O}

invent
Building distributed applications using Sinfonia
Marcos K. Aguilera, Christos Karamanolis, Arif Merchant, Mehul Shah, Alistair Veitch
Information Services and Process Innovation Laboratory
HP Laboratories Palo Alto
HPL-2006-147
October 18, 2006*
distributed We present Sinfonia, a data sharing service that simplifies the design and
systems, implementation of distributed applications that need to be reliable and
scalability, fault scalable. At the core of Sinfonia is an efficient minitransaction primitive
tolerance that allows applications to manipulate shared state consistently, while

hiding concerns about fault-tolerance and concurrent execution. We show
how to use Sinfonia to build two different, complex applications: a
cluster file system and a group communication service. Our applications
scale well and achieve performance comparable to other implementations
built without Sinfonia.

* Internal Accession Date Only Approved for External Publication
© Copyright 2006 Hewlett-Packard Development Company, L.P.

Building distributed applications using Sinfonia

Marcos K. Aguilera Christos KaramandlisArif Merchant Mehul Shah Alistair Veitch
HP Laboratories, Palo Alto, California, USA

application application application application
node node node node

Abstract

We present Sinfonia, a data sharing service that sim-
plifies the design and implementation of distributed ap-
plications that need to be reliable and scalable. At the
core of Sinfonia is an efficient minitransaction primitive
that allows applications to manipulate shared state con-
sistently, while hiding concerns about fault-tolerance an
concurrent execution. We show how to use Sinfonia td i9ure 1: Sinfonia allows application nodes to share data consistently
build two different, complex applications: a cluster file " & Scalable and fault tolerant manner.
system and a group communication service. Our appli-
cations scale well and achieve performance comparablficiently share data with each other. Similar to database

user re_at_is/writes_
lib minitransactions X}
iorary notifications

memory memory memory
node node node

SINFONIA

to other implementations built without Sinfonia. systems, Sinfonia provides transactions that free the ap-
11 ducti plication writer from concerns of concurrent execution
ntroauction and partial updates due to failures. Similar to dis-

Distributed applications, such as cluster file systems;ibuted shared memory systems, Sinfonia provides a

and group communication SErvices, tend to haye a COmﬁne-grainedaddress spacewithout any structure such
plex design because they explicitly try to deal with ISSUES,5 schemas, tables, columns, and rows, which impose
of concurrency and node and network failures. Concuryyerhead

rency means that nodes execute simultaneously and with- gjn¢o g provides fault tolerance, if desired, in three
out constant awareness of what each other is doing. NOdﬁavorS' availability

. :) reliability, or both. Availability
and network failures can oceur at any time and, if no_t a(?'means that Sinfonia is available despite a small number
dressed properly, result in a fragile system that fails if

) - of failures. Availability is achieved by replicating the
any one of a number of its components fail.) nodes that implement Sinfonia, so that a backup node
In this paper, we propose a simpler way to build ap-.o, taye over if the primary fails. Reliability means that
plications distributed over a local area network (LAN), the data in Sinfonia is durable, that is, safe even if all

based on Sinfonia, a service that hides the complexit;hodeS in the system crash, say, due to power failures.
that comes from concurrent behavior and failures Wh”eReIiabiIity is achieved by logging data on disks.
providing scalable performance. In a nutshell, Sinfonia - gjntonia is intended for building distributed systems
allows nodes to share application data in an general, effig, 5y scale. so Sinfonia itself must scale. To do so, Sinfo-
cient, cpn5|stent, reliable, .and. scalable manner. . nhia has a distributed implementation over a set of nodes,
Services that allow application nodes to share data iNzalled memory nodeswhose number determine the ca-
clude database systems and distributed shared memopécity of the system.
[2. 5,9, 15]’ *?“t they lack t_h_e perfprmance needed fo Sinfonia provides three intuitive primitives to access
some applications where efficiency is vital. For example yi5. readiwrite, minitransactions, and notifications.
attempts to bl_md file systems on top of a database SysteRe g yrite retrieves or stores data at a contiguous ad-
[18] resulted in an ””‘%Sa‘?'e system due to poor perfo,rdress range. Minitransactions atomically perform condi-
mance. Fo_r suc_h applications, databe}se §ystems prov'qﬁ)nal updates of scattered address ranges. Minitransac-
more functionality than needed, resulting in performance;o g are serializable, even if minitransactions span mul-
overheads. Distributed shared memory tends t0 USe iy 1e memory nodes. To implement minitransactions ef-
pensive protocols to achieve fault tolerance and suffergioy an “algorithmic contribution of this paper is a
from network latencies. Thus, it is not a widely adopted ., type of two-phase commit protocol with associated
par§d|gm. , L recovery. Notifications provide callbacks when changes
Sinfonia provides a place for application nodes to ef-.c, in one or more address ranges. All Sinfonia primi-

*Work done while at HP Laboratories. Current affiliation is Watre. tives provide strong consistency guarantees.

Semantics:
{ read from memory node mem-id,
address addr, length len

The core principles underlying Sinfonia are to (1) pro-
vide operations that have loose coupling, to allow paral-
lel execution and obtain scalability, and (2) achieve fault
tolerance before scaling the system to avoid running ex-
pensive fault tolerant protocols over many nodes. ‘

We demonstrate Sinfonia by using it to build two com- se Semantics:
plex and very different applications: a cluster file system [remid[sddr[fen (1) retrieve data indicated by read
called SinfoniaFS and a group communication service set of write ftems o
called SinfoniaGCS. These applications are known to % (2) check data indicated by compare
be difficult to implement in a scalable and fault-tolerant : . _ L
fashion: systems achieving these goals tend to be very = | faueceleme b wite o oY data Indiated

[mem-id addr fen] data}f]
complicated and are the result of years of trial and error. [mem-iaadar e datalf]
Using Sinfonia, we built and optimized them in one or :

READ

Semantics:
[mem-id[addr]len] data) . .
{ menid]addrfen] dataf] write to memory node mem-id,

address addr, length len

WRITE

MINITRANSACTION

two months. In SinfoniaFS, Sinfonia holds file system ,§ set of nofification items —

data, and each node in the cluster uses minitransactions & [remiolasaTeras)] o eolback if contons of any item

to atomically retrieve and update file attributes and al- & D changes

locate and deallocate space. In SinfoniaGCS, Sinfonia

stores ordered messages broadcast by clients, and clients Figure 2: Primitives to access data in Sinfonia.

use minitransactions to add new messages to the order-

ing; notifications inform clients of new messages. are chosen to provide sufficient reliability for the target

Through experiments, we show that Sinfonia and itsapplication; disk choices vary from low-cost ones with
applications scale well and perform competitively with offline backup to high-end disk arrays with RAID.
other implementations. Sinfonia can execute thousands Our goal is to help build applications distributed over
of minitransactions per second at a reasonable latency set ofapplication nodesby providing new efficient
when running over a single node and the throughpubuilding blocks, services, or paradigms. These should
increases well with the number of nodes. Sinfoni-be (1)general that is, broadly applicable and useful for
aFS over a single memory node performs as well asnany applications, (Fowerfu| that is, it allows to build
an NFS server and, unlike an NFS server, SinfoniaFSartifacts that are hard to build without it, (8asy-to-usg
can scale. SinfoniaGCS performs comparably to Spreathat is, intuitive or quickly understood, and (Bason-
[1], a well-known high-performance implementation of ably efficientfor its intended uses.
a group communication service. We target low-level and middleware applications, like
a file system, a lock manager, a group communication

2 Assumpﬂons a_nd goals] layer, or a metadata service, or other layers between the
We consider a distributed system with nodes that Caperating system and user applications.

communicate by passing messages over a network. We
focus on local area networks, such as available in dat@ \What Sinfonia provides

centers, which for our purposes are networks with the - sinfonia provides a service for application nodes to
following properties: share data by keeping it at one of a set of memory nodes,

e Users are reasonably trustworthy, rather than maliwhich are logically separate from application nodes.

cious. Access control is an orthogonal concern thafMemory nodes are commodity off-the-shelf computers
could be incorporated in Sinfonia, but we have notconnected to the network, and they are made fault toler-

done so. ant through the Sinfonia protocols, if desired.
o Network delays are within a few orders of magni- Primitives to access dataEach memory node keeps a

tude of each other, and do not vary wildly at each in-S€duénce of raw or uninterpreted words of some standard

stant as in a completely asynchronous environmen

ize, like 8 or 32 bits (in this paper, words have 8 bits).
o Network partitions are not frequent and, when they hose words are organized aroundagklress spacsuch
do occur, it is acceptable to pause applications.

