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Abstract
This paper considers the problem of generating
k cheapest solutions to a class of procurement auc-
tion winner determination problems. A compu-
tationally efficient solution to this problem would
enable a fundamentally new approach to decision
support for procurement, based on “mining” the
k cheapest solutions. However, previous methods
do not scale in crucial problem-size parameters,
e.g., the number of sellers. Our novel algorithm
achieves an exponential performance improvement
over previous methods, and scales polynomially
in all natural measures of problem size. By effi-
ciently computing k-cheapest solutions, our algo-
rithm qualitatively expands the practical applicabil-
ity of the data-exploration approach to procurement
decision support.

1 Introduction
Solving the winner determination problem (WDP) in a large
procurement auction is non-trivial, both because of the com-
putational complexity of deciding which is the cheapest sub-
set of bids offered, but also more importantly because the
cheapest is not always the best: For business reasons, pro-
curement executives have preferences over assignments of
contracts to suppliers that are not easy to state and that some-
times involve non-linear WDP solution attributes. The pro-
curement decision problem therefore cannot be easily incor-
porated into any optimization procedure.

Conventional approaches to decision support for such sit-
uations extend optimization frameworks. Recently, however,
a fundamentally different approach has been proposed that
casts the procurement decision problem as one of data ex-
ploration rather than optimization [Kelly and Byde, 2006a].
This method transforms the procurement auction WDP into
a shortest-paths problem, and employs k-shortest paths al-
gorithms to generate k-cheapest solutions to the WDP. The
purpose of this exercise is to illuminate the competitive land-
scape and to help the procurement executive understand the
tradeoffs inherent in her constraints and preferences and in
supplier bids. The k-cheapest solutions can be mined to re-
veal the implicit costs of constraints on WDP solutions and
can support visualizations detailing the dependence of cost

on other solution attributes. If the decision-maker has ordi-
nal preferences over solution attributes, the k-cheapest solu-
tions can also be condensed via dominance pruning to obtain
a compact Pareto frontier of undominated WDP solutions.

The main problem with previous work on this approach
is scalability. The k-cheapest solutions algorithm of [Kelly
and Byde, 2006a] scales well in the number of items (dis-
tinct types of goods) in a procurement auction, but it requires
time and memory exponential in the number of sellers and in
the number of fractions of each item that a seller can supply.
This paper solves both problems. Our new algorithm achieves
polynomial time and memory complexity via two fundamen-
tal improvements: we transform the auction WDP into a far
more compact graph than the one used in prior work, and
we exploit state-of-the-art k-shortest paths algorithms. Like
[Kelly and Byde, 2006a], we can encode global constraints on
the WDP solution into our graph, ensuring that the k-cheapest
solutions we generate all satisfy the constraints. In summary,
our method offers all of the advantages of the earlier approach
but suffers none of its computational drawbacks.

The new graph construction is relatively straightforward in
the case where there are no constraints other than feasibil-
ity imposed on the solution, so we describe this construction
first, in Section 3. Section 4 presents the more complicated
case of a global constraint on auction WDP solutions. Poten-
tially any constraint could be encoded into the structure of the
graph, but some kinds of constraints yield impractically large
graphs. Therefore to demonstrate the utility of the method,
we give a few examples of useful constraints that are compat-
ible with our method at low computational cost.

2 Procurement Auctions
Auctions play an increasingly important role in procurement
and bring several benefits. For example, over 20% of Sun Mi-
crosystems’ expenditure in recent years has occurred via pro-
curement auctions, and Sun claims to have saved $300 mil-
lion as a result [Hannon, 2004]. Less tangible yet equally
important benefits include speed and agility: auctions can re-
duce procurement decision times from months to days.

For a large buyer, procurement is a strategic situation.
The cheapest way of acquiring needed goods is almost never
the best, and complex business considerations typically af-
fect procurement decisions. For example, the buyer might
want to restrict the number of suppliers awarded contracts,



and it might want to spread its expenditure evenly among
chosen suppliers. However such desiderata are rarely hard
constraints; the buyer might waive her own guidelines in ex-
change for large savings. Sophisticated decision support is re-
quired because procurement executives typically cannot artic-
ulate their strategic business concerns as a formal constrained
optimization problem. The decision-maker must understand
the cost implications of her preferences and the competitive
landscape inherent in supplier bids.

