delay compressing the data un-
der heavy load in the hope that the burst will end before
the temporary filesystem fills. We have not explored this
possibility.

Note that in a few cases, the graphs shows the maxi-
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mum small packets captured rate above the small packets
offered rate. The occurred for two reasons. First, both
values were experimentally determined, and as can be
seen from the error bars on the offered load, the load gen-
erators are inconsistent in how quickly they can generate
small packets. Since the offered rate was only sampled
over about 20 cycles and the captured rate was sampled
over about 700 cycles, it is likely that in a few cases the
load generators performed better during the capture test
than the offered analysis. Second, the captured rate is the
rate that the driver is capturing at, and if there is a back-
log in the kernel buffers then the driver could capture
packets at a rate faster than they actually arrived. Over
the 11 hours of the test, it is likely this occurred a few
times.

6 Data Conversion

As we discussed in Section 3, we introduced an interme-
diate step between the collection and analysis of the data,
to address a number of issues. In this section we describe
how we convert large data sets.

Our conversion process requires two passes over the
data. The first pass determines a unique identifier for
each NFS request or response. To reduce the time to
complete this pass, this can be (highly) parallelized.
Counts of the unique transactions in each file are main-
tained and then merged into a start offset for each file.

The second pass assigns the unique identifiers and
extracts the desired information about each transaction.
Again, this step can be parallelized to reduce the over-
all conversion time. The offset calculated for each file
in the first pass is used to enable assigning the unique
identifiers in parallel. Also during this pass, informa-
tion on each NFS request or response is written to one or
more of the following four types of DataSeries extents:
NFS common, NFS attribute, NFS read-write and NFS
mount. The first of these extent types records generic in-
formation on each NFS transaction, such as the source
and destination addresses, the transaction identifier, the
operation type, and the payload length. The other NFS
extent types record information specific to selected NFS
operations, such as read/write operations, or operations
that include attributes.

A fifth extent type was kept for packet-level infor-
mation. This recorded network and transport-layer data
such as the source and destination addresses and ports,
the transport layer protocol used, the packet length, and
the packet type (TCP, UDP, other).

When we converted the empirical data sets to
DataSeries, we utilized 20-80 CPUs; this provided suf-
ficient computational power for all of the conversion and
compression tasks to make the file server the limiting re-
source. Both passes typically required 12-24 hours. We
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Figure 4: Burstiness results: (a) packets per second; (b) Data transferred per second

considered this a reasonable cost, as having the data in
the DataSeries format saved a significant amount of time
during the analysis stage, due to the efficiencies it pro-
vides, and so that we could store some of the NFS infor-
mation encrypted so that other researchers were allowed
to work with it to write analysis.

Once all of the data is converted to DataSeries, the
final step (prior to running the analyses) is to index the
data files. This process creates an index file that contains
information on the minimum and maximum time stamps
and identifiers in each extent. The index also contains
the filename and modification time of each DataSeries
file, so that it can be skipped during re-indexing if the
file has not changed. The indexing process is relatively
quick; for example, to index the 10 Gb/s trace took 47
minutes, and was I/0 bound.

7 DataAnalysis

In our feasibility studies, we designed and implemented
16 different NFS analyses. Some of these examined
characteristics of the files (e.g., age, size, etc.), while
others examined higher level issues (e.g., the effect of
server latency on throughput of the service). The analysis
that convinced us we would be able to provide a remote
computational facility was the one that looked at how
recently files had been accessed and demonstrated that
straightforward read caching would be sufficient. Most
of these analyses were developed for our initial study and
then reused in our subsequent study. All of the analyses
were implemented in C++, and read the DataSeries files
using the DataSeries library.