that data in Sinfonia can be globally referenced through

] o a pair (memory-node-idgaddres$. Applications access

These assumptions are not true in wide area networkgjata using three primitives (Figure 2), described next.

peer-to-peer environments, or the Internet as awhole. Read/writeallows applications to read or write a con-
The system is subject to failures: a node may CraShiguous address range orsimglememory node.

sometimes and more rarely all nodes may crash, say Minitransactionsare a key mechanism to simplify

due to a power outage, and failures may occur at unbuilding of applications. They are an extension of the

predictable times. We do not consider byzantine fail-read-write service that allows applications to manipulate

ures. Disks providestable storagewhich means disks data that can be scattered around many memory nodes,

! Se‘da;"{(i”o-‘ inadeNumber, sattr_t newAtiributes){ application provides data to be initially compared against
, inode = get(inodeNumber); # get inode from inode cache; the addre;s range, and if compgrisqn fails, notifi.cation _is
. newiversion = inode—> iversion+1; triggered immediately. The application chooses if a noti-
. t= new Minitransaction: fication ispermanentmeaning that it remains active after
6 t->>cmp(MEMNODE(inode), ADDR_IVERSION(inode), it is triggered, oitransient meaning that it gets canceled
LEN_IVERSION, &inode—>>iversion); // check inode iversion after being triggered once. The app”cation also chooses
7 t->write(MEMNODE inode), ADDR_INODE inode), whether a notification should return the contents of the
LEN.INODE, &newAttriutes); - / update attrioutes data when it is triggered. Sinfonia providestification
8 t=>write(MEMNODE(inode), ADDR_IVERSION(inode), L .
LEN_IVERSION, &newiversion). // bump iversion batchesso that the application node can install and can-
. status = t->commit(); cel many npuﬁpauons at once, to avoid multiple rounds
10 if (status ==fail) . .. // reload inodeNumber into cache of communication.
1} while (status == fail); } Fault tolerance. Crashes of application nodes never

affect the data kept in Sinfonia, as outstanding writes or

Figure 3: Box shows code to create and commit a minitransaction to
minitransactions either complete or get aborted. In addi-

change an inode’s attributes in SinfoniaFS. Lines 6-8 merely populate

the minitransaction, without communication with memory nodes untii tion, for memory nodes, which keep important applica-
line 9. tion data, Sinfonia provides two different forms of fault
tolerance:

and can do satomically The philosophy, borrowed
from database systems, is to always keep data in Sin-
fonia in a consistent state, and use minitransactions to
avoid partial updates due to failures, or interleaved ac-
cess due to concurrent execution. In designing mini-
transactions, we had to balance two opposing factors: ef-
ficiency (how fast minitransactions execute) and power
(how much work they do). We chose a short-lived type
of minitransactions that execute quickly but are powerful
enough to support optimistic concurrency control at ap-
plications. More precisely, a minitransaction has a 0 or The goal is to ensure data is always preserved, and
more read items, compare items, and write items, wher¢he system remains available even when there is a small
each item refers to an address range at a specified memumber of failures. To do so, Sinfonia uses three mecha-
ory node. A minitransaction will return the data in all nisms,disk imagesdisk logging andreplication These
read items, test each compare item for equality with proimechanisms can be individually disabled to trade off
vided values, and if all comparisons match, write the datdault tolerance for performance and fewer machines. A
in all write items; compare items have a flag indicating disk image keeps a copy of the data at a memory node;
whether, if the comparison fails, the actual data should béor efficiency, the disk image is written asynchronously
returned (i.e., the comparison item becomes a read itemand so it may be slightly out of date. To compensate
Minitransactions are serializable, as expected. Commofor that, a disk log is used, whereby updates to mem-
uses of a minitransaction include (1) swap data by havingry get logged on disk; writes to the log are sequential
no compare items and setting the locations of read andnd done synchronously, that is, before acknowledging
write items to be the same, (2) compare-and-swap dataompletion of a minitransaction. Logging is borrowed
by having no read items, (3) atomically write to many from databases, but we streamlined it for use in Sinfo-
memory nodes, by having several write items but nonia, as we describe in Section 4. When a node recovers
read or compare items, or (4) atomically read from manyfrom a crash, the log is used to update the disk image
memory nodes, by having no compare or write items.using arecovery algorithm recovery is logically trans-
Minitransactions can be started, executed, and commitparent to users of the system, but requires some time
ted all in just one or two network round-trips. One reasonto execute, which translates into unavailability. To pro-
they are efficient is that minitransactions ataticrather vide high availability, Sinfonia supports primary-backup
than interactive or long-lived. Figure 3 shows how an ap-replication of memory nodes with a hot backup, which
plication node of SinfoniaFS implements a set attributeis kept updated synchronously. If a memory nodes fall,
operation using a minitransaction with one compare itenthe backup can take over without downtime. For per-
and two write items (no read items). formance, the backup node and the log of the primary
Notificationsprovide a callback from a memory node are written concurrently, while the log of the backup is
to an application node if some location within a specifiedupdated asynchronously (which sacrifices the ability to
address range is updated (with any value). To avoid racelerate a failure of the primary, of its log disk, and of
conditions, in which the location is updated by anotherthe backup simultaneously, a rare situation). Figure 4
application node right before notification is installede th shows the results of various combinations of enabling or

e Masking independent failuredf few nodes crash,
Sinfonia masks the failures so that the system con-
tinues working with no downtime.

e Preserving data on correlated failureslf many
nodes crash in a short period, for example due to
a power outage, Sinfonia ensures that data is not
lost, but the system may become unavailable until
enough nodes come back up and execute a recovery
procedure.

4

| “é"’dev g [:AkM - | ZBk _ | zof | E_BSOG | more compact code than message-passing This paper
escription ISK 0 ISK O ISk on ISK on H .
log off log off log on log on draws two lessons from this effort:
repl. off repl. on repl. off repl. on ; ; : :
R T s Tav i er e Faithful simulation of shared memory resul'_cs in
mem node 2 disks 4 disks poor performanceAttempts to provide abstractions
Faul eapp crash | eapp crash eapp crash eapp crash identical to shared memory failed to achieve ade-
tolerance efew memnode eallmemnode efew memnode .
crashes crashes with crashes quate performance because of network latencies and
downtime eallmemnode expensive protoco]s_
crashes with . .
it e Relaxed consistency to improve performance leads
Performance || first second third fourth to hard-to-use modelsPerformance of DSM can

be improved by relaxing the consistency provided
to permit aggressive caching. However, this means
that a write is not always visible, and reads return
inconsistent data. This makes it hard to understand,

Figure 4: Trading off fault tolerance for amount of resources and per-
formance. Each column is a mode of operation for Sinfonia. “Repl”
is replication. "App crash’ means it can tolerate crashes of any num-
ber of application nodes. 'Few memnode crashes’ means tolerating

crashes of memory as long as both primary and backup do not crash. develop, and debug applications.
‘Downtime’ refers to the system blocking until recovery, but no data is Based on these lessons, Sinfonia provides an abstrac-
lost. For exact performance numbers see Section 7.1.1. tion quite different from traditional shared memory, in-

disabling the ab hani Which binati . tended to deal with network latencies. Indeed, minitrans-
ISabling the above mechanisms. Ich COMDBINAUON 13, ;g package together many accesses to scattered lo-

L a
used depends on the nee_ds of the apphcgtlory. We testec(gtions, and this can hide network latencies; and notifi-
both extremes with two different applications: Sinfoni- cations avoids repeated polling over the network
aFS uses PB-LOG, while SinfoniaGCS uses RAM. At the same time, Sinfonia provides strong consis-

Sca}lablllty. Sinfonia can increase its capacity by in- tency for ease of use: minitransactions are serializable
creasing the number of memory nodes. Applications can, 4 durable and they take effect immediately.
adjust the placement of data to load balance the memory '

nodes, which is gen_erally not a problem sin_ce_all mem-4 Sinfonia implementation and algorithms
ory nodes are functionally equivalent. Achieving opti- ap gigorithmic contribution of our work is a new type
mal sgalablllty depends on the ability of th.e appll_canon of two-phase commit optimized for Sinfonia to provide
to avoid hot spots, a well known problem in distributed (44 performance and fault tolerance. In traditional two-

systems that we do not solve in its full generality. Butwe .- <o commit. a coordinator runs the protoaftér exe-
demonstrate how we addressed this problem for the tWe,ing 41 of the transaction’s actions: if the coordinator

applications that we built, when we describe them. crashes, the system has to block until the coordinator re-
Principles _and rationale. Sinfonia’s design are based .jvars. In our two-phase protocol, the coordinator can
on the f_oIIowmg. start, execute, and commit a minitransaction, all in two
Principle 1. Get scalability by reducing or eliminating hases. Furthermore, if the coordinator crashes, the sys-
coupling. Coupling refers to the interdependence that 0pem can recover without it. This is important because in
erations have on one other, which precludes parallel exgjnfonia the coordinators are application nodes, not Sin-
ecution and hence prevents scalability through distribuz,ia nodes. and so they may be unstable or subject to
tion. Sinfonia avoids coupling by providing a low-level epqots. There is a trade-off with our protocol, however:

address space where locations are independent of eaghy icinantscrash the system blocks until participants

other. For example, minitransactions can execute in Patzgcqyer. This is not a concern for Sinfonia because par-
allel as long as their locations do not overlap.