Our formal framework, described in this section, supports
important aspects of real-world procurement: Most procure-
ment occurs through multi-item auctions, in which several
types of goods are acquired simultaneously. Multi-sourcing
means that several sellers can supply fractions of the buyer’s
demand for a single type of good. Furthermore, suppliers’
production capacities and inventory levels can lead to volume
discounts and volume surcharges in bids.

2.1 Definitions and Notation
Let I denote the number of items (distinct types of goods)
that the buyer wishes to acquire; the overall procurement auc-
tion consists of I sub-auctions that are cleared simultaneously.
Global granularity parameter Q specifies the number of quan-
tiles (shares of an item) that bids offer to supply. If Q = 4, for
instance, then bids offer to supply 25%, 50%, 75%, or 100%
of the total number of demanded units of each item. Let S de-
note the number of sellers; we assume that S ≥ 2. Let Bis(q)
be the amount of money that seller s demands for q quantiles
of item i; implicitly, Bis(0) = 0.

For a given procurement auction we will construct a
weighted directed acyclic graph G with special source and
sink vertices s and t such that the k-shortest paths from s to
t correspond to the k cheapest solutions to the WDP. We will
describe this graph as a compact outcome graph, because its
paths represent outcomes to the WDP, and because, relative
to the outcome graphs specified in [Kelly and Byde, 2006a],
it has relatively few vertices and edges.

Published work such as [Eppstein, 1998] demonstrates that
given a graph G with n vertices and m edges, the k shortest
paths can be calculated implicitly in time O(m +n logn+ k).
The n logn term comes from Dijkstra’s algorithm [Dijkstra,
1959] for constructing the tree of shortest paths from s to
each other vertex; if such a tree has already been constructed
Eppstein’s algorithm takes time O(m+n+k). Happily, since
our graph is directed and acyclic, it is possible to construct the
shortest-path tree in time O(m), so that our graph’s k shortest
paths can be found implicitly in time O(m+n+ k).1

Graph construction is significantly simpler in the uncon-
strained case, so we first discuss this case; a full discussion of
the constrained case is presented in Section 4.

3 Unconstrained Graph Construction
The construction is via a sequence of sub-graphs Gi with
source si and ti, such that each path from si to ti corre-
sponds uniquely to a solution to the ith single-item auction.

1To extract explicit representations takes additional time propor-
tional to the number of edges in each path, for which we will derive
good bounds in Section 3.3.

We will describe the construction of Gi in the next section,
but note that if we have such a sequence of graphs then we
can form a suitable full graph G by chaining the Gi together.
To be precise, for each i < I we replace each vertex ti with
si+1. The source of G is s = s1 and its sink is t = tI . Any
path from s to t in G must have I sub-paths, passing from
si to ti for each i, and thus must correspond to an outcome
in each single-item auction; clearly the length of the full path
is the sum of the sub-path lengths, which replicates the cost-
relationship of full outcomes and single-item outcomes. This
gives the relationship between paths and auction outcomes
that we need.

3.1 Sub-graph Construction
Let the vertices of Gi be the set of pairs (s,q) (for s = 1, . . . ,S
and q = 0, . . . ,Q) with the special source and sink vertices si
and ti added.

Edges represent assignments of a number of quantiles to
a seller: for each quantile q1 = 0, . . . ,Q add an edge from
si to (1,q1) with label q1 and length Bi1(q1). Likewise for
each seller s = 2, . . . ,S− 1, quantiles q ≤ Q and qs ≤ Q− q,
connect the vertex (s− 1,q) to the vertex (s,q + qs) via an
edge with label qs and length Bis(qs). Finally, connect each
vertex (S−1,q) to ti via an edge with label Q−q and length
BiS(Q−q). See Figure 1 for an example in the case I = S =
Q = 3.

Each path in Gi from si to ti has a sequence of labels
q1,q2, . . . ,qS. An important fact about these label sequences
is summarized in the following proposition:

Proposition 3.1 Each path in Gi from si to ti corresponds,
via the edge labeling, to a non-negative integer solution q of
the equation

S

∑
s=1

qs = Q, (1)

and vice-versa. Furthermore the length of this path is exactly
the cost to the buyer of the outcome q.

