

Building distributed applications using Sinfonia

Marcos K. Aguilera, Christos Karamanolis, Arif Merchant, Mehul Shah, Alistair Veitch
Information Services and Process Innovation Laboratory
HP Laboratories Palo Alto
HPL-2006-147
October 18, 2006*

distributed
systems,
scalability, fault
tolerance

We present Sinfonia, a data sharing service that simplifies the design and
implementation of distributed applications that need to be reliable and
scalable. At the core of Sinfonia is an efficient minitransaction primitive
that allows applications to manipulate shared state consistently, while
hiding concerns about fault-tolerance and concurrent execution. We show
how to use Sinfonia to build two different, complex applications: a
cluster file system and a group communication service. Our applications
scale well and achieve performance comparable to other implementations
built without Sinfonia.

* Internal Accession Date Only Approved for External Publication
© Copyright 2006 Hewlett-Packard Development Company, L.P.

Building distributed applications using Sinfonia

Marcos K. Aguilera Christos Karamanolis
�

Arif Merchant Mehul Shah Alistair Veitch
HP Laboratories, Palo Alto, California, USA

Abstract
We present Sinfonia, a data sharing service that sim-

plifies the design and implementation of distributed ap-
plications that need to be reliable and scalable. At the
core of Sinfonia is an efficient minitransaction primitive
that allows applications to manipulate shared state con-
sistently, while hiding concerns about fault-tolerance and
concurrent execution. We show how to use Sinfonia to
build two different, complex applications: a cluster file
system and a group communication service. Our appli-
cations scale well and achieve performance comparable
to other implementations built without Sinfonia.

1 Introduction
Distributed applications, such as cluster file systems

and group communication services, tend to have a com-
plex design because they explicitly try to deal with issues
of concurrency and node and network failures. Concur-
rency means that nodes execute simultaneously and with-
out constant awareness of what each other is doing. Node
and network failures can occur at any time and, if not ad-
dressed properly, result in a fragile system that fails if
any one of a number of its components fail.

In this paper, we propose a simpler way to build ap-
plications distributed over a local area network (LAN),
based on Sinfonia, a service that hides the complexity
that comes from concurrent behavior and failures while
providing scalable performance. In a nutshell, Sinfonia
allows nodes to share application data in an general, effi-
cient, consistent, reliable, and scalable manner.

Services that allow application nodes to share data in-
clude database systems and distributed shared memory
[2, 5, 9, 15], but they lack the performance needed for
some applications where efficiency is vital. For example,
attempts to build file systems on top of a database system
[18] resulted in an unusable system due to poor perfor-
mance. For such applications, database systems provide
more functionality than needed, resulting in performance
overheads. Distributed shared memory tends to use ex-
pensive protocols to achieve fault tolerance and suffers
from network latencies. Thus, it is not a widely adopted
paradigm.

Sinfonia provides a place for application nodes to ef-
�

Work done while at HP Laboratories. Current affiliation is VMware.

application
node

memory
node

application
node

application
node

application
node

reads/writes
minitransactions
notifications

memory
node

memory
node

S
IN

F
O

N
IA user

library

Figure 1: Sinfonia allows application nodes to share data consistently

in a scalable and fault tolerant manner.

ficiently share data with each other. Similar to database
systems, Sinfonia provides transactions that free the ap-
plication writer from concerns of concurrent execution
and partial updates due to failures. Similar to dis-
tributed shared memory systems, Sinfonia provides a
fine-grainedaddress space, without any structure such
as schemas, tables, columns, and rows, which impose
overhead.

Sinfonia provides fault tolerance, if desired, in three
flavors: availability, reliability, or both. Availability
means that Sinfonia is available despite a small number
of failures. Availability is achieved by replicating the
nodes that implement Sinfonia, so that a backup node
can take over if the primary fails. Reliability means that
the data in Sinfonia is durable, that is, safe even if all
nodes in the system crash, say, due to power failures.
Reliability is achieved by logging data on disks.

Sinfonia is intended for building distributed systems
that scale, so Sinfonia itself must scale. To do so, Sinfo-
nia has a distributed implementation over a set of nodes,
calledmemory nodes, whose number determine the ca-
pacity of the system.

Sinfonia provides three intuitive primitives to access
data: read/write, minitransactions, and notifications.
Read/write retrieves or stores data at a contiguous ad-
dress range. Minitransactions atomically perform condi-
tional updates of scattered address ranges. Minitransac-
tions are serializable, even if minitransactions span mul-
tiple memory nodes. To implement minitransactions ef-
ficiently, an algorithmic contribution of this paper is a
new type of two-phase commit protocol with associated
recovery. Notifications provide callbacks when changes
occur in one or more address ranges. All Sinfonia primi-
tives provide strong consistency guarantees.

2

The core principles underlying Sinfonia are to (1) pro-
vide operations that have loose coupling, to allow paral-
lel execution and obtain scalability, and (2) achieve fault-
tolerance before scaling the system to avoid running ex-
pensive fault tolerant protocols over many nodes.

We demonstrate Sinfonia by using it to build two com-
plex and very different applications: a cluster file system
called SinfoniaFS and a group communication service
called SinfoniaGCS. These applications are known to
be difficult to implement in a scalable and fault-tolerant
fashion: systems achieving these goals tend to be very
complicated and are the result of years of trial and error.
Using Sinfonia, we built and optimized them in one or
two months. In SinfoniaFS, Sinfonia holds file system
data, and each node in the cluster uses minitransactions
to atomically retrieve and update file attributes and al-
locate and deallocate space. In SinfoniaGCS, Sinfonia
stores ordered messages broadcast by clients, and clients
use minitransactions to add new messages to the order-
ing; notifications inform clients of new messages.

Through experiments, we show that Sinfonia and its
applications scale well and perform competitively with
other implementations. Sinfonia can execute thousands
of minitransactions per second at a reasonable latency
when running over a single node and the throughput
increases well with the number of nodes. Sinfoni-
aFS over a single memory node performs as well as
an NFS server and, unlike an NFS server, SinfoniaFS
can scale. SinfoniaGCS performs comparably to Spread
[1], a well-known high-performance implementation of
a group communication service.

2 Assumptions and goals
We consider a distributed system with nodes that can

communicate by passing messages over a network. We
focus on local area networks, such as available in data
centers, which for our purposes are networks with the
following properties:

� Users are reasonably trustworthy, rather than mali-
cious. Access control is an orthogonal concern that
could be incorporated in Sinfonia, but we have not
done so.� Network delays are within a few orders of magni-
tude of each other, and do not vary wildly at each in-
stant as in a completely asynchronous environment.� Network partitions are not frequent and, when they
do occur, it is acceptable to pause applications.

These assumptions are not true in wide area networks,
peer-to-peer environments, or the Internet as a whole.

The system is subject to failures: a node may crash
sometimes and more rarely all nodes may crash, say
due to a power outage, and failures may occur at un-
predictable times. We do not consider byzantine fail-
ures. Disks providestable storage, which means disks

Semantics:
read from memory node mem-id,
address addr, length len

addr lenmem-id

R
E

A
D

addr datalenmem-id

W
R

IT
E Semantics:

write to memory node mem-id,
address addr, length len

N
O

T
IF

IC
A

T
IO

N

set of notification items

.
.
.

addr datalenmem-id

addr datalenmem-id

Semantics:
issue callback if contents of any item
changes

set of write items

set of update items

.
.
.

addr datalenmem-id

addr datalenmem-id

.
.
.

addr datalenmem-id

addr datalenmem-id

M
IN

IT
R

A
N

S
A

C
T

IO
N

set of read items

.
.
.

addr lenmem-id

addr lenmem-id

Semantics:
(1) retrieve data indicated by read
items

(2) check data indicated by compare
items

(3) if all match, modify data indicated
by write items

Figure 2: Primitives to access data in Sinfonia.

are chosen to provide sufficient reliability for the target
application; disk choices vary from low-cost ones with
offline backup to high-end disk arrays with RAID.

Our goal is to help build applications distributed over
a set ofapplication nodes, by providing new efficient
building blocks, services, or paradigms. These should
be (1)general, that is, broadly applicable and useful for
many applications, (2)powerful, that is, it allows to build
artifacts that are hard to build without it, (3)easy-to-use,
that is, intuitive or quickly understood, and (4)reason-
ably efficientfor its intended uses.

We target low-level and middleware applications, like
a file system, a lock manager, a group communication
layer, or a metadata service, or other layers between the
operating system and user applications.