o i ticipants are memory nodes that keep application data, so
P_r|nC|pIe_2. Get faullt tolerance before scalingVe they go down, the system has to block anyways.
avoid running expensive fault tolerant protocols over

| . Our commit protocol has new recovery and garbage
many nodes, by instead making fault-tolerant the low- P y g d

e \ collection procedures to go with it, which reflect its dif-
level components (the memory nodes in Sinfonia) antg ent failure assumptions.

scaling the system by adding more of them. Thus, the "\ye now explain the basic architecture of Sinfonia’s

overhead of fault tolerance remainslocal. ~ ~ jppjementation and then describe the commit protocol
Lessons from distributed shared memor@infonia 4,4 notifications.

also draws lessons from the long line of work in dis-

tributed shared memory and multiprocessor memory, ad.1 Basic architecture

distributed shared memory can be seen as a service to Implementation of Sinfonia has two parts: A user li-

share data, like Sinfonia. brary running at application nodes provides the interface
Distributed shared memory originated from the effort to applications, while a server running at memory nodes

to simulate shared memory over message-passing (e.&keep the data in Sinfonia (Figure 1). The user library

[2, 5,9, 15]), as shared memory provides a higher-leveprovides the Sinfonia API to applications; it implements

and easier-to-use abstraction, allowing for simpler andlistributed protocols for the Sinfonia services, inclygin

Code for coordinator p:
To execute minitransactiofrditems cmpitemswritems

1 tid < unique identifier

{ Phase &
2 D « set of memory nodes referredrgitemsU cmpitemsJ writems
3 pfor eachg € D do { pfor is a parallel for}
4 send(LOCK-CMP-PREPARE tid, D,

mwq(rditems , 74 (cmpitems, m, (writems)) to ¢

5 { 74 denotes the projection to the items handledyby
6 replies <— wait for replies from all nodes i
7 { Phase 2
8 if Vg € D : repliedq].vote= ok thenaction +— TRUE
9 elseaction <— FALSE

pfor eachg € D do send(commiT, tid, action) to ¢
{ can always return without waiting for reply agommIT }

Code for each participant memory nodeg:

upon receive(LOCK-CMP-PREPARE tid, D, rditems cmpitemswritems from p do
11 active < activeU {(tid, rditems cmpitemswritems }
12 if try-read-locK rditemsu cmpitem$ = fail or
try-write-lock(writems = fail
then vote «+— BAD-LOCK
else iftid € forced-abortthen vote <— BAD-FORCED
{ forced-abortis used with recovery
else ifcmpitemgdo not match datéhen vote < BAD-CMP
elsevote +— ok
if vote= ok then
data < readrditems
log (tid, D, writems) to disk and addid to all-in-log list
else
data< 0
release locks acquired above
send-reply (tid, vote data) to p

upon receive(COMMIT, tid, action) from p do { actiont true=commit, false=aboit
25 (rditems cmpitemswritems <« find (tid, *, *, %) in active

26 active +— active— {(tid, rditems cmpitemswritems }

27 if tid € all-in-log list then done <« doneuU {(tid, action) }

28 if actionthen applywritems

29 release any locks still held foeditemsuU cmpitemsJ writems

13
14
15
16
17
18
19
20
21
22
23
24

Figure 5: Sinfonia’s commit protocol for minitransactions.

Name Description On disk?
log minitransaction log Yes
active tids not yet committed or aborted No
forced-abort | tids forced to abort (by recovery) Yes
done tids in log with outcome Lazily
all-in-log tids in log No

Figure 6: Data structures kept at participant memory nodes for recov-
ery and garbage collection.

4.2.1 Data structures for recovery and garbage col-
lection

Participants log minitransactions to disk in the first
phase (if logging is enabled according to Sinfonia’s
mode); logging occurs only if the participant votes to
commit. Only the participant’s vote and write items are
logged, not compare or read items, to save space. In
essence the log in Sinfonia serves as a write-ahead log.
We optimized the log using the skipping technique in
[10], in which consecutive writes to the log skip sectors
to avoid waiting for a full disk revolution.

To enable recovery and garbage collection, partici-
pants keep a sedctive of outstanding transaction id’s
(tid's), a setforced-abortset of tid’s that must be voted
to abort, and a setoneof finished minitransactions with
theirtid and outcome. Figure 6 shows a summary of data
structures kept by participants for recovery.

4.2.2 Recovery from coordinator crashes

If a coordinator crashes during a minitransaction, it
may leave the minitransaction with an uncertain out-
come. To fix this problem, a recovery mechanism is
executed by a third-party, callegcovery coordinatqr
which runs at a dedicated management node for Sinfo-
nia. The recovery mechanism ensures the following: (A)
it will not drive the system into an unrecoverable state

the commit and recovery protocols. The server at memif the recovery coordinator crashes; (B) it ensures cor-
ory nodes is a passive entity that keeps Sinfonia’s addresgctness even if there is concurrent execution of recovery

space.

4.2 Minitransactions

Recall that a minitransaction has read items, compare Roughly speaking
items, and write items (Figure 2). The read items are 10y, gutstandin ’
cations to be read and returned; the compare items are |

with the original coordinator, if the original coordinator

is incorrectly deemed to have crashed; and (C) it allows
concurrent execution by multiple recovery coordinators.
recovery works by trying to abort
g minitransaction while respecting the fol-

f5wing invariant:

cations to be tested against supplied data; the write items

are locations to be written if all comparisons succeed.

An application node executes a minitransaction using

(Invariant 1) A minitransaction is committed iff all
participants have a yes vote in their log.

the two-phase protocol in Figure 5. In the first phase, the Thus, the recovery coordinator determines if each par-
coordinator (application node) sends the minitransactioricipant has voted yes and, if not, forces the participant to
to participant memory nodes. Each participant does theote no (the participant adds the tid to tfeeced-abort
following: (1) try to lock the address ranges in the mini- list). This is necessary to ensure properties (A), (B) and
transaction, (2) perform the compare items, and (3) votgC) above. If all participants voted yes, the recovery co-
to commit if successful at (1) and (2), else vote to abort.ordinator tells them to commit. Otherwise, it tells them
The second phase is like in the traditional protocol: theto abort.

coordinator tells participants to commit iff all votes are How does the recovery coordinator get triggered in the
to commit. A difference is that the coordinator never logsfirst place? We use thactive list of minitransactions.
any information, because it may crash and never recoveManagement nodes periodically probe memory nodes for
Other details of the protocol will be explained as we dis-those minitransactions that have not yet committed for a
CUSS recovery. long time, and starts recovery for them.

4.2.3 Recovery from participant crashes participants do not even know what to commit. To solve
When a participant memory node crashes, the systerthis problem, roughly speaking, we expire minitransac-
blocks until it comes back dpat which time the mem- tions that are too old using epoch numbers that partici-
ory node replays the log in order. To avoid replaying apants keep among themselves. This is reasonable since
long log, there is grocessed-pointevariable that gets minitransactions are short-lived. The scheme requires
periodically written to disk, which indicates what parts participants (not coordinators) to have loosely synchro-
of the log are new; replay starts at this place. Not everynized clocks, which is also reasonable since they are Sin-
minitransaction in the log should be replayed, only thosefonia nodes.
that committed, which is determined by its presence in L
the donelist or, if not there, by consulting the sé of 4.2.6 Further optimizations

memory nodes that participated in the minitransaction.e chigén;:%r;zacﬂggehgz é;j;(e)?tes giz:lglr?;n;’nllt %aen gﬁ ds
This setD is stored in the log. Upon being consulted by P y dep

this procedure, if a memory node has not voted, then it that participant. Another optimization is fead-only

votes no. This is necessary for correctness of recover initransactionsthat is, minitransactions without write
while acbordinator is still running tems, which do not modify any data. For these, it is

not necessary for memory nodes to log the outcome of

4.2.4 Recovery from crash of the whole system the minitransaction to the log, because recovery is not
To recover from the crash of the whole system, eaciheeded.

memory node essentially uses the previously descrlbeg'z7 Replication

scheme to recover from its own crash, but uses optimiza- "y |;se primary-backup to replicate a memory node
tions that batches recovery of all memory nodes for betterf desired. The backup memory node is actively syn-'

efficiency. chronized within the two-phase protocol. The second
4.2.5 Garbage collection phase message is always forwarded to the backup. For

A memory node flushes dirty buffers to disk, in log the first-phase message, after the primary memory node

order, so that the log can be garbage collected. Garbad#ets the message, if it decides to vote yes then it for-
collection respects the following property: wards the message to synchronize the backup. This can

be done concurrently with writing to the log for effi-
ciency. The primary must wait for an acknowledgement
from the backup before reporting its yes vote to the coor-
dinator. The backup can acknowledge the primary with-

The reason for having “every” above is that if some out waiting to log its own vote, because we are not trying
memory nodey crashes and recovers, themmay need to tolerate the failure of both primary, the primary’s disk,
to seetid at the log of other memory nodes to deter- and the backup—a rare event. By doing so, we hide the
mine whethertid committed or aborted. To implement |atency of synchronizing the backup.
the property, a memory nogeperiodically informs each
other memory node of the minitransactiortid’s thatp
recently flushed and thatparticipated in.