First we show that the labels in each path satisfy the equa-
tion; then we show that for any solution q1, . . . ,qS to (1) there
is a path with labels qs. Suppose then that we have a path
from si to ti with labels qs. The first edge starts at si and
therefore must end at (1,q1). In general if the jth edge ends
at ( j,ξ j), then the next vertex must be ( j + 1,ξ j + q j+1). It
is easy to see from this that the sequence of vertices must be
si, (1,q1), (2,q1 + q2), (3,q1 + q2 + q3) and so on up to the
penultimate vertex (S−1,∑S−1

s=1 qs), which is connected to ti.
A vertex of the form (S− 1,q) is connected to ti only if it
has label qS = Q−q. It follows that a path from si to ti has
labels q1,q2, . . . ,qS only if

Q−∑S−1
s=1 qs = qS

⇒ ∑S
s=1 qs = Q.

Suppose on the other hand that q1, . . . ,qS is a solution
to (1). Since the qs sum to Q it is clear that qs ≤ Q−
∑ j<s q j, which implies that the sequence of vertices si,
(1,q1), (2,q1 + q2), . . . , (s,∑ j<s q j), . . . , (S− 1,∑ j<S q j)
form a path in Gi with edge labels q1, . . . ,qS−1. The final
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Figure 1: Individual-item solutions graph for I = S = Q = 3,
as described in Section 3.2. Each edge is directed, left to
right. Finely dashed edges have label q = 0; roughly dashed
edges have label q = 1; solid edges have label q = 2 and dash-
cut edges have label q = 3. Edge lengths are shown next to
each edge.

edge can be added because, as required, qS = Q−∑ j<S q j, as
a direct consequence of (1).

Since the length of the edge with label qs is Bis(qs) it is
clear that the length of the path corresponding to the outcome
q = (q1, . . . ,qS) is ∑s Bis(qs) = costi(q), i.e., the cost of the
outcome to the buyer. ¤

3.2 Example
The graph for S = Q = I = 3 is shown in Figure 1. Each
edge corresponds to assigning 0, 1, 2 or 3 of the 3 available
quantiles to a particular seller; the “length” of each edge is
the corresponding bid Bis(q). The reader can verify that there
are exactly ten paths from si to ti (edges are directed, left to
right), corresponding to the ten ways of allocating 3 quantiles
among 3 sellers.

3.3 Complexity
In [Kelly and Byde, 2006a] a similar construction based on
sub-graphs for each single-item auction was undertaken, in
which the sub-graph consisted of the source and sink nodes,
with an edge for each possible outcome to the ith single-item
auction. It is clearly only necessary to use the k shortest such
edges, so the previous best bound on the number of edges in
the ith sub-graph was min(R(S,Q),k), where R(S,Q) = (Q+
S−1)!/Q!(S−1)!—the number of solutions to an individual-
item sub-auction—scales exponentially with respect to S and
Q.

In our new construction there are (Q + 1)(S− 1)+ 2 ver-
tices in each sub-graph Gi, and the number of edges is

(S−2)
(

(Q+1)(Q+2)
2

)
+2(Q+1).

In both cases the important fact is the degree of the poly-
nomial bound. When aggregated over all items the number
of vertices is O(ISQ), and the number of edges is O(ISQ2).
This is a significant improvement on the previous exponential
bound, at least in the case where k is large compared to S and
Q.

To extract explicit representations takes additional time
proportional to the number of edges in each path [Eppstein,
1998]. Each path in the compact outcome graph has exactly
(S + 1)I edges by construction, so the full time complexity
of explicitly listing the k shortest paths in a compact out-
come graph is O(IS(Q2 +k)), in which the second extraction-
related term is the dominant one for practical cases.

3.4 Alternative Construction
An alternative to constructing the graph by linking sub-graphs
together is to define it all at once. This approach is less
intuitive, but closer to the way in which the compact out-
come graph is defined for the general constrained case, so
we present it here to familiarize the reader with the approach.

The compact outcome graph is defined directly to have a
vertex for each triple (i,s,q), with the caveat that when s = S
we must have q = Q. We also have an extra source vertex
s= (0,S,Q) and identify (I,S,Q) as the sink node t.

1. We connect (i,s,q) to (i,s+1,q+qs) for each s < S−1
and qs ≤ Q− q. These are the majority of edges, and
correspond to the assignment of quantity qs of item i to
seller s.

2. We connect (i,S− 1,q) to (i,S,Q) whenever 0 < i ≤ I.
These edges are the assignments to the last seller S, of an
appropriate quantity to ensure that all of item i is sold.