Due to the large size of the data sets, we attempt
to exploit parallelism where possible. The biggest par-
allelism happens from evaluating over different time
ranges, which indexing in DataSeries simplifies.
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As an example of how DataSeries assists with the anal-
ysis of large data sets, we timed the server latency analy-
sis on both the converted 1 Gb/s and 10 Gb/s traces run-
ning at the same time on a 4 CPU DL580 (same con-
figuration as for the tracing machine) This analysis uses
the NFS common extent. For the 10 Gb/s trace, in 4,063
wall clock seconds (about 1 hour) it read 17.8 GB of data
(109 GB when uncompressed), and processed 2 billion
“rows” (NFS transaction records), roughly 500,000 rows
per second. Started at the same time, but running for
11,263 wall clock seconds (about 3 hours), the 1 Gb/s
trace read in 45.5 GB of data (406 GB when uncom-
pressed) and processed 7.6 billion rows, roughly 675,000
rows per second.

8 Observations and L essons L ear ned

Based on our experiences with data collection and analy-
sis of 1 and 10 Gb/s networks, we have identified a num-
ber of things that we would do differently, if we were to
start over. We elaborate on several of these below.

One of our assumptions when we designed our mon-
itor was that writing to disk would be the primary bot-
tleneck. However, at times other resources proved to be
a bottleneck as well. In particular, memory bandwidth
became an issue at times. Using a modern server may
alleviate this bottleneck, as many new servers have sig-
nificantly higher memory bandwidths [23] than does our
three year old server.

As network bandwidths increase, so to do the poten-
tial sizes of traffic bursts. Obviously, including more
(and faster) memory would increase the duration that a
large burst could be buffered, although the ‘drain’ period
would increase if the memory bandwidth is a bottleneck.
A related optimization would be to rate limit the com-
pression processes during bursts. If the compression and



dumping processes were more tightly integrated, then
during bursts the compression programs could run more
slowly so as to reduce memory bandwidth contention.

On 10 Gb/s networks that are heavily utilized, the PCI-
X bus on which our NIC resides could become the pri-
mary bottleneck. In particular, the theoretical maximum
rate of the PCI-X bus is 8.5 Gbps, which is less than the
maximum rate of a 10 Gb/s network. In theory, a modern
PCI-Express x8 slot (32 Gb/s) would easily keep up with
a 10 Gb/s network.

We expect that running dr i ver dunp on a 64-bit ma-
chine would provide additional performance improve-
ments. In particular, on a 64-bit machine the kernel could
keep all of the memory mapped into the kernel address
space, avoiding the need to map and unmap pages.

Another significant optimization would be to have the
driver write files directly to the output disks when the
compression process falls far enough behind that the
(new) files are not going to be compressed anyway. Since
our driver always writes to t npf s, uncompressed out-
put is effectively copied twice. This change would have
required much tighter integration between the compres-
sion and the capture portions of dr i ver dunp, which
currently only interact through the filesystem.

If the NIC is programmable, the capture process could
be moved directly onto the NIC. The NIC could write the
data in pcap format into memory buffers that are then
compressed and written out to disk. This should provide
the highest performance single-box capture tool.

Some high-speed networks utilize 9000 byte MTUs
(Maximum Transmission Units) rather than 1514 bytes.
The only change required for our monitor to work on
such networks is to configure the capture NIC to accept
9000 byte packets. However, we expect 9000 byte MTUs
would exacerbate the memory bandwidth limitation.

9 Conclusions

In this paper we described our experiences with de-
signing and using packet capture in a NIC driver
(dri ver dunp) to collect full packet traces on 1 and
10 Gb/s networks. On enterprise networks, we demon-
strated multi-day packet captures of bursty traffic with
minimal packet capture drops. We demonstrated the im-
provements dr i ver dunp provides over existing packet
capture tools such as t cpdunp and | i ndunp. We dis-
cussed the current limitations of our monitor, and the op-
portunities that exist for overcoming them. Finally, we
introduced the methodology and tools we utilize for ef-
ficiently analyzing the large data sets that we have col-
lected using dr i ver dunp on live 10 Gb/s networks.
In the future we intend to upgrade the server platform
on which we run dr i ver dunp, so that we might allevi-
ate the current bottleneck (memory bandwidth) in order
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to evaluate the packet and byte capture rates that can be
reached before the next bottleneck emerges. We also plan
to investigate some if not all of the potential enhance-
ments that we listed in the paper, to determine whether
sustained full packet capture-to-disk is possible at line
rate on heavily utilized 10 Gb/s networks.
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