Besides the log, the other data structures in Figure
are garbage collected as follows. Tal&in-log list, ac-
tive list, anddonelist are garbage collected with the log.

Minitransactiontid can be removed from the log
head only whertid has been applied to the disk im-
age ofevery memory node involved imid.

4.3 Notifications

Notifications are relatively simple to implement:
gnemory nodes keep a list of active notifications and ev-
ery time a minitransaction of write occurs, it checks if a
notification should be triggered. For efficiency, the mem-

But theforced-abortlist has to be garbage collected in a ory node keeps_, an _interval list t_hat indicates all ranges
different way, as the following scenario shows. Supposecove.reOI _by _not|f|cat|o_ns, gnd this data structure can be
that a coordinator becomes very slow before finishing theq.uerled in time: logarithmic on the number of notifica-
first phase of a minitransactidgid. The system may then tions
consider the coordinator as crashed, and trigger recovery, 3.1 Fault tolerance
which then abortdid since not every participant voted Notifications can survive crashes of memory nodes,
yes, and addtd to theforced-abortlist. Next, the sys- byt they are not persistent across crashes of the appli-
tem garbage collectsd from the log of every memory cation nodes. The reason for this design choice is that if
node. At this time, if the system garbage collected the application wants such notifications, it can store them
from theforced-abortlist, the original coordinator could in Sinfonia and retrieve it as it recovers.
continue executing, thereby contacting participants that To survive crashes of a memory node, when it recov-
completely forgot abouid, which would then vote yes, ers it asks the application nodes to resend the notifica-
thinking it is a new minitransaction. The coordinator tions that are in place. To know which application nodes
would then ask to commit the minitransaction but someto contact, a memory node keepaatification-node-set
1This is unlike two-phase commit for database systems, wihere ~ Which is logged to disk as incremental additions and re-
coordinator may consider a dead participant as voting no. movals of nodes. Removals need not be logged immedi-

ately, because not doing so is a conservative action. De-*Pelockarea ; [unused | [unused] _[unused |
ferring logging of removals is important because if some inode area !
node later adds the same notification there is no need to tree block R] o I ;
log the addition. bitmap area ! :
Log entries for notification-node-setare easy to i
garbage collect: as soon as the disk image is updated, %220 r/\j r/\j (/\T r/ﬁ
all entries can be marked as ready for garbage collec- - - - -- :
tion. This scheme works because if a disk image of Mode? modsd nodes noden
notification-node-sds up-to-date then applying any suf-
fix of the log to the disk image leaves it unchanged. Figure 7: Data layout for SinfoniaFs.
4.4 Configuration formation about the entire volume, like volume name,

Applications refer to memory nodes usingagiical number of data blocks, and number of inodésodes
memory id which is a small integer. In contrast, the keep the attributes of files such as type, access mode,
physical memory idonsists of a network address (IP ad- owner, and timestamp®Bata blocksof 16 KB each keep
dress) concatenated with an application id. The map ofhe contents of files. Thé&ee block bitmapndicates
logical to physical memory ids is kept at tBinfonia di- which data blocks are in use. Chaining-list blocks in-
rectory serverthis map is read and cached by applicationdicate which blocks comprise a file; they are stored in
nodes when they initialize. This server has a fixed net-data blocks, and have pointers to the next block in the
work name (DNS name) and can be replicated for availlist. Note that a 4 GB file requires only 65 chaining-list
ability. The logical to physical memory id mapping is blocks (each chaining block can hold 4095 block num-
static, except that new memory nodes can be added tbers), so we did not implement indirect blocks, but they
it. When this happens, the application must explicitly could be implemented easily. Directories and symbolic
recontact the Sinfonia directory server to obtain the exdinks have their contents stored like regular files, in data

tended mapping. blocks.
o) Aspects unique to SinfoniaFSData block numbers
5 Application: cluster file system are not just integers, but pairs with a memory node id and

We used Sinfonia to build a cluster file system calledan offset local to the memory node. This enables a file
SinfoniaFS, in which a set of cluster nodes share theo have its contents spread over many memory nodes. It
same files. SinfoniaFS is scalable and fault tolerant: peralso allows to add memory nodes to grow the file system
formance can increase by adding more machines, and thgithout affecting existing files. Similarly, inode numbers
file system continues to be available despite the crash cdre pairs with a memory node id and a local offset, which
a few nodes in the system; even if all nodes crash, data isllows a directory to point to inodes at many memory
never lost or left inconsistent. nodes.

Cluster nodes use Sinfonia to store file system meta- . . .
data and data, which include inodes, maps of free spacé'2 Making mOd'f'C"’_‘t',ons and_ caching e o
chaining information with a list of data blocks for inodes, Cluster nodes use minitransactions to modify file sys-
and the contents of inodes. SinfoniaFS exports NFS VZEem str_uqtures_, like inodes and directories, while preserv
and nodes in the cluster can mount its own NFS servefnd their integrity. .

Cluster nodes can cache arbitrary amounts of data or

locally. All NFS servers export the same files. . S ;
In a nutshell, Sinfonia helps the design of the clusternetadata, including inodes, the free block bitmap, and

file system in four ways. First, nodes in the cluster need!® content of files and directories. Because cache en-
not coordinate and orchestrate updates; in fact, they nedfi€S 9et stale, they are validated against Sinfonia as
not be aware of each other's existence. Second, cludl€y are used. Validation occurs by adding compare
ter nodes need not keep journals to recover from crashdl€MS$ 0 a minitransaction, to check that the cached ver-
in the middle of updates. Third, cluster nodes need noflON Maiches what is in Sinfonia. For example, Fig-

maintain the status of caches at remote nodes, which ofi'® 3 shows the implementation of NFS’s setattr, which
ten requires complex protocols that are difficult to scale changes attributes of an inode. The compare item in line
6 ensures that the minitransaction only commits if the

And fourth, the implementation can leverage Sinfonia’s i oo : o
write ahead log for performance without having to im- cached version matches what is in Sinfonia. If the mini-
transaction aborts due to a mismatch, the cache is re-

plement it again. We now provide details. e e) ;
freshed and the minitransaction is retried. This approach
5.1 Data layout is a type of optimistic concurrency control.

Aspects similar to local file systems. Data layout Operations that modify data always validate cache en-
(Figure 7) is somewhat similar to that of a local file sys- tries against Sinfonia. For efficiencggead-onlyopera-
tem on a disk, except SinfoniaFS is laid out over severations that involve cached entries refreshed recently (3
Sinfonia memory nodes. Thauperblockhas static in- seconds in our experiments) execute without revalida-

(1) if local cache is empty then load it

(2) make modifications in local cache

(3) issue a Sinfonia minitransaction that checks the validity of local cache
using compare items, and updates information using write items

(4) if the minitransactions fails, check the reason why and, if appropriate,
reload mismatched cache entries and retry, or return an error indicator.

Figure 8: One minitransaction does it all: the above template shows
how SinfoniaFS implements any NFS function with 1 minitransaction.

tends to spread load well if the file system is not nearly
full (which is often the case since storage is cheap), with-
out requiring cluster nodes to coordinate.