3 What Sinfonia provides
Sinfonia provides a service for application nodes to

share data by keeping it at one of a set of memory nodes,
which are logically separate from application nodes.
Memory nodes are commodity off-the-shelf computers
connected to the network, and they are made fault toler-
ant through the Sinfonia protocols, if desired.

Primitives to access data.Each memory node keeps a
sequence of raw or uninterpreted words of some standard
size, like 8 or 32 bits (in this paper, words have 8 bits).
Those words are organized around anaddress spacesuch
that data in Sinfonia can be globally referenced through
a pair

�
memory-node-id�address�. Applications access

data using three primitives (Figure 2), described next.
Read/writeallows applications to read or write a con-

tiguous address range on asinglememory node.
Minitransactionsare a key mechanism to simplify

building of applications. They are an extension of the
read-write service that allows applications to manipulate
data that can be scattered around many memory nodes,

3

Figure 3: Box shows code to create and commit a minitransaction to

change an inode’s attributes in SinfoniaFS. Lines 6–8 merely populate

the minitransaction, without communication with memory nodes until

line 9.

and can do soatomically. The philosophy, borrowed
from database systems, is to always keep data in Sin-
fonia in a consistent state, and use minitransactions to
avoid partial updates due to failures, or interleaved ac-
cess due to concurrent execution. In designing mini-
transactions, we had to balance two opposing factors: ef-
ficiency (how fast minitransactions execute) and power
(how much work they do). We chose a short-lived type
of minitransactions that execute quickly but are powerful
enough to support optimistic concurrency control at ap-
plications. More precisely, a minitransaction has a 0 or
more read items, compare items, and write items, where
each item refers to an address range at a specified mem-
ory node. A minitransaction will return the data in all
read items, test each compare item for equality with pro-
vided values, and if all comparisons match, write the data
in all write items; compare items have a flag indicating
whether, if the comparison fails, the actual data should be
returned (i.e., the comparison item becomes a read item).
Minitransactions are serializable, as expected. Common
uses of a minitransaction include (1) swap data by having
no compare items and setting the locations of read and
write items to be the same, (2) compare-and-swap data,
by having no read items, (3) atomically write to many
memory nodes, by having several write items but no
read or compare items, or (4) atomically read from many
memory nodes, by having no compare or write items.
Minitransactions can be started, executed, and commit-
ted all in just one or two network round-trips. One reason
they are efficient is that minitransactions arestaticrather
than interactive or long-lived. Figure 3 shows how an ap-
plication node of SinfoniaFS implements a set attribute
operation using a minitransaction with one compare item
and two write items (no read items).

Notificationsprovide a callback from a memory node
to an application node if some location within a specified
address range is updated (with any value). To avoid race
conditions, in which the location is updated by another
application node right before notification is installed, the

application provides data to be initially compared against
the address range, and if comparison fails, notification is
triggered immediately. The application chooses if a noti-
fication ispermanent, meaning that it remains active after
it is triggered, ortransient, meaning that it gets canceled
after being triggered once. The application also chooses
whether a notification should return the contents of the
data when it is triggered. Sinfonia providesnotification
batchesso that the application node can install and can-
cel many notifications at once, to avoid multiple rounds
of communication.

Fault tolerance. Crashes of application nodes never
affect the data kept in Sinfonia, as outstanding writes or
minitransactions either complete or get aborted. In addi-
tion, for memory nodes, which keep important applica-
tion data, Sinfonia provides two different forms of fault
tolerance:

� Masking independent failures.If few nodes crash,
Sinfonia masks the failures so that the system con-
tinues working with no downtime.� Preserving data on correlated failures.If many
nodes crash in a short period, for example due to
a power outage, Sinfonia ensures that data is not
lost, but the system may become unavailable until
enough nodes come back up and execute a recovery
procedure.

The goal is to ensure data is always preserved, and
the system remains available even when there is a small
number of failures. To do so, Sinfonia uses three mecha-
nisms,disk images, disk logging, andreplication. These
mechanisms can be individually disabled to trade off
fault tolerance for performance and fewer machines. A
disk image keeps a copy of the data at a memory node;
for efficiency, the disk image is written asynchronously
and so it may be slightly out of date. To compensate
for that, a disk log is used, whereby updates to mem-
ory get logged on disk; writes to the log are sequential
and done synchronously, that is, before acknowledging
completion of a minitransaction. Logging is borrowed
from databases, but we streamlined it for use in Sinfo-
nia, as we describe in Section 4. When a node recovers
from a crash, the log is used to update the disk image
using arecovery algorithm; recovery is logically trans-
parent to users of the system, but requires some time
to execute, which translates into unavailability. To pro-
vide high availability, Sinfonia supports primary-backup
replication of memory nodes with a hot backup, which
is kept updated synchronously. If a memory nodes fail,
the backup can take over without downtime. For per-
formance, the backup node and the log of the primary
are written concurrently, while the log of the backup is
updated asynchronously (which sacrifices the ability to
tolerate a failure of the primary, of its log disk, and of
the backup simultaneously, a rare situation). Figure 4
shows the results of various combinations of enabling or

4

Mode RAM PB LOG PB-LOG

Description disk off disk off disk on disk on
log off log off log on log on
repl. off repl. on repl. off repl. on

Resources/ 1 PC 2 PC’s 1 PC 2 PC’s
mem node 2 disks 4 disks

Fault �app crash �app crash �app crash �app crash
tolerance �few memnode �all memnode �few memnode

crashes crashes with crashes
downtime �all memnode

crashes with
downtime

Performance first second third fourth

Figure 4: Trading off fault tolerance for amount of resources and per-

formance. Each column is a mode of operation for Sinfonia. “Repl.”

is replication. ’App crash’ means it can tolerate crashes of any num-

ber of application nodes. ’Few memnode crashes’ means tolerating

crashes of memory as long as both primary and backup do not crash.

’Downtime’ refers to the system blocking until recovery, but no data is

lost. For exact performance numbers see Section 7.1.1.

disabling the above mechanisms. Which combination is
used depends on the needs of the application. We tested
both extremes with two different applications: Sinfoni-
aFS uses PB-LOG, while SinfoniaGCS uses RAM.

Scalability. Sinfonia can increase its capacity by in-
creasing the number of memory nodes. Applications can
adjust the placement of data to load balance the memory
nodes, which is generally not a problem since all mem-
ory nodes are functionally equivalent. Achieving opti-
mal scalability depends on the ability of the application
to avoid hot spots, a well known problem in distributed
systems that we do not solve in its full generality. But we
demonstrate how we addressed this problem for the two
applications that we built, when we describe them.

Principles and rationale. Sinfonia’s design are based
on the following:

Principle 1. Get scalability by reducing or eliminating
coupling.Coupling refers to the interdependence that op-
erations have on one other, which precludes parallel ex-
ecution and hence prevents scalability through distribu-
tion. Sinfonia avoids coupling by providing a low-level
address space where locations are independent of each
other. For example, minitransactions can execute in par-
allel as long as their locations do not overlap.

Principle 2. Get fault tolerance before scaling.We
avoid running expensive fault tolerant protocols over
many nodes, by instead making fault-tolerant the low-
level components (the memory nodes in Sinfonia) and
scaling the system by adding more of them. Thus, the
overhead of fault tolerance remains local.

Lessons from distributed shared memory.Sinfonia
also draws lessons from the long line of work in dis-
tributed shared memory and multiprocessor memory, as
distributed shared memory can be seen as a service to
share data, like Sinfonia.

Distributed shared memory originated from the effort
to simulate shared memory over message-passing (e.g.,
[2, 5, 9, 15]), as shared memory provides a higher-level
and easier-to-use abstraction, allowing for simpler and

more compact code than message-passing This paper
draws two lessons from this effort:

� Faithful simulation of shared memory results in
poor performance.Attempts to provide abstractions
identical to shared memory failed to achieve ade-
quate performance because of network latencies and
expensive protocols.� Relaxed consistency to improve performance leads
to hard-to-use models.Performance of DSM can
be improved by relaxing the consistency provided
to permit aggressive caching. However, this means
that a write is not always visible, and reads return
inconsistent data. This makes it hard to understand,
develop, and debug applications.

Based on these lessons, Sinfonia provides an abstrac-
tion quite different from traditional shared memory, in-
tended to deal with network latencies. Indeed, minitrans-
actions package together many accesses to scattered lo-
cations, and this can hide network latencies; and notifi-
cations avoids repeated polling over the network.

At the same time, Sinfonia provides strong consis-
tency for ease of use: minitransactions are serializable
and durable, and they take effect immediately.