3. We connect (i,S,Q) to (i + 1,1,q1) for each 0 ≤ i < I
and q1 ≤ Q. These edges correspond to the assignment
of quantity q1 of item i + 1 to the first seller, and are
equivalent to the “linking” of subgraphs for items i and
i+1.

The labels and lengths of edges follow the obvious pat-
tern: an edge from (i,s,q) to (i,s + 1,q + qs) is labeled with
quantity qs and has length Bis(qs); edges from (i,S,Q) to
(i+1,1,q1) have label q1 and length Bi+11(q1).

4 Constrained Case
In this section we consider the case where only some sub-
collection of the set of all global outcomes is acceptable. Usu-
ally this set will be expressed in the form of a rule, such as
“outcomes including at most 3 sellers.” As in Section 3.4
we construct a graph with vertices indexed by item-seller-
quantity triples, but now with an additional index, the “state”
of the vertex, which represents the state of the solution so
far constructed. By restricting those edges that are added to
G on the basis of their state we can exclude paths that are
bound to violate the constraint. To be precise, suppose X is
any finite set with a special element {∗} (for example, think
of {∗,1,2, . . . ,N}). X will represent the intermediate states in
the evaluation of the acceptability of an outcome as the out-
come is constructed by assigning quantities to suppliers as in
Section 3.



A directed graph G is a constrained compact outcome
graph if the following conditions hold:

1. The set of vertices of G is the set of quadruples (i,s,q,x)
with the constraint that only q = Q is allowed when s =
S, together with the special vertices s= (0,S,Q,∗), and
t= (I +1,1,0,∗).

2. Every edge in G is labeled with a quantity 0≤ qs ≤ Q.

3. Every edge in G starting at (i,s,q,x) with label qs ei-
ther goes to (i,s + 1,q + qs,x′) if s < S, or goes to
(i+1,1,qs,x′) if s = S, where x′ is some element of X .

4. Every edge ending at vertex (i,s,q,x), i ≤ I with label
qs has length Bis(qs); every edge ending at vertex t has
length 0.

5. There is at most one edge starting at (i,s,q,x) with each
label qs.

If G is a constrained compact outcome graph then paths
from s to t correspond uniquely to outcomes to the global
auction by identification of the edge labels with assignments
of quantities of suitable items to sellers. The truth of this
statement follows from similar reasoning to the proof of
Proposition 3.1: first of all from (3) the sequence of inter-
mediate vertices in any path from s to t must have i and s
components of the form (1,1), (1,2), . . . , (1,S), (2,1), (2,2),
. . . , (2,S), . . . , (I,S). If ξi,s is the corresponding sequence of
quantile components then since ξi,S = Q, from (1), the differ-
ences

qi,s =
{

ξi,s−ξi,s−1 if s > 1
ξi,1 if s = 1

must sum over s to Q for each i. From (3) these quantile dif-
ferences must be equal to the edge labels. Since the quantities
for each item sum to Q, they form an outcome to the global
auction: oi(s) = qi,s. Furthermore since, from (5) there is at
most one edge with each label emerging from each vertex,
there is at most one path corresponding in this way to a given
outcome. By (4) the length of a path from s to t is precisely
the cost of the corresponding outcome.

A constrained compact outcome graph G represents a
global constraint if the only outcomes that correspond to
paths in G from s to t obey the constraint, and if every out-
come obeying the constraint corresponds to a path in G from
s to t. By making the set X large enough we can in fact
represent every constraint by a suitable constrained compact
outcome graph; the challenge is not merely to construct con-
strained compact outcome graphs representing a constraint,
but to do so efficiently.

4.1 Complexity
As in Section 3.3 it is easy to see from (5) that the out-degree
of each vertex in a constrained outcome graph is at most
Q + 1, although the in-degree of a vertex could be larger. In
general it is clear that the size of X determines the complexity
of the graph. There are no more than IS(Q + 1)|X | vertices,
and no more than IS(Q+1)2|X | edges, so as before the com-
plexity of computing the k shortest paths is O(ISQ2). The
in-degree of a particular vertex is at most (Q+1)|X |.

The complexity here is the same as before, except for a
factor of |X |, giving a bound for explicit extraction of the k
shortest paths of O(IS|X |(Q2 + k)).

4.2 Example Constrained Compact Outcome
Graphs

Prior work in [Kelly and Byde, 2006b] describes three types
of constraints that can be efficiently represented using con-
strained outcome graphs:

1. Constraints based on the number or set of sellers in-
cluded in the global solution, in the sense that they sup-
ply a non-zero quantity of one or more item.