6 Application: group communication

We used Sinfonia to implement a simple group com-
munication service — a basic abstraction for the design
of fault-tolerant distributed applications [8] — that pro-

vides reliable multicast and membership services to a
collection of distributed entities in a system. These enti-

! 0 , block ties may be processes, threads or entire hosts, but we call
(3) issue a minitransaction that checks iversion of

the cached inode, checks the free status of the new block, updates the them processes.
inode’s iversion and dversion, appends the new block to the inode’s 6.1
chaining list, and populates the new block ’
(4) if the minitransaction fails because the igeneration does not match
then return stale filehandle error
(5) else if failed because the iversion or dversion do not match
then reloads cache and retry
(6) else return success

(1) iffile’s inode is not cache then load inode and chaining list
(2) find a free block in the cached free-block bitmap

Informal semantics

Intuitively, group communication [4] ensures that
members agree on a sequence for membership changes
and messages broadcast. A commonly agreed upon
membership is called geiew. We say that a message
is broadcast in view yif v is the last view seen by the
sender when the message is broadcast. Similarly, we say
thatm s received in view v, ifv is the last view seen by

tion. This approach can result in slightly stale data be—the receiver before receiving. The service guarantees

ing returned to readdir, read, lookup, or stat (getattr), buthat each mem_ber that receives a messaggrees on
L) the same last view and each member is part of that view.
such behavior is often seen with NFS.

) . : An eventis either a data message or view change no-
In SinfoniaFS we could implement every NFS func- .. L .
. . . e . . tice. The group communication service guarantees that
tion with a single minitransaction. Figure 8 shows the

. . there exists a total ordering of all events, such that the
general template to do this, and Figure 9 shows a P& 1owi ! isfied. Th f
cific example. ollowing properties are satisfied. e safety property

specifies that every procegseceives a gaplesgrefixof
5.3 Locality the event sequence starting from the first view in which

In general, an inode, its chaining list, and its file con- P @ppears. Moreover, for liveness, in failure-free condi-
tents may all be stored in different memory nodes, butions, the prefix includes all events up to the exclusion
Sinfonia tries to place them in the same memory node foPf P from a view (if p is never excluded, then it includes
locality. This allows minitransactions to involve fewer all events). Ifp crashes, the prefix may end earlier. We
memory nodes, and provides better scalability of perfor-2Ssume that processes can join the group once; to rejoin,

mance, as shown by experiments. they obtain a new member id. _
For a process to broadcast a message, it must be a

5.4 Contention member of the latest view in the group. To receive a mes-
There are two types of contentionMemory node sage, it must be a member of the view in which the mes-
contentionoccurs when many application nodes accessage was sent. To join a group, a process invokega
the same memory node, but possibly different locationscall and eventually a view event, which includes the new
This could cause hot spotsLocation contentionoc- process, is received by all non-faulty group members.
curs when accessing the same memory rani@loca- This view event is the first event that the new member
tion. This can cause minitransactions to abort, whichreceives from the service. For a process to be removed
requires retrying. Optimistic concurrency control is not from the group, deaveoperation must be invoked either
ideal when this happens. by itself or by another process on its behalf, e.g., if it has
SinfoniaFS uses the following techniques to avoidcrashed. We assume that failure detection is a separate
both forms of contention: service [6] used for removing failed members from the

Figure 9: Implementation of a write that appends to a file, requiring to
allocate a new block.

e Spread equivalent structures across memory node/gtest view.
to balance load. 6.2 Design

e When new items are allocated and contention is de- \we outline a simple design for group communication
tected, choose a random memory node on which 1Qsjng Sinfonia, and extend it to scale well with multiple
allocate. broadcasters.

For example, if a cluster node cannot allocate a fresh To implement the group communication service us-

inode because another node just grabbed it, the first rang Sinfonia, a straightforward design employs a single,
tries allocation at a new random memory node. Thislarge circular queue that contains all events in the sys-

tem. We store the queue on the Sinfonia memory nodesame except the metadata reflects the absence of the re-
and the total order among events is simply the order irmoved member.
which they appear in the queue. We mediate each memx .
ber’'s access to this queue using minitransactions to avc;b'?’ Garbage collection .
Once a process encounters a full queue, it must

inconsistencies in the global sequence. To broadcast an .
event, a writer finds the next empty location at the enOﬁarbage collect or free entries that all relevant processes

of the event sequence, i.e. ttel of the queue, and in- ave consumed. To do so, each process needs an esti-
serts the event at that location using a minitransaction. T§hate of the last event consumed from its queue by all

receive an event, a reader reads the event, using a min(?—ther Processes in the latest view. To .rec.ord this esi-
transaction, from thaeadof the queue, i.e. the location Mate; we modify the read method to periodically post to

following the location of the last received event. Further,s'nfo.n'a memory (for the currently reading process) the
\Apcatmn of the last event consumed for all queues in the

we stripe the queue across the memory nodes to allo Wi ’ b llection in the broad
readers parallel access to different portions of the queues.yStem' e perform garbage collection in the broadcast
ethod. Once a writer encounters a full queue, using

Note, in this design, each member may have adifferenlfnh . for | it d : h i
head location, but there is only one true global tail. Thus,E e gstlmzites or its queue, it determines the earliest or
while this design scales well with the number of read- minimum” of all events consumgd by all othgr relevant

processes. The writer only considers the estimates from

ers, it fares poorly with increasing number of writers. As in the latest vi Al ts f th)
writers simultaneously insert at the tail, all but one will PFOCesSSes In the fatest view. All events irom the queue's

succeed, and the others must retry the entire broadcagfl‘II to the earllest_constumgd evgznt can be ts?‘fe'_y rergoved d
procedure until success. In order to reduce contentiory' '€ PrOCESSES INSErt and réad qUEUE entries In order an

for the tail location, we extend the above design as fol W€ are certain all relevant processes are past_the min-
lows mum. The writer clears a fixed number of entries from

Instead of single queue, for each group member, wéhe ta?l up to the_location of the minimum event ina sjn—
maintain a separate, dedicated circular queue in whic le minitransaction. Aft(_er garbage coIIect|on_, the writer
only that member stores its events for broadcast. More€Ontinues with the pending broadcast operation.
over, we determine the total order by “threading” to- 6.4 Some further optimizations

gether events. Each event contains a “next” field indi- ~ Finding the global tail in the broadcast, join, and leave
cating the location of the next event in the total order. |noperations is non-trivial and potentially expensive. A
this deSign, to broadcast, a writer first installs a event ahaive approach starts from a previous known position
tail of its queue, and since the queue is dedicated, a mlnlm the g|0ba| event seguence and walks through each
transaction is not needed. Then, the writer locates thgem one-by-one until encountering the end. This ap-
last event in the glObal sequence, call it the glObal tail,proach p|aces a h|gh overhead on WriterS, especia”y if
and “threads” the new event into the glObal Sequence byhey prefer On'y to broadcast. To improve the search
updating the “next” field in the global tail to point to the for the global tail, with each successful thread opera-
new event using a minitransaction. If unsuccessful, thgjon, we publish the position of last threaded event for
writer simply retries the “thread” portion of the broad- that queue to Sinfonia shared memory. We also label
cast. Since the writer does not have to reinstall the everthe last threaded event with a monotonica”y increasing
into the queue on a retry, this approach reduces the digjobal sequence number (GSN) and publish that number
ration that the global tail location is accessed, thereb)(on a per-queue basis) to Sinfonia memory Space_ When
reducing contention for a broadcast. To receive an evenkearching for the global tail, we read the GSN of the last
a reader uses a minitransaction to read the “next” fieldhreaded events for all queues and select the largest as
from the previously received event and retrieves the evenge global tail. This modification further reduces over-
at that location. For simplicity, in this design, we assignhead during broadcast operations.
queues to memory nodes in round-robin fashion (queues |y addition, we provide a non-blocking interface for
do not span memory nodes). broadcast. This interface allows the writers to submit
Join and leave operations reuse broadcast functionalnyitiple broadcast events and receive confirmation at a
ity and in addition modify global metadata. We maintain |ater time. In this case, when we install the event into
global metadata in Sinfonia memory space that recordgne writer's queue, we also thread that event to the last
the latest view and the location of each member’s queueynthreaded event, if any, in that queue. Thus, at any
In the join method, we first acquire a global lease on thajme, each queue may contain, near its tail, a batch of
metadata so other membership changes cannot interferggnsecutive events strung together, yet unthreaded to the
We implement the global lease using a minitransactioryjopal sequence. Threading these pending events to the
with a single compare-and-swap. Once acquired, we Upglobal sequence involves pointing the global tail's next
date the view to include the new member, find the globalie|d to the earliest unthreaded event and marking the last
tail, and broadcast a view event. Once broadcast, we renstalled event with the next GSN. Since the GSN is only
lease the global lease. The leave operation is exactly thgsed to locate the tail, the intermediate unthreaded events

10

in the batch need not carry any GSNs. Also, if event sizes 3 5~ nfonia AW
are small, we further coalesce those events into a sin- L ol e
gle large event before installing the event into the queue.