4 Sinfonia implementation and algorithms
An algorithmic contribution of our work is a new type

of two-phase commit optimized for Sinfonia to provide
good performance and fault tolerance. In traditional two-
phase commit, a coordinator runs the protocolafter exe-
cuting all of the transaction’s actions; if the coordinator
crashes, the system has to block until the coordinator re-
covers. In our two-phase protocol, the coordinator can
start, execute, and commit a minitransaction, all in two
phases. Furthermore, if the coordinator crashes, the sys-
tem can recover without it. This is important because in
Sinfonia the coordinators are application nodes, not Sin-
fonia nodes, and so they may be unstable or subject to
reboots. There is a trade-off with our protocol, however:
if participantscrash the system blocks until participants
recover. This is not a concern for Sinfonia because par-
ticipants are memory nodes that keep application data, so
if they go down, the system has to block anyways.

Our commit protocol has new recovery and garbage
collection procedures to go with it, which reflect its dif-
ferent failure assumptions.

We now explain the basic architecture of Sinfonia’s
implementation and then describe the commit protocol
and notifications.

4.1 Basic architecture
Implementation of Sinfonia has two parts: A user li-

brary running at application nodes provides the interface
to applications, while a server running at memory nodes
keep the data in Sinfonia (Figure 1). The user library
provides the Sinfonia API to applications; it implements
distributed protocols for the Sinfonia services, including

5

Code for coordinator � :

To execute minitransaction�rditems�cmpitems�writems�
1 tid � unique identifier�

Phase 1�
2 � � set of memory nodes referred inrditems� cmpitems� writems
3 pfor each	
 � do

�
pfor is a parallel for�

4 send �LOCK-CMP-PREPARE� tid � � ��� �rditems� � � � �cmpitems� � �� �writems�� to 	
5

� �� denotes the projection to the items handled by	 �
6 replies� wait for replies from all nodes in�
7

�
Phase 2�

8 if
	
 � � replies�	 � �vote� OK then action � TRUE

9 elseaction � FALSE

10 pfor each	
 � do send�COMMIT � tid �action� to 	�
can always return without waiting for reply ofCOMMIT �

Code for each participant memory node	:

upon receive�LOCK-CMP-PREPARE� tid � � � rditems�cmpitems�writems� from � do
11 active� active� ��tid � rditems�cmpitems�writems��
12 if try-read-lock�rditems� cmpitems� � fail or

try-write-lock�writems� � fail
13 then vote� BAD-LOCK

14 else if tid
 forced-abortthen vote� BAD-FORCED

15
�

forced-abortis used with recovery�
16 else ifcmpitemsdo not match datathen vote� BAD-CMP

17 elsevote� OK

18 if vote� OK then
19 data � readrditems
20 log �tid � � �writems� to disk and addtid to all-in-log list
21 else
22 data � �
23 release locks acquired above
24 send-reply �tid � vote�data� to �
upon receive�COMMIT � tid �action� from � do

�
action: true=commit, false=abort�

25 �rditems� cmpitems�writems� � find �tid � � � � � �� in active
26 active� active� ��tid � rditems�cmpitems�writems��
27 if tid
 all-in-log list then done� done� ��tid �action��
28 if actionthen applywritems
29 release any locks still held forrditems� cmpitems� writems

Figure 5: Sinfonia’s commit protocol for minitransactions.

the commit and recovery protocols. The server at mem-
ory nodes is a passive entity that keeps Sinfonia’s address
space.

4.2 Minitransactions
Recall that a minitransaction has read items, compare

items, and write items (Figure 2). The read items are lo-
cations to be read and returned; the compare items are lo-
cations to be tested against supplied data; the write items
are locations to be written if all comparisons succeed.

An application node executes a minitransaction using
the two-phase protocol in Figure 5. In the first phase, the
coordinator (application node) sends the minitransaction
to participant memory nodes. Each participant does the
following: (1) try to lock the address ranges in the mini-
transaction, (2) perform the compare items, and (3) vote
to commit if successful at (1) and (2), else vote to abort.
The second phase is like in the traditional protocol: the
coordinator tells participants to commit iff all votes are
to commit. A difference is that the coordinator never logs
any information, because it may crash and never recover.
Other details of the protocol will be explained as we dis-
cuss recovery.

Name Description On disk?

log minitransaction log Yes
active tids not yet committed or aborted No
forced-abort tids forced to abort (by recovery) Yes
done tids in log with outcome Lazily
all-in-log tids in log No

Figure 6: Data structures kept at participant memory nodes for recov-

ery and garbage collection.

4.2.1 Data structures for recovery and garbage col-
lection

Participants log minitransactions to disk in the first
phase (if logging is enabled according to Sinfonia’s
mode); logging occurs only if the participant votes to
commit. Only the participant’s vote and write items are
logged, not compare or read items, to save space. In
essence the log in Sinfonia serves as a write-ahead log.
We optimized the log using the skipping technique in
[10], in which consecutive writes to the log skip sectors
to avoid waiting for a full disk revolution.

To enable recovery and garbage collection, partici-
pants keep a setactive of outstanding transaction id’s
(tid� ��, a setforced-abortset of tid’s that must be voted
to abort, and a setdoneof finished minitransactions with
their tid and outcome. Figure 6 shows a summary of data
structures kept by participants for recovery.

4.2.2 Recovery from coordinator crashes
If a coordinator crashes during a minitransaction, it

may leave the minitransaction with an uncertain out-
come. To fix this problem, a recovery mechanism is
executed by a third-party, calledrecovery coordinator,
which runs at a dedicated management node for Sinfo-
nia. The recovery mechanism ensures the following: (A)
it will not drive the system into an unrecoverable state
if the recovery coordinator crashes; (B) it ensures cor-
rectness even if there is concurrent execution of recovery
with the original coordinator, if the original coordinator
is incorrectly deemed to have crashed; and (C) it allows
concurrent execution by multiple recovery coordinators.

Roughly speaking, recovery works by trying to abort
the outstanding minitransaction while respecting the fol-
lowing invariant:

(Invariant I) A minitransaction is committed iff all
participants have a yes vote in their log.

Thus, the recovery coordinator determines if each par-
ticipant has voted yes and, if not, forces the participant to
vote no (the participant adds the tid to theforced-abort
list). This is necessary to ensure properties (A), (B) and
(C) above. If all participants voted yes, the recovery co-
ordinator tells them to commit. Otherwise, it tells them
to abort.

How does the recovery coordinator get triggered in the
first place? We use theactive list of minitransactions.
Management nodes periodically probe memory nodes for
those minitransactions that have not yet committed for a
long time, and starts recovery for them.

6

4.2.3 Recovery from participant crashes
When a participant memory node crashes, the system

blocks until it comes back up1, at which time the mem-
ory node replays the log in order. To avoid replaying a
long log, there is aprocessed-pointervariable that gets
periodically written to disk, which indicates what parts
of the log are new; replay starts at this place. Not every
minitransaction in the log should be replayed, only those
that committed, which is determined by its presence in
the donelist or, if not there, by consulting the set� of
memory nodes that participated in the minitransaction.
This set� is stored in the log. Upon being consulted by
this procedure, if a memory node has not voted, then it
votes no. This is necessary for correctness of recovery
while a coordinator is still running.

4.2.4 Recovery from crash of the whole system
To recover from the crash of the whole system, each

memory node essentially uses the previously described
scheme to recover from its own crash, but uses optimiza-
tions that batches recovery of all memory nodes for better
efficiency.

4.2.5 Garbage collection
A memory node flushes dirty buffers to disk, in log

order, so that the log can be garbage collected. Garbage
collection respects the following property:

Minitransaction��� can be removed from the log
head only when��� has been applied to the disk im-
age ofeverymemory node involved in��� .

The reason for having “every” above is that if some
memory node� crashes and recovers, then� may need
to see��� at the log of other memory nodes to deter-
mine whether��� committed or aborted. To implement
the property, a memory node� periodically informs each
other memory node� of the minitransaction��� ’s that�
recently flushed and that� participated in.