2. Constraints based on the total number of quantiles
bought from one or more sellers.

3. Constraints based on the total value of the allocation to
one or more sellers. In this case the constrained compact
outcome graph formalism greatly reduces the number
generated, but usually cannot guarantee that only out-
comes satisfying the constraint are generated.

Since the third class of examples is essentially equivalent to
the second, we shall demonstrate that the first two have rep-
resentations using constrained compact outcome graphs.

Included Sellers
An included sellers global constraint is one in which a global
outcome o is acceptable if the set of included sellers σinc(o)
is in some collection S of sets of sellers. Such a constraint
has a representation in which the set X is the set of subsets of
sets of sellers in S :

X = {x : x⊆ σ′and σ′ ∈ S}
From the definition of a constrained compact outcome

graph, every vertex of G (i,s,ξi,s,x) for which s < S has a col-
lection of edges going to vertices of the form (i,s + 1,ξi,s +
qs+1,x′), at most one for each qs+1 ≤ Q− ξi,s. We construct
G by choosing x′ = x if qs+1 = 0, and x′ = x∪{s + 1} other-
wise. We add exactly those edges to G for which x′ is thus in
X . Similarly for the “linking” edges going from (i,S,Q,x) to
(i + 1,1,q1,x′) (where i < I) we choose x′ = x if q1 = 0 and
x′ = x∪ {1} otherwise, adding exactly the edges for which
x′ ∈ X . Finally, we connect the vertices (I,S,Q,x) such that
x ∈ S to t.

x maintains a record of the set of sellers included so far in
the outcome corresponding to a path through G. Since only
those vertices for which x ∈ S are connected to t, only out-
comes for which the set of included sellers in the full solution
is in S will correspond to such paths.

The complexity of the k cheapest algorithm is slower by a
factor of |X | when a constraint is integrated, so as a specific
example, we can ensure that outcomes have no more than R
sellers by letting S be the collection of sets of R sellers, of
which there are S!/R!(S−R)!. The set of states has size

R

∑
r=1

S!
r!(S− r)!

For fixed R with variable S this expression is polynomial of
order R.
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Figure 2: Section of the constrained solutions graph for
|σinc(o)|= 2, in the case Q = 2, S = 3 and arbitrary I. The set
of sellers x is represented in binary form. Edges are directed,
left to right. Solid edges are labeled with q = 2; roughly
dashed edges are labeled with q = 1 and finely dotted edges
are labeled with q = 0.

Included Sellers Example
The full constrained solutions graph for |σinc(o)| = 2, in the
case Q = 2, S = 3 and arbitrary I is shown in Figure 2. Sets of
the 3 sellers are represented by binary strings: 110 represents
sellers 1 and 2. The set of vertex states is

X = {100,010,001,110,101,011}.
A vertex with state 110 can only be connected to another ver-
tex with the same state, since once included a seller can not
be removed; a vertex with state 010 could be connected to a
vertex with state 010 or 110 representing either the assign-
ment of an additional quantity to seller 2, or the assignment
of this quantity to the previously unused seller 1.

Quantile Thresholds
As for included sellers, a global constraint evaluated on the
total number of quantiles assigned to one or more sellers is
computable at the level of an individual seller rather than an
entire item-auction outcome, so there must be a constrained
representation equivalent to the non-constrained representa-
tion.

We choose the set X to be a product of sets of the form
{0, . . . ,Ts}, one for each seller s under consideration, where
Ts is some threshold beyond which we are not interested in
counting. Thus x = (xs1 , . . . ,xsn), where each vertex state xs
counts the number of quantiles so far assigned to seller s.
Clearly the complexity scale factor of integrating this con-
straint is ∏S

s=1 Ts.
To implement a minimum we use x′s = min(Ts,xs +qs), and

connect those vertices (I,S,Q,x) for which xs = Ts for each

s = s1, . . . ,sn to the sink t. To implement a maximum we use
x′s = xs + qs, omitting edges for which this is greater than Ts.
We connect all vertices (I,S,Q,x) to t.

5 Related Work
Auctions are an increasingly important medium of exchange,
and the theory of auctions is a large and active research area;
Klemperer [1999; 2004] provides detailed reviews of the the-
ory and practice of auctions. Elmaghraby [2000] reviews
procurement auctions in the broader context of supply con-
tract competition and sourcing problems. Dasgupta & Spul-
ber [1989] consider the abstract problem of designing optimal
procurement auctions (from the buyer’s point of view) under
both sole-sourcing and multi-sourcing. Recently, Tunca &
Wu [2006] have explored practical and implementable pro-
curement mechanisms that allow multi-sourcing.