This non-blocking interface allows the client to do use-

—e— BerkeleyDB

latency (ms)

ful work and publish additional events during the time g
other processes contend for the global tail. This approach 0 100 200 300 400 500 600 700 800 900
increases the number of events published per success- throughput (minitranss)

ful thread operation, resulting in improved throughput.
Once successfully threaded, we post the confirmation of
the pending broadcasts to the client. Wode RAW T P8 T T0G | PBLOG | BerkeleyDB

. Minitrans latency (ms) 0.7 1.2 1.7 1.8 39
7 Evaluation Throughput (minitrans/s) || 1310 | 797 | 576 541 250

In this section, we evaluate Sinfonia and our two ex-
ample applications. Our testing infrastructure includes
up to 24 machines connected by Intel Gigabit Ethernet
interfaces. Each machine has a 1GHz Pentium 3 CPUWhance is dictated by disk latencies. Sinfonia performs

with 2GB of main memory, and two Seagate Cheetatpetter than BerkeleyDB because it optimize writes to the
32GB SCSi disks (15K rpm, 3.6ms average seek time)log.

Each runs Fedora Core 3 with the Linux 2.6.9 kernel.
7.1.2 Result: scalability

7.1 Sinfonia . o _ We tested scalability of Sinfonia by measuring per-
We evaluated Sinfonia’s minitransactions in varioussormance as we varied the number of memory nodes.
modes of operation, as described in Figure 4. We COMEjg re 12 shows minitransaction throughput with 2-12

pared base performance against an open-source, COfiemory nodes and 1-11 application nodes. Sinfonia was
mercial developer database library, BerkeleyDB version, | oG mode. Minitransactions contained 4 items (512

v_ersi_on 4.3. BerkeleyDB _is centra_lized, sotouseitin Apytes) with spread 2. Each application node issued 16
distributed system we built a multithreaded RPC SeIvVentstanding minitransaction at any time.

that waits for a populated minitransaction from aremote aq can pe seen. with a small number of application
client, and then executes it within BerkeleyBBn this 15qes, there is little benefit in adding more memory
experiment, we tested Sinfonia’s ability to scale and dea, e since the system is under-utilized. With 11 clients,
with minitransactions that overlap causing contention. 5 \ye vary from 2 to 16 memory nodes, performance

7.1.1 Result: base performance is at around 71% of linear scaling. Other experiments

Figure 10 shows latency-throughput graph for awork-YVith minitra.nsac.tion spread 1 he}vg near linear scalabil-
load that repeatedly issues minitransactions, each witHy. Other Sinfonia modes have similar or better resuits.
32 items and minitransaction spread 1. Minitransac- Figure 13 shows minitransaction throughput as we
tion spread specifies the number of memory nodes that ¥y theé number of memory nodes and spread. There
minitransaction touches. The Sinfonia experiments used/eré 11 application nodes, Sinfonia was in LOG mode
4 memory nodes. We started with a single application"d minitransactions had 32 items (4KB). Absolute
node issuing such transactions repeatedly with at modfiroughput is lower than in the previous experiment
16 transactions outstanding at any time. We increaseff€cause minitransactions were larger to allow higher

the number of application nodes up to 6, each runningPread. _ o _ _ .
the above workload. As can be seen, higher minitransaction spread is detri-

As can be seen, the four Sinfonia modes of operatiofnental to scalability. We did not know this initially, but
can reasonably trade off fault tolerance for performancell retrospect the explanation is simple: a minitransac-
and performance is comparable or better than Berkelion incurs a high initial cost at a memory node but much
leyDB. We also did experiments where Sinfonia had onlySmaller incremental cost (with number of items), and so
one memory node, and in all modes of operation, Sinfo-SPreading it over many nodes reduces overall system ef-
nia still performed well, in fact better than BerkeleyDB. ficiency. Thus, to achieve optimal scalability, we obey

In another experiment we evaluated Sinfonia andthe following simple rule:

BerkeleyDB in an idle system with 1 memory node. We

had a single application node repeatedly issuing trans-
actions with at most 1 outstanding transaction at a time
with spread 1. Figure 11 shows the result. For Sinfo-|n gther words, one should strive for each minitransac-
nia modes that involve disk (LOG and PB-LOG), perfor- tjon to involve a small number of memory nodes, and

2BerkeleyDB also has its own RPC interface that allows the-min fOr diﬁeren.t minit.ran_saCtic_)ns to involve diﬁer.ent nodes
transactions to be executed from a remote site, but it peedmpoorly. When we first built SinfoniaFS, we were getting no scal-

Figure 10: Base performance of Sinfonia.

Figure 11: Base performance on an idle system.

Across minitransactions, spread load. Within
a minitransaction, focus load.

11

12 1 app nodes 700

——
10 o gapp nodes 600 —o— Sinfonia,LOG
8 —a— 4 app nodes . 500 —m— BerkeleyDB
—&— 2 app nodes v 400
—=— 1app node ~ : 300
4L linear slope :
o 200

100 t\.\.\.g

P L L L L J 0 L 5

0 2 4 6 8 10 12 0.001 0.01 0.1
memory nodes probability of pairwise overlap

minitrans/s (x1000)
minitrans/s

Figure 12: Sinfonia scalability. Figure 14: Effect of minitransaction overlap on performance.

7.1.4 Result: ease of use

To evaluate ease of use, we report on our experience
in building two complex applications over Sinfonia, in-
cluding advantages and drawbacks. We found that the
main advantages of using Sinfonia were that (1) we never
had to worry about failures of nodes (e.g., application

—&— minitrans spread 2
—S— minitrans spread=# memnodes

minitrans/s (x1000)
o - M w s oo

0 2 4 6 8 10 2 nodes), (2) we did not have to develop any distributed
memory nodes protocols and worry about timeouts, (3) in fact, applica-
Figure 13: Effect of minitransaction spread on scalability. tion nodes did not have to keep track of each other, and

(4) the correctness of the implementation could be veri-
fied by looking at a few places in the code and ensuring
that minitransactions maintained the invariants of shared
ability, but after a redesign aimed at reducing spreaddata structures. The main drawbacks were that (1) Sinfo-

scalability improved dramatically. nia’s address space is a low-level abstraction that we had
_ to carefully program with, (2) we had to design concur-
7.1.3 Result: contention rent data structures that were efficient in the presence of

Figure 14 shows throughput as we vary the probabil-contention, an algorithmic problem.
ity that two minitransactions overlap, causing contention As a quantitative measure of benefits of Sinfonia, we
Sinfonia had 4 memory nodes, minitransactions consisimplemented SinfoniaFS with about 2831 lines of C++
of 8 compare and 8 write items to perform a compare-code and 1040 lines of additional glue code. We imple-
and-swap on 8 locations. The experiment was set up sudfented SinfoniaGCS with about 2817 lines of C++ code
that the compares always succeeded, so that we can megnd 505 lines of glue code.
sure the efficiency of our commit protocol in isolation.)
Minitransaction spread was 2. There were 4 applica-/-2 Cluster file system
tion nodes each with 16 outstanding minitransactions at #.2.1 Result: ability to scale down
time. To vary the probability of pairwise overlap, we var- We first consider performance of SinfoniaFS at a small
ied the range of items. For example, with range 1024, thescale, to ensure that we are scaling a system with reason-
probability of pairwise overlap i$ — (101%#)8 ~ 0.06. able performance. The ability to “scale down” to small
As can be seen, Sinfonia provides better throughpusizes is also important for when a deployment is initially
than BerkeleyDB, even with high contention. We alsosmall and grows over time.
measured latency, and the results are qualitatively simi- We first ran SinfoniaFS with the Connectathon NFS
lar. Testsuite, which is mostly a metadata intensive mi-
In another experiment, we used Sinfonia to incrementrobenchmark with many phases that exercises one or
values atomically, by having a local cached copy of thetwo file system functions. We modified some phases to
values at the application node, and using a minitransacncrease the work by a factor of 10, shown in Figure 15,
tion to validate the cache and write the new value. Herebecause otherwise they execute too quickly.
a minitransaction may fail because a compare fails. In Figure 16 shows the benchmark results for Sinfoni-
this case, the application refreshed its cache and retriedFS compared to a Linux Fedora Core 3 NFS server,
the minitransaction. In this experiment, BerkeleyDB per-where smaller numbers are better as then they indicate
formed better than Sinfonia with high probabilities of smaller running time. We used NFSv2 protocol in both
collision, because Sinfonia had to retry multiple times,cases, and the underlying file system for the NFS server
whereas BerkeleyDB could just lock a location, read ais ext3. Sinfonia was set to LOG mode (under “Sin-
value, and write the new value. This is not surprising,foniaFS”) or PB-LOG mode (under “SinfoniaFS repli-
as optimistic concurrent control is known to be inferior cated”) and the NFS server was set to synchronous mode
when optimism is rarely accurate. Thus, we design apto provide data durability. As can be seen, SinfoniaFS
plications to avoid this situation. performs at least as well, sometimes better than Linux