Besides the log, the other data structures in Figure 6
are garbage collected as follows. Theall-in-log list, ac-
tive list, anddonelist are garbage collected with the log.
But theforced-abortlist has to be garbage collected in a
different way, as the following scenario shows. Suppose
that a coordinator becomes very slow before finishing the
first phase of a minitransactiontid. The system may then
consider the coordinator as crashed, and trigger recovery,
which then abortstid since not every participant voted
yes, and addstid to theforced-abortlist. Next, the sys-
tem garbage collectstid from the log of every memory
node. At this time, if the system garbage collectedtid
from theforced-abortlist, the original coordinator could
continue executing, thereby contacting participants that
completely forgot abouttid, which would then vote yes,
thinking it is a new minitransaction. The coordinator
would then ask to commit the minitransaction but some

1This is unlike two-phase commit for database systems, wherethe
coordinator may consider a dead participant as voting no.

participants do not even know what to commit. To solve
this problem, roughly speaking, we expire minitransac-
tions that are too old using epoch numbers that partici-
pants keep among themselves. This is reasonable since
minitransactions are short-lived. The scheme requires
participants (not coordinators) to have loosely synchro-
nized clocks, which is also reasonable since they are Sin-
fonia nodes.

4.2.6 Further optimizations
If a minitransaction has just one participant, it can be

executed in one phase because its outcome only depends
on that participant. Another optimization is forread-only
minitransactions, that is, minitransactions without write
items, which do not modify any data. For these, it is
not necessary for memory nodes to log the outcome of
the minitransaction to the log, because recovery is not
needed.

4.2.7 Replication
We use primary-backup to replicate a memory node,

if desired. The backup memory node is actively syn-
chronized within the two-phase protocol. The second
phase message is always forwarded to the backup. For
the first-phase message, after the primary memory node
gets the message, if it decides to vote yes then it for-
wards the message to synchronize the backup. This can
be done concurrently with writing to the log for effi-
ciency. The primary must wait for an acknowledgement
from the backup before reporting its yes vote to the coor-
dinator. The backup can acknowledge the primary with-
out waiting to log its own vote, because we are not trying
to tolerate the failure of both primary, the primary’s disk,
and the backup—a rare event. By doing so, we hide the
latency of synchronizing the backup.

4.3 Notifications
Notifications are relatively simple to implement:

memory nodes keep a list of active notifications and ev-
ery time a minitransaction of write occurs, it checks if a
notification should be triggered. For efficiency, the mem-
ory node keeps an interval list that indicates all ranges
covered by notifications, and this data structure can be
queried in time logarithmic on the number of notifica-
tions.

4.3.1 Fault tolerance
Notifications can survive crashes of memory nodes,

but they are not persistent across crashes of the appli-
cation nodes. The reason for this design choice is that if
the application wants such notifications, it can store them
in Sinfonia and retrieve it as it recovers.

To survive crashes of a memory node, when it recov-
ers it asks the application nodes to resend the notifica-
tions that are in place. To know which application nodes
to contact, a memory node keeps anotification-node-set,
which is logged to disk as incremental additions and re-
movals of nodes. Removals need not be logged immedi-

7

ately, because not doing so is a conservative action. De-
ferring logging of removals is important because if some
node later adds the same notification there is no need to
log the addition.

Log entries for notification-node-setare easy to
garbage collect: as soon as the disk image is updated,
all entries can be marked as ready for garbage collec-
tion. This scheme works because if a disk image of
notification-node-setis up-to-date then applying any suf-
fix of the log to the disk image leaves it unchanged.

4.4 Configuration
Applications refer to memory nodes using alogical

memory id, which is a small integer. In contrast, the
physical memory idconsists of a network address (IP ad-
dress) concatenated with an application id. The map of
logical to physical memory ids is kept at theSinfonia di-
rectory server; this map is read and cached by application
nodes when they initialize. This server has a fixed net-
work name (DNS name) and can be replicated for avail-
ability. The logical to physical memory id mapping is
static, except that new memory nodes can be added to
it. When this happens, the application must explicitly
recontact the Sinfonia directory server to obtain the ex-
tended mapping.

5 Application: cluster file system
We used Sinfonia to build a cluster file system called

SinfoniaFS, in which a set of cluster nodes share the
same files. SinfoniaFS is scalable and fault tolerant: per-
formance can increase by adding more machines, and the
file system continues to be available despite the crash of
a few nodes in the system; even if all nodes crash, data is
never lost or left inconsistent.

Cluster nodes use Sinfonia to store file system meta-
data and data, which include inodes, maps of free space,
chaining information with a list of data blocks for inodes,
and the contents of inodes. SinfoniaFS exports NFS v2,
and nodes in the cluster can mount its own NFS server
locally. All NFS servers export the same files.

In a nutshell, Sinfonia helps the design of the cluster
file system in four ways. First, nodes in the cluster need
not coordinate and orchestrate updates; in fact, they need
not be aware of each other’s existence. Second, clus-
ter nodes need not keep journals to recover from crashes
in the middle of updates. Third, cluster nodes need not
maintain the status of caches at remote nodes, which of-
ten requires complex protocols that are difficult to scale.
And fourth, the implementation can leverage Sinfonia’s
write ahead log for performance without having to im-
plement it again. We now provide details.

5.1 Data layout
Aspects similar to local file systems. Data layout

(Figure 7) is somewhat similar to that of a local file sys-
tem on a disk, except SinfoniaFS is laid out over several
Sinfonia memory nodes. Thesuperblockhas static in-

inode area

data block
area

superblock area

free block
bitmap area

memory
node 1

memory
node 2

memory
node 3

memory
node n

...

unusedunusedunused

Figure 7: Data layout for SinfoniaFS.

formation about the entire volume, like volume name,
number of data blocks, and number of inodes.Inodes
keep the attributes of files such as type, access mode,
owner, and timestamps.Data blocksof 16 KB each keep
the contents of files. Thefree block bitmapindicates
which data blocks are in use. Chaining-list blocks in-
dicate which blocks comprise a file; they are stored in
data blocks, and have pointers to the next block in the
list. Note that a 4 GB file requires only 65 chaining-list
blocks (each chaining block can hold 4095 block num-
bers), so we did not implement indirect blocks, but they
could be implemented easily. Directories and symbolic
links have their contents stored like regular files, in data
blocks.

Aspects unique to SinfoniaFS.Data block numbers
are not just integers, but pairs with a memory node id and
an offset local to the memory node. This enables a file
to have its contents spread over many memory nodes. It
also allows to add memory nodes to grow the file system
without affecting existing files. Similarly, inode numbers
are pairs with a memory node id and a local offset, which
allows a directory to point to inodes at many memory
nodes.

5.2 Making modifications and caching
Cluster nodes use minitransactions to modify file sys-

tem structures, like inodes and directories, while preserv-
ing their integrity.

Cluster nodes can cache arbitrary amounts of data or
metadata, including inodes, the free block bitmap, and
the content of files and directories. Because cache en-
tries get stale, they are validated against Sinfonia as
they are used. Validation occurs by adding compare
items to a minitransaction, to check that the cached ver-
sion matches what is in Sinfonia. For example, Fig-
ure 3 shows the implementation of NFS’s setattr, which
changes attributes of an inode. The compare item in line
6 ensures that the minitransaction only commits if the
cached version matches what is in Sinfonia. If the mini-
transaction aborts due to a mismatch, the cache is re-
freshed and the minitransaction is retried. This approach
is a type of optimistic concurrency control.

Operations that modify data always validate cache en-
tries against Sinfonia. For efficiency,read-onlyopera-
tions that involve cached entries refreshed recently (3
seconds in our experiments) execute without revalida-

8

(1) if local cache is empty then load it
(2) make modifications in local cache
(3) issue a Sinfonia minitransaction that checks the validity of local cache

using compare items, and updates information using write items
(4) if the minitransactions fails, check the reason why and, if appropriate,

reload mismatched cache entries and retry, or return an error indicator.

Figure 8: One minitransaction does it all: the above template shows

how SinfoniaFS implements any NFS function with 1 minitransaction.

(1) if file’s inode is not cache then load inode and chaining list
(2) find a free block in the cached free-block bitmap
(3) issue a minitransaction that checks iversion of

the cached inode, checks the free status of the new block, updates the
inode’s iversion and dversion, appends the new block to the inode’s
chaining list, and populates the new block

(4) if the minitransaction fails because the igeneration does not match
then return stale filehandle error
(5) else if failed because the iversion or dversion do not match

then reloads cache and retry
(6) else return success

Figure 9: Implementation of a write that appends to a file, requiring to

allocate a new block.

tion. This approach can result in slightly stale data be-
ing returned to readdir, read, lookup, or stat (getattr), but
such behavior is often seen with NFS.

In SinfoniaFS we could implement every NFS func-
tion with a single minitransaction. Figure 8 shows the
general template to do this, and Figure 9 shows a spe-
cific example.