Whereas the Economics literature typically assumes that
auction participants can explicitly articulate their preferences
and that profit/utility/surplus maximization is the goal of auc-
tion design, a complementary body of AI/E-Commerce re-
search considers cases where these assumptions do not hold.
Sandholm & Suri [2001] describe a range of side constraints
and non-price attributes of allocations that can be impor-
tant in real auctions. The literature on preference elicita-
tion in auctions proceeds from the observation that agents
cannot always explicitly state their side constraints and their
preferences over non-price solution attributes. Sandholm &
Boutilier [2006] review elicitation techniques aimed at help-
ing agents in such situations. Preference elicitation meth-
ods typically make strong assumptions about the functional
form of agent preferences and constraints, and the algorithms
require an exponential number of interactive queries in the
worst case. Parkes [2005] explicitly models the cost of elici-
tation in an auction design problem.

Preference elicitation extends an optimization framework.
In a procurement auction, for instance, elicitation methods
attempt to interactively refine a model of the buyer’s latent
utility function. This utility function can then be used in a
conventional mathematical optimization solver to compute an
optimal auction outcome. By contrast, Kelly & Byde [2006a]
introduce a fundamentally different approach that casts the
buyer’s decision problem as one of data exploration rather
than optimization. The authors observe that 1) the WDP
in sealed-bid auctions is a generalized knapsack problem,
2) knapsack problems admit solution via dynamic program-
ming, 3) dynamic programs correspond to shortest path prob-
lems, and 4) efficient k-shortest paths algorithms exist; there-
fore it is straightforward in principle to compute k-best so-
lutions to any sealed-bid auction. The authors apply their
method to bids from a real procurement auction and report
that the k-cheapest solutions can be post-processed to aid the
buyer in a variety of ways.

While the Kelly & Byde approach is workable in princi-
ple, its practical scalability is severely limited by two major
drawbacks: First, it employs only simple “first-generation” k-
shortest paths algorithms developed during the 1950s–1970s,
ignoring asymptotically superior algorithms developed dur-
ing the 1990s. Second and more importantly, the Kelly &



Byde method requires that solutions to individual-item sub-
auctions be generated exhaustively and held in memory be-
fore the k-shortest paths algorithm is invoked. Because the
number of sub-auction solutions is exponential in both the
number of buyers and the granularity of multi-sourcing (S and
Q in our notation), the time and memory requirements of the
method are exponential in these crucial problem-size param-
eters. Our work corrects the deficiencies of [Kelly and Byde,
2006a] by applying modern k-shortest paths algorithms [Epp-
stein, 1998] and by defining a far more compact sub-auction
solutions graph (Figure 1) to obtain a k-best solutions algo-
rithm whose time and memory requirements are polynomial
in all problem-size parameters.

6 Conclusions and Future Work
In this paper we have described an efficient algorithm for gen-
erating k-cheapest solutions to a range of procurement auc-
tion winner determination problems. It is useful for several
purposes, most notably: to “explore the competitive land-
scape” by data-mining a large number of solutions; to simul-
taneously compute prices for many bundles of constraints;
and to price non-linear constraints that cannot be incorpo-
rated into a standard integer linear program. Our approach
can also efficiently incorporate certain classes of common
hard constraints into the solution-generation process. If we
are faced with constraints that do not admit efficient expres-
sion in a constrained solutions graph, we may simply generate
solutions until one obeying the constraint is found. Whereas
previous algorithms for generating k-cheapest solutions scale
poorly in the number of sellers and the number of quantiles,
our algorithm scales well in all problem size parameters. Pre-
vious work introduced the k-cheapest-solutions approach to
procurement auction clearing and explained its benefits; our
work makes this approach practical.

Our ongoing work involves large-scale tests of our algo-
rithm using randomly generated bid data as well as bids
from an actual procurement auction, to further understand
what benefits can be gained by examining a large number
of solutions. In particular we are exploring post-processing
techniques, including dominance pruning and clustering, that
summarize and condense the k-best solutions for the decision-
maker. Finally, we are investigating more efficient ways of
incorporating bundle- or XOR-bidding into our algorithms.
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