12

Phase | Description [Phase | LinuxNFS [SinfoniaFS | SinfoniaF$ replicated |
1 create 605 files in 363 directories 5 levels deep T (mkdir) 22 7s 9.35 9.85
2 remove 605 files in 363 directories 5 levels deep 2 (cp) 50.2s 5385 5595
3 do a stat on the working directory 250 times 3 (s -) 4 9s 755 7.65
4 create 100 files, and changes permissions and stats 4 (grep + wc) 12.7s 16.8s 16.9s
each file 50 times 5 (make) 106,55 98 55 99 55
4a create 10 files, and stats each file 50 times
5a write a IMB file in 8KB buffers 10 times Figure 17: Results of Andrew benchmark.
5b read the 1MB file in 8KB huffers 10 times
6 create 200 files in a directory, and read the directory
200 times; each time a file is removed as both Sinfonia and SinfoniaFS are in user space with-
78 ZraecahtefiILOSOflsienwsé:nd then rename and stat out buffer-copying optimizations. Indeed, after a byte is
7b create 100 files, and link and stat each file 10 times read from disk, a memory nOde_Send_S it over the netw_ork
8 create 100 symlinks, read and remove them 20 times (user-to-kernel copy) to the SinfoniaFS server, which
9 do a statfs 1500 times processes it in user-space (kernel-to-user copy), and then

sends it via a local connection (user-to-kernel copy) to
the NFS client (kernel-to-kernel copy), which then hands
it to the application (kernel-to-user copy). A better im-
plementation would have both Sinfonia and SinfoniaFS
in kernel, would avoid copying buffers, and would use

Figure 15: Connectathon NFS Testsuite modified for 10x work.

[Phase [LinuxNFS | SinfoniaFS | SinfoniaFS$ replicated |

; :12;: ggzz izgz VFS as the interface to SinfoniaFS instead of NFS. In
' : : hase 3, Sinfonia also performs worse; besides the copy-

3 0 0 0 p p py

3 82965 93.11s 95943 ing overhead, Sinfonia’s directory structure is very sim-

4a 0 0 0 ple and not optimized for large directories. In phase 5,

5a 6.40s 4.54s 5.14s Sinfonia performs slightly better as the benefits of the

5b 0.30s 0.30s 0.30s write-ahead logging outweigh the copying overheads.

6 2.60s 2.29s 2.365

7a 25.11s 6.79s 6.99s 7.2.2 Result: ability to scale up

7b 16.72s 7.35s 7.54s - . ;

5 TRIT T5.685 5037 We ran scalability tests in which we vary the number

9 0505 0155 0155 of memory nodes as we ran Andrew and Connectathon.

The first experiment considered a fairly loaded system,
where 12 cluster nodes ran the benchmarks together and
synchronized at each phase of the benchmark. The re-
sults for Andrew are shown in Figure 18, where the y
NFS. The main reason is that SinfoniaFS profits fromaxis is the speed up compared to having just one mem-
the sequential write-ahead logging provided by Sinfonia,ory node. As can be seen, the speed up is generous up to
which is especially beneficial because Connectathon hagé-6 memory nodes, after which there is a diminishing re-
many operations that modify metadata. Note that phasetsirn (not shown) because the system is under-utilized, i.e.
3, 4a, and 5b executed mostly in cache, so results are noapacity outweighs the offered load. The speed up for
significant. SinfoniaFS-replicated performs close to Sin-different phases is different because they tax the memory
foniaFS because logging and the backup synchronizationodes differently. For example, phase 3 involved listing
happen simultaneously in Sinfonia (see Section 3), andlirectories, which are not implemented efficiently in Sin-
so the extra latency of replication is hidden. fonia, and so the speed up was the greatest.

Next, we ran a macro benchmark with a more balanced The results for the Connectathon Testsuite were sim-
mix of data and metadata operations. We modified thelar: for most phases, the speed up was near linear for
Andrew benchmark to use as input tcl 8.4.7 source codeyp to 4 memory nodes, and started diminishing at differ-
which has 20 directories and 402 regular files with 16MBent points depending on the phase. The exceptions are
total size. The benchmark has 5 phases: (1) duplicate thghases 3 and 4a, which always executed in 0 time, phase
20 directories 50 times, (2) copy all data files from one5b (read), which executed in cache and had always the
place to one of the duplicated directories, (3) recursivelysame small execution time, and phase 9 (statfs), which
list the populated duplicated directories, (4) scan eaclalso had always the same small execution time.
copied file twice, and (5) do a “make”. We then ran scalability test for a lightly-loaded sys-

Figure 17 shows the results, again comparing Sinfotem. We started with 1 memory node and 1 cluster node,
niaFS with Linux NFS. As can be seen, Sinfonia per-and increased the number of memory nodes and cluster
forms better in phase 1 because this phase modifies metaedes together (ratio 1:1) to see if any system overhead
data intensively. In phases 2 and 4, SinfoniaFS performsnanifested itself in the larger system. Figure 19 shows
worse, as there is lots of data read and the current implethe results for the Andrew benchmark, where the y-axis
mentation of SinfoniaFS suffers from copying overhead,shows the duration of each phase relative to a system

Figure 16: Results of Connectathon NFS Testsuite.

13

16 F —— Andrew phase 1 X R
-~ Andrew phase 2 - S 20
- Andrew phase 3 ST 15 I S— S
o 8 -= Andrewphased -~ ®T— -m =2 0 K&
S - Andrew phase 5. .~ d----"" 28 g = SinfoniaGCS
3 4 X 2> —— SpreadGCS |
= =

0

0 1 2 3 4 5 6 7 8
readers

0 :) s . s 6 Figure 20: SinfoniaGCS base performance as we vary # readers.
of memory nodes §§ 20
Figure 18: Speedup of Andrew as function of number memory nodes 28 P : /iil:l
. i [22 —m— SinfoniaGCS
in a heavily-loaded system. Connectathon had similar results. go © = —a%preadsC§
£ 15 == 0 1 2 3 4 5 6 7 8
= '1 - I —— Andrew phase 1 # writers
@ n - "%~ Andrew phase 2
£ 0.5 ~%- Andrew phase 3 . . , :
> 0 ———————————— g Andrew phase 4 Figure 21: SinfoniaGCS base performance as we vary # writers.

0 2 4 6 8 10 12-= Andrew phase 5
system size)) »))
Figure 19: Results of Andrew as we grow a lightly-loaded the system. erte-carlJ.m;]lty of t:]we sdystem, land addglonql \]:vrltgrs |m-_
System size is the number of memory nodes which is equal to the ~ POS€ @ slight overhead. We also see that SinfoniaGCS is

number of cluster nodes running Andrew simultaneously. The y-axis competitive with SpreadGCS.
is the duration of each phase relative to system size 1. Connectathon

had similar results. 7.3.2 Results: scalability

In the third experiment, we observe the scalability as
we increase the number of memory nodes (Figure 22).
We have 1 reader or 4 readers, 8 writers, and vary the

all curves are flat at y-value 1, which shows virtually no memorv nodes from 1 to 8. This is similar to the previous
overhead to the larger system. The results of Connec- y ' P

tathon were identical: all curves are flat at y-value 1. experiment, and we see that _addmg more memory nodes
increases capacity, thereby improving throughput. Yet,