5.3 Locality
In general, an inode, its chaining list, and its file con-

tents may all be stored in different memory nodes, but
Sinfonia tries to place them in the same memory node for
locality. This allows minitransactions to involve fewer
memory nodes, and provides better scalability of perfor-
mance, as shown by experiments.

5.4 Contention
There are two types of contention.Memory node

contentionoccurs when many application nodes access
the same memory node, but possibly different locations.
This could cause hot spots.Location contentionoc-
curs when accessing the same memory nodeand loca-
tion. This can cause minitransactions to abort, which
requires retrying. Optimistic concurrency control is not
ideal when this happens.

SinfoniaFS uses the following techniques to avoid
both forms of contention:

� Spread equivalent structures across memory nodes
to balance load.� When new items are allocated and contention is de-
tected, choose a random memory node on which to
allocate.

For example, if a cluster node cannot allocate a fresh
inode because another node just grabbed it, the first re-
tries allocation at a new random memory node. This

tends to spread load well if the file system is not nearly
full (which is often the case since storage is cheap), with-
out requiring cluster nodes to coordinate.

6 Application: group communication
We used Sinfonia to implement a simple group com-

munication service — a basic abstraction for the design
of fault-tolerant distributed applications [8] – that pro-
vides reliable multicast and membership services to a
collection of distributed entities in a system. These enti-
ties may be processes, threads or entire hosts, but we call
them processes.

6.1 Informal semantics
Intuitively, group communication [4] ensures that

members agree on a sequence for membership changes
and messages broadcast. A commonly agreed upon
membership is called aview. We say that a messagem
is broadcast in view v, if v is the last view seen by the
sender when the message is broadcast. Similarly, we say
thatm is received in view v, ifv is the last view seen by
the receiver before receivingm. The service guarantees
that each member that receives a messagem agrees on
the same last view and each member is part of that view.

An eventis either a data message or view change no-
tice. The group communication service guarantees that
there exists a total ordering of all events, such that the
following properties are satisfied. The safety property
specifies that every processp receives a gapless,prefixof
the event sequence starting from the first view in which
p appears. Moreover, for liveness, in failure-free condi-
tions, the prefix includes all events up to the exclusion
of p from a view (if p is never excluded, then it includes
all events). Ifp crashes, the prefix may end earlier. We
assume that processes can join the group once; to rejoin,
they obtain a new member id.

For a process to broadcast a message, it must be a
member of the latest view in the group. To receive a mes-
sage, it must be a member of the view in which the mes-
sage was sent. To join a group, a process invokes ajoin
call and eventually a view event, which includes the new
process, is received by all non-faulty group members.
This view event is the first event that the new member
receives from the service. For a process to be removed
from the group, aleaveoperation must be invoked either
by itself or by another process on its behalf, e.g., if it has
crashed. We assume that failure detection is a separate
service [6] used for removing failed members from the
latest view.

6.2 Design
We outline a simple design for group communication

using Sinfonia, and extend it to scale well with multiple
broadcasters.

To implement the group communication service us-
ing Sinfonia, a straightforward design employs a single,
large circular queue that contains all events in the sys-

9

tem. We store the queue on the Sinfonia memory nodes
and the total order among events is simply the order in
which they appear in the queue. We mediate each mem-
ber’s access to this queue using minitransactions to avoid
inconsistencies in the global sequence. To broadcast an
event, a writer finds the next empty location at the end
of the event sequence, i.e. thetail of the queue, and in-
serts the event at that location using a minitransaction. To
receive an event, a reader reads the event, using a mini-
transaction, from theheadof the queue, i.e. the location
following the location of the last received event. Further,
we stripe the queue across the memory nodes to allow
readers parallel access to different portions of the queue.

Note, in this design, each member may have a different
head location, but there is only one true global tail. Thus,
while this design scales well with the number of read-
ers, it fares poorly with increasing number of writers. As
writers simultaneously insert at the tail, all but one will
succeed, and the others must retry the entire broadcast
procedure until success. In order to reduce contention
for the tail location, we extend the above design as fol-
lows.

Instead of single queue, for each group member, we
maintain a separate, dedicated circular queue in which
only that member stores its events for broadcast. More-
over, we determine the total order by “threading” to-
gether events. Each event contains a “next” field indi-
cating the location of the next event in the total order. In
this design, to broadcast, a writer first installs a event at
tail of its queue, and since the queue is dedicated, a mini-
transaction is not needed. Then, the writer locates the
last event in the global sequence, call it the global tail,
and “threads” the new event into the global sequence by
updating the “next” field in the global tail to point to the
new event using a minitransaction. If unsuccessful, the
writer simply retries the “thread” portion of the broad-
cast. Since the writer does not have to reinstall the event
into the queue on a retry, this approach reduces the du-
ration that the global tail location is accessed, thereby
reducing contention for a broadcast. To receive an event,
a reader uses a minitransaction to read the “next” field
from the previously received event and retrieves the event
at that location. For simplicity, in this design, we assign
queues to memory nodes in round-robin fashion (queues
do not span memory nodes).

Join and leave operations reuse broadcast functional-
ity and in addition modify global metadata. We maintain
global metadata in Sinfonia memory space that records
the latest view and the location of each member’s queue.
In the join method, we first acquire a global lease on the
metadata so other membership changes cannot interfere.
We implement the global lease using a minitransaction
with a single compare-and-swap. Once acquired, we up-
date the view to include the new member, find the global
tail, and broadcast a view event. Once broadcast, we re-
lease the global lease. The leave operation is exactly the

same except the metadata reflects the absence of the re-
moved member.

6.3 Garbage collection
Once a process encounters a full queue, it must

garbage collect or free entries that all relevant processes
have consumed. To do so, each process needs an esti-
mate of the last event consumed from its queue by all
other processes in the latest view. To record this esti-
mate, we modify the read method to periodically post to
Sinfonia memory (for the currently reading process) the
location of the last event consumed for all queues in the
system. We perform garbage collection in the broadcast
method. Once a writer encounters a full queue, using
the estimates for its queue, it determines the earliest or
“minimum” of all events consumed by all other relevant
processes. The writer only considers the estimates from
processes in the latest view. All events from the queue’s
tail to the earliest consumed event can be safely removed
since processes insert and read queue entries in order and
we are certain all relevant processes are past the mini-
mum. The writer clears a fixed number of entries from
the tail up to the location of the minimum event in a sin-
gle minitransaction. After garbage collection, the writer
continues with the pending broadcast operation.

6.4 Some further optimizations
Finding the global tail in the broadcast, join, and leave

operations is non-trivial and potentially expensive. A
naive approach starts from a previous known position
in the global event sequence and walks through each
item one-by-one until encountering the end. This ap-
proach places a high overhead on writers, especially if
they prefer only to broadcast. To improve the search
for the global tail, with each successful thread opera-
tion, we publish the position of last threaded event for
that queue to Sinfonia shared memory. We also label
the last threaded event with a monotonically increasing
global sequence number (GSN) and publish that number
(on a per-queue basis) to Sinfonia memory space. When
searching for the global tail, we read the GSN of the last
threaded events for all queues and select the largest as
the global tail. This modification further reduces over-
head during broadcast operations.

In addition, we provide a non-blocking interface for
broadcast. This interface allows the writers to submit
multiple broadcast events and receive confirmation at a
later time. In this case, when we install the event into
the writer’s queue, we also thread that event to the last
unthreaded event, if any, in that queue. Thus, at any
time, each queue may contain, near its tail, a batch of
consecutive events strung together, yet unthreaded to the
global sequence. Threading these pending events to the
global sequence involves pointing the global tail’s next
field to the earliest unthreaded event and marking the last
installed event with the next GSN. Since the GSN is only
used to locate the tail, the intermediate unthreaded events

10

in the batch need not carry any GSNs. Also, if event sizes
are small, we further coalesce those events into a sin-
gle large event before installing the event into the queue.
This non-blocking interface allows the client to do use-
ful work and publish additional events during the time
other processes contend for the global tail. This approach
increases the number of events published per success-
ful thread operation, resulting in improved throughput.
Once successfully threaded, we post the confirmation of
the pending broadcasts to the client.

7 Evaluation
In this section, we evaluate Sinfonia and our two ex-

ample applications. Our testing infrastructure includes
up to 24 machines connected by Intel Gigabit Ethernet
interfaces. Each machine has a 1GHz Pentium 3 CPU
with 2GB of main memory, and two Seagate Cheetah
32GB SCSI disks (15K rpm, 3.6ms average seek time).
Each runs Fedora Core 3 with the Linux 2.6.9 kernel.

7.1 Sinfonia
We evaluated Sinfonia’s minitransactions in various

modes of operation, as described in Figure 4. We com-
pared base performance against an open-source, com-
mercial developer database library, BerkeleyDB version
version 4.3. BerkeleyDB is centralized, so to use it in a
distributed system we built a multithreaded RPC server
that waits for a populated minitransaction from a remote
client, and then executes it within BerkeleyDB.2 In this
experiment, we tested Sinfonia’s ability to scale and deal
with minitransactions that overlap causing contention.

7.1.1 Result: base performance
Figure 10 shows latency-throughput graph for a work-

load that repeatedly issues minitransactions, each with
32 items and minitransaction spread 1. Minitransac-
tion spread specifies the number of memory nodes that a
minitransaction touches. The Sinfonia experiments used
4 memory nodes. We started with a single application
node issuing such transactions repeatedly with at most
16 transactions outstanding at any time. We increased
the number of application nodes up to 6, each running
the above workload.

As can be seen, the four Sinfonia modes of operation
can reasonably trade off fault tolerance for performance,
and performance is comparable or better than Berke-
leyDB. We also did experiments where Sinfonia had only
one memory node, and in all modes of operation, Sinfo-
nia still performed well, in fact better than BerkeleyDB.

In another experiment we evaluated Sinfonia and
BerkeleyDB in an idle system with 1 memory node. We
had a single application node repeatedly issuing trans-
actions with at most 1 outstanding transaction at a time
with spread 1. Figure 11 shows the result. For Sinfo-
nia modes that involve disk (LOG and PB-LOG), perfor-

2BerkeleyDB also has its own RPC interface that allows the mini-
transactions to be executed from a remote site, but it performed poorly.

 0
 5

 10
 15
 20
 25
 30
 35

 0 100 200 300 400 500 600 700 800 900

la
te

nc
y

(m
s)

throughput (minitrans/s)

Sinfonia,RAM
Sinfonia,LOG
Sinfonia,PB
Sinfonia,PB-LOG
BerkeleyDB

Figure 10: Base performance of Sinfonia.

Mode RAM PB LOG PB-LOG BerkeleyDB

Minitrans latency (ms) 0.7 1.2 1.7 1.8 3.9
Throughput (minitrans/s) 1310 797 576 541 250

Figure 11: Base performance on an idle system.

mance is dictated by disk latencies. Sinfonia performs
better than BerkeleyDB because it optimize writes to the
log.

7.1.2 Result: scalability
We tested scalability of Sinfonia by measuring per-

formance as we varied the number of memory nodes.
Figure 12 shows minitransaction throughput with 2-12
memory nodes and 1-11 application nodes. Sinfonia was
in LOG mode. Minitransactions contained 4 items (512
bytes) with spread 2. Each application node issued 16
outstanding minitransaction at any time.

As can be seen, with a small number of application
nodes, there is little benefit in adding more memory
nodes since the system is under-utilized. With 11 clients,
as we vary from 2 to 16 memory nodes, performance
is at around 71% of linear scaling. Other experiments
with minitransaction spread 1 have near linear scalabil-
ity. Other Sinfonia modes have similar or better results.

Figure 13 shows minitransaction throughput as we
vary the number of memory nodes and spread. There
were 11 application nodes, Sinfonia was in LOG mode
and minitransactions had 32 items (4KB). Absolute
throughput is lower than in the previous experiment
because minitransactions were larger to allow higher
spread.

As can be seen, higher minitransaction spread is detri-
mental to scalability. We did not know this initially, but
in retrospect the explanation is simple: a minitransac-
tion incurs a high initial cost at a memory node but much
smaller incremental cost (with number of items), and so
spreading it over many nodes reduces overall system ef-
ficiency. Thus, to achieve optimal scalability, we obey
the following simple rule:

Across minitransactions, spread load. Within
a minitransaction, focus load.

In other words, one should strive for each minitransac-
tion to involve a small number of memory nodes, and
for different minitransactions to involve different nodes.
When we first built SinfoniaFS, we were getting no scal-

11

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

m
in

itr
an

s/
s

(x
10

00
)

memory nodes

11 app nodes
8 app nodes
4 app nodes
2 app nodes
1 app node
linear slope

Figure 12: Sinfonia scalability.

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12

m
in

itr
an

s/
s

(x
10

00
)

memory nodes

minitrans spread 2
minitrans spread=# memnodes

Figure 13: Effect of minitransaction spread on scalability.

ability, but after a redesign aimed at reducing spread,
scalability improved dramatically.

7.1.3 Result: contention
Figure 14 shows throughput as we vary the probabil-

ity that two minitransactions overlap, causing contention.
Sinfonia had 4 memory nodes, minitransactions consist
of 8 compare and 8 write items to perform a compare-
and-swap on 8 locations. The experiment was set up such
that the compares always succeeded, so that we can mea-
sure the efficiency of our commit protocol in isolation.
Minitransaction spread was 2. There were 4 applica-
tion nodes each with 16 outstanding minitransactions at a
time. To vary the probability of pairwise overlap, we var-
ied the range of items. For example, with range 1024, the
probability of pairwise overlap is� � � ���������� �� � � 	�
.

As can be seen, Sinfonia provides better throughput
than BerkeleyDB, even with high contention. We also
measured latency, and the results are qualitatively simi-
lar.

In another experiment, we used Sinfonia to increment
values atomically, by having a local cached copy of the
values at the application node, and using a minitransac-
tion to validate the cache and write the new value. Here,
a minitransaction may fail because a compare fails. In
this case, the application refreshed its cache and retried
the minitransaction. In this experiment, BerkeleyDB per-
formed better than Sinfonia with high probabilities of
collision, because Sinfonia had to retry multiple times,
whereas BerkeleyDB could just lock a location, read a
value, and write the new value. This is not surprising,
as optimistic concurrent control is known to be inferior
when optimism is rarely accurate. Thus, we design ap-
plications to avoid this situation.

 0
 100
 200
 300
 400
 500
 600
 700

 0.001 0.01 0.1

m
in

itr
an

s/
s

probability of pairwise overlap

Sinfonia,LOG
BerkeleyDB

Figure 14: Effect of minitransaction overlap on performance.

7.1.4 Result: ease of use
To evaluate ease of use, we report on our experience

in building two complex applications over Sinfonia, in-
cluding advantages and drawbacks. We found that the
main advantages of using Sinfonia were that (1) we never
had to worry about failures of nodes (e.g., application
nodes), (2) we did not have to develop any distributed
protocols and worry about timeouts, (3) in fact, applica-
tion nodes did not have to keep track of each other, and
(4) the correctness of the implementation could be veri-
fied by looking at a few places in the code and ensuring
that minitransactions maintained the invariants of shared
data structures. The main drawbacks were that (1) Sinfo-
nia’s address space is a low-level abstraction that we had
to carefully program with, (2) we had to design concur-
rent data structures that were efficient in the presence of
contention, an algorithmic problem.

As a quantitative measure of benefits of Sinfonia, we
implemented SinfoniaFS with about 2831 lines of C++
code and 1040 lines of additional glue code. We imple-
mented SinfoniaGCS with about 2817 lines of C++ code
and 505 lines of glue code.

7.2 Cluster file system
7.2.1 Result: ability to scale down

We first consider performance of SinfoniaFS at a small
scale, to ensure that we are scaling a system with reason-
able performance. The ability to “scale down” to small
sizes is also important for when a deployment is initially
small and grows over time.

We first ran SinfoniaFS with the Connectathon NFS
Testsuite, which is mostly a metadata intensive mi-
crobenchmark with many phases that exercises one or
two file system functions. We modified some phases to
increase the work by a factor of 10, shown in Figure 15,
because otherwise they execute too quickly.

Figure 16 shows the benchmark results for Sinfoni-
aFS compared to a Linux Fedora Core 3 NFS server,
where smaller numbers are better as then they indicate
smaller running time. We used NFSv2 protocol in both
cases, and the underlying file system for the NFS server
is ext3. Sinfonia was set to LOG mode (under “Sin-
foniaFS”) or PB-LOG mode (under “SinfoniaFS repli-
cated”) and the NFS server was set to synchronous mode
to provide data durability. As can be seen, SinfoniaFS
performs at least as well, sometimes better than Linux

12

Phase Description

1 create 605 files in 363 directories 5 levels deep

2 remove 605 files in 363 directories 5 levels deep

3 do a stat on the working directory 250 times

4 create 100 files, and changes permissions and stats
each file 50 times

4a create 10 files, and stats each file 50 times

5a write a 1MB file in 8KB buffers 10 times

5b read the 1MB file in 8KB buffers 10 times

6 create 200 files in a directory, and read the directory
200 times; each time a file is removed

7a create 100 files, and then rename and stat
each file 10 times

7b create 100 files, and link and stat each file 10 times

8 create 100 symlinks, read and remove them 20 times

9 do a statfs 1500 times

Figure 15: Connectathon NFS Testsuite modified for 10x work.