7.3 Group communication service throughput does not scale linearly because minitransac-

To evaluate the scalability characteristics of our im-tions with high spread, e.g. searching for the tail, impose
plementation, we ran a simple workload, measured itdncreased overhead with additional machines.
performance, and compared it with a publicly available In the fourth experiment, we observe the scalability
group communication toolkit, Spread [1]. In each exper-With total system size (Figure 22). The number of read-
iment, we hadv writers broadcasting messages as fast agr's, writers, and memory nodes are all the same. We
possible and readers reading messages as fast as possicale system size from 6 to 24 machines. We see that
ble. Each machine ran a single process, either a reader,@ some point the system throughput does not increase
Writer' or a Sinfonia memory node. We report the aver-mUCh further although we add more resources. This ef-
age read throughput of messages for a single reader. fect is because all readers receive all messages, so even-

tually readers are saturated regardless of availability ca

7.3.1 Result: base performance pacity for the rest of the system.

In the first experiment, we observe how SinfoniaGCS
behaves as we vary the number of readers (Figure 208 Related work
We fixed the number of writers to 4, the number of mem- Atomic transactions make a distributed system eas-
ory nodes to 4, and varied the number of readers fronier to understand and program, and were proposed as
1to 8. SpreadGCS had 4 daemons, and each client hadbasic construct in several distributed systems such as
their own machine, connecting to one of the daemonsArgus [16], QuickSilver [22] and Camelot [24]. The
We see that the throughput drops only slightly, indicat-QuickSilver distributed operating system supports and
ing that aggregate throughput for all readers increaseases atomic transactions pervasively, and the QuicksSil-
almost linearly. We also see that SinfoniaGCS is com-ver distributed file system supports atomic access to files
petitive with SpreadGCS. and directories on local and remote machines. Camelot

In the second experiment, we observe the behavior awas used to provide atomicity and permanence of server
we vary the number of writers (Figure 21). We fixed the operations in the Coda file system [20] by placing the
number of readers to 4, number of memory nodes to 4mmetadata in Camelot’s recoverable virtual memory. This
and varied writers from 1 to 8. We see when there areabstraction was found to be useful because it simplified
fewer writers than memory nodes, the throughput is becrash recovery. However, they also found that the com-
low the peak because each queue is on a separate mepiexity of Camelot led to poor scalability; later versions
ory node, so not all memory nodes are utilized. Whenof Coda replaced Camelot with the Lightweight Recov-
the writers exceed the number of memory nodes, weerable Virtual Memory [21], which dispensed with dis-
see throughput decreases slightly because we reach ttbuted transactions, nested transactions and recovery

14

tolerant distributed applications. Scalable diffusion-pr
tocols that are fairly reliable have been proposed (e.g.,
[3]), but require some external ordering mechanism. Sin-
fonia’s shared memory abstraction provides a medium
for reliable ordered information dissemination with some
scalability.

20
: %%4;
5 —&— 1 reader

—a— 4 readers

0 1 2 3 4 5 6 7 8
memnodes

msgs/s (x1000)
(avg per reader)

Figure 22: SinfoniaGCS scalability we vary # memory nodes.

20
15
10
5
0

0 5 10 15 20 25
system size

9 Conclusion

We proposed a new approach to build distributed
systems that draws ideas from database systems and
distributed shared memory—technologies that have not
been successfully applied to low-level applications
where performance is critical, such as file systems and

Figure 23: SinfoniaGCS scalability we vary total system size. group communication. Sinfonia relies on a new form of
from media failures, providing only atomicity and per- tWo-phase commit optimized for its assumptions. The
manence in the face of process failures. While this igMain benefit of Sinfonia is that it can s_hlft concerns_abo_ut
adequate for Coda, which provides only weak consisfailures and pa_rall_el protocol design into an algorithmic
tency for file operations, distributed transactions, such aProblem of designing concurrent data structures. We do
those provided by Sinfonia, are highly desirable for many"Ot believe that applications built with Sinfonia will nec-
distributed applications. The Mesa file system [19] in-€SSarily provide better performance than those built with-
cluded a notification feature that allowed clients to be0ut Sinfonia—indeed, the latter could just reimplement a
notified whenever a file became available for access; Sintailored version of Sinfonia and achieve at least as good
fonia’s notification service is more fine grained, since it Performance. However, we have shown that it is possi-
allows for notification on any range of bytes, and in re- _bIe to obtain reasonably competitive designs if Sinfonia
sponse to any access of those bytes. is used properly.

Sinfonia’s minitransactions are inspired by work in
distributed shared memory (see, e.g., [2, 5, 9, 15]) an
multiprocessor shared memory [14, 23, 13, 11, 12]. Her-
lihy [14] proposed a hardware-based transactional mem-

msgs/s (x1000)
(avg per reader)

References

[1] Y. Amirand J. Stanton. The spread wide area group com-
munication system. Technical Report CNDS-98-4, The
Johns Hopkins University, 1998.

ory for multiprocessor systems; a software implementa- 2]
tion of this was proposed by Shavit and Touitou [23],
and more efficient implementations were proposed re-
cently [13, 11]. Minitransactions are a generalization 3
of the swap and compare-and-swap instructions, and of
the multiword compare-and-swap operation [12], which
were envisioned for multiprocessor shared memory sys- [4]
tems.

Transaction support on a disk-based system was pro-
posed in Mime [7], which provided multi-sector atomic
writes and the ability to revoke tentative writes; however, [5]
all the disks in Mime were accessed through a single con-
troller.

C. Amza et al. Treadmarks: Shared memory computing
on networks of workstationdEEE Computer29(2):18—
28, 1996.

] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao,

M. Budiu, and Y. Minsky. Bimodal multicast. ACM
Transactions on Computer Systerh$(2):41-88, 1999.

K. P. Birman and T. A. Joseph. Exploiting virtual syn-
chrony in distributed systems. [ilth ACM Symposium
on Operating Systhem Principles (SOSPages 123-
138, Austin, TX, USA, November 1987.

J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Imple-
mentation and performance of munin. SOSP pages
152-164, 1991.

There is a rich literature on distributed file systems, [6] T. D. Chandra and S. Toueg. Unreliable failure detec-

including several that are built over a high-level infras-
tructure designed to simplify writing distributed appli-
cations. The Boxwood project [17] builds a cluster file
system over a distributed B-tree abstraction. Boxwood
also shares with Sinfonia the goal of providing a high-
level abstraction for use by applications, but focusses on]
abstractions to serve as the fundamental storage infras-
tructure. The Inversion File System [18] is built over a
Postgres database; this is a fairly complex abstraction, [g
and the performance of the file system was substantially
lower than a native NFS implementation. [10]
Group communication [8] and virtual synchrony [4]
in particular is a basic abstraction for the design of fault-

[7]

tors for reliable distributed systemiournal of the ACM
43(2):225-267, March 1996.

C. Chao et al. Mime: a high performance storage device
with strong recovery guarantees. Technical Report HPL-
CSP-92-9, Concurrent Systems Project, HP Laboratories,
Palo Alto, CA, Nov. 1992.

8] G. V. ChockKler, I. Keidar, and R. Vitenberg. Group com-

munication specifications: A comprehensive studigM
Computing Survey83(4):1-43, December 2001.

P. Dasgupta et al. The clouds distributed operating sys-
tem. IEEE Computer24(11):34-44, 1991.

B. Gallagher, D. Jacobs, and A. Langen. A
high-performance, transactional filestore for appliaatio
servers. IMSIGMOD pages 868-872, 2005.

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]
[22]
(23]

[24]

T. Harris and K. Fraser. Language support for lightiatig
transactions. I©OOPSLA pages 388-402, 2003.

T. L. Harris, K. Fraser, and I. A. Pratt. A practical miult
word compare-and-swap operation.DISC, pages 265—
279, 2002.

M. Herlihy, V. Luchangco, M. Moir, and W. Scherer.
Software transactional memory for dynamic-sized data
structures. InTwenty-Second Annual ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Com-
puting, July 2003.

M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
Proceedings of the Twentieth Annual International Sym-
posium on Computer Architectyr£993.

K. Li. Ivy: A shared virtual memory system for parallel
computing. INICPP, pages 94-101, Aug. 1988.

B. Liskov. Distributed programming in argu€ommun.
ACM, 31(3):300-312, 1988.

J. MacCormick et al. Boxwood: Abstractions as the
foundation for storage infrastructure. @SDI, pages
105-120, 2004.

M. A. Olson. The design and implementation of the in-
version file system. IUSENIX Winter pages 205-218,
1993.

L. G. Reid and P. L. Karlton. A file system supporting
cooperation between programs. $OSP pages 20-19,
1983.

M. Satyanarayanan et al. Coda: A highly available file
system for a distributed workstation environmelEEE
Trans. Computers39(4):447-459, 1990.

M. Satyanarayanan et al. Lightweight recoverableuait
memory.ACM Trans. Comput. Syst.2(1):33-57, 1994.

F. B. Schmuck and J. C. Wyllie. Experience with trans-
actions in quicksilver. IrSOSP pages 239-253, 1991.

N. Shavit and D. Touitou. Software transactional mem-
ory. InPODC, pages 204-213, 1995.

A. Z. Spector. Camelot: a distributed transaction fa-
cility for Mach and the Internet — an interim report.
Research paper CMU-CS-87-129, Carnegie Mellon Uni-
versity, Computer Science Dept., Pittsburgh, PA, USA,
1987.

15