Phase Linux NFS SinfoniaFS SinfoniaFS replicated

1 14.21s 3.27s 3.73s

2 11.60s 3.62s 4.25s

3 0 0 0

4 82.96s 23.11s 25.94s

4a 0 0 0

5a 6.40s 4.54s 5.14s

5b 0.30s 0.30s 0.30s

6 2.60s 2.29s 2.36s

7a 25.11s 6.79s 6.99s

7b 16.72s 7.35s 7.54s

8 34.19s 18.68s 20.21s

9 0.50s 0.15s 0.15s

Figure 16: Results of Connectathon NFS Testsuite.

NFS. The main reason is that SinfoniaFS profits from
the sequential write-ahead logging provided by Sinfonia,
which is especially beneficial because Connectathon has
many operations that modify metadata. Note that phases
3, 4a, and 5b executed mostly in cache, so results are not
significant. SinfoniaFS-replicated performs close to Sin-
foniaFS because logging and the backup synchronization
happen simultaneously in Sinfonia (see Section 3), and
so the extra latency of replication is hidden.

Next, we ran a macro benchmark with a more balanced
mix of data and metadata operations. We modified the
Andrew benchmark to use as input tcl 8.4.7 source code,
which has 20 directories and 402 regular files with 16MB
total size. The benchmark has 5 phases: (1) duplicate the
20 directories 50 times, (2) copy all data files from one
place to one of the duplicated directories, (3) recursively
list the populated duplicated directories, (4) scan each
copied file twice, and (5) do a “make”.

Figure 17 shows the results, again comparing Sinfo-
niaFS with Linux NFS. As can be seen, Sinfonia per-
forms better in phase 1 because this phase modifies meta-
data intensively. In phases 2 and 4, SinfoniaFS performs
worse, as there is lots of data read and the current imple-
mentation of SinfoniaFS suffers from copying overhead,

Phase Linux NFS SinfoniaFS SinfoniaFS replicated

1 (mkdir) 22.7s 9.3s 9.8s

2 (cp) 50.2s 53.8s 55.9s

3 (ls -l) 4.9s 7.5s 7.6s

4 (grep + wc) 12.7s 16.8s 16.9s

5 (make) 106.5s 98.5s 99.5s

Figure 17: Results of Andrew benchmark.

as both Sinfonia and SinfoniaFS are in user space with-
out buffer-copying optimizations. Indeed, after a byte is
read from disk, a memory node sends it over the network
(user-to-kernel copy) to the SinfoniaFS server, which
processes it in user-space (kernel-to-user copy), and then
sends it via a local connection (user-to-kernel copy) to
the NFS client (kernel-to-kernel copy), which then hands
it to the application (kernel-to-user copy). A better im-
plementation would have both Sinfonia and SinfoniaFS
in kernel, would avoid copying buffers, and would use
VFS as the interface to SinfoniaFS instead of NFS. In
phase 3, Sinfonia also performs worse; besides the copy-
ing overhead, Sinfonia’s directory structure is very sim-
ple and not optimized for large directories. In phase 5,
Sinfonia performs slightly better as the benefits of the
write-ahead logging outweigh the copying overheads.

7.2.2 Result: ability to scale up
We ran scalability tests in which we vary the number

of memory nodes as we ran Andrew and Connectathon.
The first experiment considered a fairly loaded system,
where 12 cluster nodes ran the benchmarks together and
synchronized at each phase of the benchmark. The re-
sults for Andrew are shown in Figure 18, where the y
axis is the speed up compared to having just one mem-
ory node. As can be seen, the speed up is generous up to
4-6 memory nodes, after which there is a diminishing re-
turn (not shown) because the system is under-utilized, i.e.
capacity outweighs the offered load. The speed up for
different phases is different because they tax the memory
nodes differently. For example, phase 3 involved listing
directories, which are not implemented efficiently in Sin-
fonia, and so the speed up was the greatest.

The results for the Connectathon Testsuite were sim-
ilar: for most phases, the speed up was near linear for
up to 4 memory nodes, and started diminishing at differ-
ent points depending on the phase. The exceptions are
phases 3 and 4a, which always executed in 0 time, phase
5b (read), which executed in cache and had always the
same small execution time, and phase 9 (statfs), which
also had always the same small execution time.

We then ran scalability test for a lightly-loaded sys-
tem. We started with 1 memory node and 1 cluster node,
and increased the number of memory nodes and cluster
nodes together (ratio 1:1) to see if any system overhead
manifested itself in the larger system. Figure 19 shows
the results for the Andrew benchmark, where the y-axis
shows the duration of each phase relative to a system

13

 1

 2

 4

 8

 16

 0 1 2 3 4 5 6

sp
ee

d
up

of memory nodes

Andrew phase 1
Andrew phase 2
Andrew phase 3
Andrew phase 4
Andrew phase 5

Figure 18: Speedup of Andrew as function of number memory nodes

in a heavily-loaded system. Connectathon had similar results.

 0
 0.5

 1
 1.5

 0 2 4 6 8 10 12

re
la

tiv
e

pe
rf

.

system size

Andrew phase 1
Andrew phase 2
Andrew phase 3
Andrew phase 4
Andrew phase 5

Figure 19: Results of Andrew as we grow a lightly-loaded the system.

System size is the number of memory nodes which is equal to the

number of cluster nodes running Andrew simultaneously. The y-axis

is the duration of each phase relative to system size 1. Connectathon

had similar results.

with 1 memory node and 1 cluster node. As can be seen,
all curves are flat at y-value 1, which shows virtually no
overhead to the larger system. The results of Connec-
tathon were identical: all curves are flat at y-value 1.

7.3 Group communication service
To evaluate the scalability characteristics of our im-

plementation, we ran a simple workload, measured its
performance, and compared it with a publicly available
group communication toolkit, Spread [1]. In each exper-
iment, we had� writers broadcasting messages as fast as
possible and� readers reading messages as fast as possi-
ble. Each machine ran a single process, either a reader, a
writer, or a Sinfonia memory node. We report the aver-
age read throughput of messages for a single reader.

7.3.1 Result: base performance
In the first experiment, we observe how SinfoniaGCS

behaves as we vary the number of readers (Figure 20).
We fixed the number of writers to 4, the number of mem-
ory nodes to 4, and varied the number of readers from
1 to 8. SpreadGCS had 4 daemons, and each client had
their own machine, connecting to one of the daemons.
We see that the throughput drops only slightly, indicat-
ing that aggregate throughput for all readers increases
almost linearly. We also see that SinfoniaGCS is com-
petitive with SpreadGCS.

In the second experiment, we observe the behavior as
we vary the number of writers (Figure 21). We fixed the
number of readers to 4, number of memory nodes to 4,
and varied writers from 1 to 8. We see when there are
fewer writers than memory nodes, the throughput is be-
low the peak because each queue is on a separate mem-
ory node, so not all memory nodes are utilized. When
the writers exceed the number of memory nodes, we
see throughput decreases slightly because we reach the

 0
 5

 10
 15
 20

 0 1 2 3 4 5 6 7 8

m
sg

s/
s

(x
10

00
)

(a
vg

 p
er

 r
ea

de
r)

readers

SinfoniaGCS
SpreadGCS

Figure 20: SinfoniaGCS base performance as we vary # readers.

 0
 5

 10
 15
 20

 0 1 2 3 4 5 6 7 8

m
sg

s/
s

(x
10

00
)

(a
vg

 p
er

 r
ea

de
r)

writers

SinfoniaGCS
SpreadGCS

Figure 21: SinfoniaGCS base performance as we vary # writers.

write-capacity of the system, and additional writers im-
pose a slight overhead. We also see that SinfoniaGCS is
competitive with SpreadGCS.

7.3.2 Results: scalability
In the third experiment, we observe the scalability as

we increase the number of memory nodes (Figure 22).
We have 1 reader or 4 readers, 8 writers, and vary the
memory nodes from 1 to 8. This is similar to the previous
experiment, and we see that adding more memory nodes
increases capacity, thereby improving throughput. Yet,
throughput does not scale linearly because minitransac-
tions with high spread, e.g. searching for the tail, impose
increased overhead with additional machines.

In the fourth experiment, we observe the scalability
with total system size (Figure 22). The number of read-
ers, writers, and memory nodes are all the same. We
scale system size from 6 to 24 machines. We see that
at some point the system throughput does not increase
much further although we add more resources. This ef-
fect is because all readers receive all messages, so even-
tually readers are saturated regardless of availability ca-
pacity for the rest of the system.

8 Related work
Atomic transactions make a distributed system eas-

ier to understand and program, and were proposed as
a basic construct in several distributed systems such as
Argus [16], QuickSilver [22] and Camelot [24]. The
QuickSilver distributed operating system supports and
uses atomic transactions pervasively, and the QuickSil-
ver distributed file system supports atomic access to files
and directories on local and remote machines. Camelot
was used to provide atomicity and permanence of server
operations in the Coda file system [20] by placing the
metadata in Camelot’s recoverable virtual memory. This
abstraction was found to be useful because it simplified
crash recovery. However, they also found that the com-
plexity of Camelot led to poor scalability; later versions
of Coda replaced Camelot with the Lightweight Recov-
erable Virtual Memory [21], which dispensed with dis-
tributed transactions, nested transactions and recovery

14

 0

 5

 10

 15

 20

 0 1 2 3 4 5 6 7 8

m
sg

s/
s

(x
10

00
)

(a
vg

 p
er

 r
ea

de
r)

memnodes

1 reader
4 readers

Figure 22: SinfoniaGCS scalability we vary # memory nodes.

 0
 5

 10
 15
 20

 0 5 10 15 20 25

m
sg

s/
s

(x
10

00
)

(a
vg

 p
er

 r
ea

de
r)

system size

Figure 23: SinfoniaGCS scalability we vary total system size.

from media failures, providing only atomicity and per-
manence in the face of process failures. While this is
adequate for Coda, which provides only weak consis-
tency for file operations, distributed transactions, such as
those provided by Sinfonia, are highly desirable for many
distributed applications. The Mesa file system [19] in-
cluded a notification feature that allowed clients to be
notified whenever a file became available for access; Sin-
fonia’s notification service is more fine grained, since it
allows for notification on any range of bytes, and in re-
sponse to any access of those bytes.

Sinfonia’s minitransactions are inspired by work in
distributed shared memory (see, e.g., [2, 5, 9, 15]) and
multiprocessor shared memory [14, 23, 13, 11, 12]. Her-
lihy [14] proposed a hardware-based transactional mem-
ory for multiprocessor systems; a software implementa-
tion of this was proposed by Shavit and Touitou [23],
and more efficient implementations were proposed re-
cently [13, 11]. Minitransactions are a generalization
of the swap and compare-and-swap instructions, and of
the multiword compare-and-swap operation [12], which
were envisioned for multiprocessor shared memory sys-
tems.

Transaction support on a disk-based system was pro-
posed in Mime [7], which provided multi-sector atomic
writes and the ability to revoke tentative writes; however,
all the disks in Mime were accessed through a single con-
troller.

There is a rich literature on distributed file systems,
including several that are built over a high-level infras-
tructure designed to simplify writing distributed appli-
cations. The Boxwood project [17] builds a cluster file
system over a distributed B-tree abstraction. Boxwood
also shares with Sinfonia the goal of providing a high-
level abstraction for use by applications, but focusses on
abstractions to serve as the fundamental storage infras-
tructure. The Inversion File System [18] is built over a
Postgres database; this is a fairly complex abstraction,
and the performance of the file system was substantially
lower than a native NFS implementation.

Group communication [8] and virtual synchrony [4]
in particular is a basic abstraction for the design of fault-

tolerant distributed applications. Scalable diffusion pro-
tocols that are fairly reliable have been proposed (e.g.,
[3]), but require some external ordering mechanism. Sin-
fonia’s shared memory abstraction provides a medium
for reliable ordered information dissemination with some
scalability.

9 Conclusion
We proposed a new approach to build distributed

systems that draws ideas from database systems and
distributed shared memory—technologies that have not
been successfully applied to low-level applications
where performance is critical, such as file systems and
group communication. Sinfonia relies on a new form of
two-phase commit optimized for its assumptions. The
main benefit of Sinfonia is that it can shift concerns about
failures and parallel protocol design into an algorithmic
problem of designing concurrent data structures. We do
not believe that applications built with Sinfonia will nec-
essarily provide better performance than those built with-
out Sinfonia—indeed, the latter could just reimplement a
tailored version of Sinfonia and achieve at least as good
performance. However, we have shown that it is possi-
ble to obtain reasonably competitive designs if Sinfonia
is used properly.

References
[1] Y. Amir and J. Stanton. The spread wide area group com-

munication system. Technical Report CNDS-98-4, The
Johns Hopkins University, 1998.

[2] C. Amza et al. Treadmarks: Shared memory computing
on networks of workstations.IEEE Computer, 29(2):18–
28, 1996.

[3] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao,
M. Budiu, and Y. Minsky. Bimodal multicast.ACM
Transactions on Computer Systems, 17(2):41–88, 1999.

[4] K. P. Birman and T. A. Joseph. Exploiting virtual syn-
chrony in distributed systems. In11th ACM Symposium
on Operating Systhem Principles (SOSP), pages 123–
138, Austin, TX, USA, November 1987.

[5] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Imple-
mentation and performance of munin. InSOSP, pages
152–164, 1991.

[6] T. D. Chandra and S. Toueg. Unreliable failure detec-
tors for reliable distributed systems.Journal of the ACM,
43(2):225–267, March 1996.

[7] C. Chao et al. Mime: a high performance storage device
with strong recovery guarantees. Technical Report HPL-
CSP-92-9, Concurrent Systems Project, HP Laboratories,
Palo Alto, CA, Nov. 1992.

[8] G. V. Chockler, I. Keidar, and R. Vitenberg. Group com-
munication specifications: A comprehensive study.ACM
Computing Surveys, 33(4):1–43, December 2001.

[9] P. Dasgupta et al. The clouds distributed operating sys-
tem. IEEE Computer, 24(11):34–44, 1991.

[10] B. Gallagher, D. Jacobs, and A. Langen. A
high-performance, transactional filestore for application
servers. InSIGMOD, pages 868–872, 2005.

15

[11] T. Harris and K. Fraser. Language support for lightweight
transactions. InOOPSLA, pages 388–402, 2003.

[12] T. L. Harris, K. Fraser, and I. A. Pratt. A practical multi-
word compare-and-swap operation. InDISC, pages 265–
279, 2002.

[13] M. Herlihy, V. Luchangco, M. Moir, and W. Scherer.
Software transactional memory for dynamic-sized data
structures. InTwenty-Second Annual ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Com-
puting, July 2003.

[14] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
Proceedings of the Twentieth Annual International Sym-
posium on Computer Architecture, 1993.

[15] K. Li. Ivy: A shared virtual memory system for parallel
computing. InICPP, pages 94–101, Aug. 1988.

[16] B. Liskov. Distributed programming in argus.Commun.
ACM, 31(3):300–312, 1988.

[17] J. MacCormick et al. Boxwood: Abstractions as the
foundation for storage infrastructure. InOSDI, pages
105–120, 2004.

[18] M. A. Olson. The design and implementation of the in-
version file system. InUSENIX Winter, pages 205–218,
1993.

[19] L. G. Reid and P. L. Karlton. A file system supporting
cooperation between programs. InSOSP, pages 20–19,
1983.

[20] M. Satyanarayanan et al. Coda: A highly available file
system for a distributed workstation environment.IEEE
Trans. Computers, 39(4):447–459, 1990.

[21] M. Satyanarayanan et al. Lightweight recoverable virtual
memory.ACM Trans. Comput. Syst., 12(1):33–57, 1994.

[22] F. B. Schmuck and J. C. Wyllie. Experience with trans-
actions in quicksilver. InSOSP, pages 239–253, 1991.

[23] N. Shavit and D. Touitou. Software transactional mem-
ory. In PODC, pages 204–213, 1995.

[24] A. Z. Spector. Camelot: a distributed transaction fa-
cility for Mach and the Internet — an interim report.
Research paper CMU-CS-87-129, Carnegie Mellon Uni-
versity, Computer Science Dept., Pittsburgh, PA, USA,
1987.

