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Abstract. A common approach to providing persistent storage for RDF is to store statements in a 
three-column table in a relational database system. This is commonly referred to as a triple store. Each 
table row represents one RDF statement. For RDF graphs with frequent patterns, an alternative storage 
scheme is a property table. A property table comprises one column containing a statement subject plus
one or more columns containing property values for that subject. In this approach, a single table row may 
store many RDF statements. This paper describes a property table design and implementation for Jena, an 
RDF Semantic Web toolkit. A design goal is to make Jena property tables look like normal relational 
database tables. This enables relational database tools such as loaders, report writers and query optimizers 
to work well with Jena property tables. This paper includes a basic performance analysis comparing a 
triple store with property tables for dataset load time and query response time. Depending on the 
application and data characteristics, Jena property tables may provide a performance advantage compared 
to a triple store for large RDF graphs with frequent patterns. The disadvantage is some loss in flexibility.

1.0  Introduction

A common approach to providing persistent storage for RDF is to store statements in a three-column table 
in a relational database system. This is typically referred to as a triple store. There are many variations on this 
approach, e.g., storing literals and URI’s in a separate table referenced from the triple store. But, the basic 
approach is that each RDF statement maps onto a single row in a database table. However, many RDF 
datasets have a significant amount of regularity, i.e., frequently occurring patterns of statements. For 
example, an employee dataset might include for each employee, an employee number, a name, location, 
phone, etc. This paper describes a way to leverage this regularity. It describes a design and implementation 
for property tables in Jena, a leading RDF Semantic Web toolkit [11].

Property tables are intended to take advantage of regularity in RDF datasets by storing a number of related 
properties together in a table separate from the triple store. This should result in reduced storage requirements 
and faster access times for many types of queries. A second motivation for property tables is the desire to 
access legacy data that is stored in relational databases. A general purpose facility to access RDF property 
tables may also be used to access legacy data in non-RDF tables. Note that D2RQ [2] and SquirrelRDF [6] 
already provide the capability to read legacy tables as RDF. However, making the capability native to the 
RDF storage layer enables Jena to not only read but also to update legacy tables.

A goal of our approach is to enable Jena property tables to look like conventional application database 
tables. In this way, existing relational database tools and services can operate over the Jena tables, e.g., data 
mining tools, report writers. Of particular significance is that the database engine itself will be able to gather 
meaningful statistics for property tables which will enable more effective database query optimization. Also, 
the ability to use a native database loader for property tables should result in drastic reductions in load time.

The existing persistent storage layer for Jena2 has limited support for property tables. In particular, reified 
statements are stored in a property table, separate from the triple table that stores asserted statements [1]. This 
paper describes extending that work to support general, user-defined property tables in Jena. 

For queries, Jena property tables offer two significant advantages over a triple store. First, the database 
query optimizer can sometimes generate better plans over property tables than over a triple store. For 
example, consider a query to find all 50 year old people with an IQ of 150, i.e., ?s ex:hasAge 50 and ?s ex:
hasIQ  150.  The goal of the query optimizer is to generate an efficient query plan which here means choosing 
the most selective predicate (age or IQ) and evaluating that predicate first, i.e., first find the 50 year olds and 
then the smart people or vice versa.  Assuming accurate database statistics, the query optimizer can determine 
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from the property tables that there are many more 50 year old instances than there are smart instances. 
However, for the triple store, all property values are stored in the same column so the optimizer cannot 
readily distinguish IQs from age values and so cannot choose the best order of evaluation. A second 
advantage for property tables is that joins can be eliminated. In the above example, if we assume that age and 
IQ are single-valued properties, then we can store both properties as columns in the same property table and 
process the query as a selection over that table. However, that same query over a triple store requires a join. 

The next section describes the types of property tables supported in Jena. Section 3 describes a benchmark 
designed to evaluate the benefit of property tables. Section 4 presents the benchmark results over both a triple 
store and property tables. The final section describes future work.

2.0  Jena Property Tables

A Jena property table is defined as a relational database table in which each table row corresponds to one 
or more RDF statements and the URIs of statement properties are not stored in the table. Instead, the property 
URIs are stored with the table metadata. A Jena property table has a single column to store the subject of the 
statement. The remaining columns store property values for statements, i.e., the object of the statement (see 
Figure 1).

In our approach, property tables augment but do not replace the triple store. The triple store is used for 
statements containing a predicate that has no property table. In addition, all object values for a given property 
are stored in a single table, either a property table or a triple store but never both. An exception to this rule is 
the rdf:type property as discussed later.

Some other systems that support property tables derive the table definitions automatically from the 
ontology of the dataset (e.g., Sesame [7]). However, in our approach, property tables are defined by the 
application, independently of any ontology. The definitions must be provided when the graph (model) is 
initially created. In principle, property tables could be created and deleted dynamically but this would require 
the system to reorganize the database, moving statements between the triple store and property tables. So, this 
is left as future work.

2.1  Types of Property Tables.

Jena supports three kinds of property tables as well as a triple store (Figure 1). A single-valued property table 
stores values for one or more properties that have a maximum cardinality of one. The subject column serves 
as the table key (the unique identifier for the row). Each property column may store an object value or be null. 
Thus, each row represents as many RDF statements as it has non-null property values.

A multi-valued property table is used to store a single property that has a maximum cardinality greater 
than one (or that is unknown). The subject and object value serve as the table key, a compound key in this 

subj obj1 obj2 objn

Multi-valued property table for some property prop
i

Single-valued property table for properties prop
1

.. prop
n

FIGURE 1. Types of Jena tables
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case. Each row in a multi-valued property table represents a single RDF statement. The property column 
value may not be null. Note that, in principle, the distinction between single-valued and multi-valued tables 
should not be needed since various strategies could be used to store multiple values for a property in a 
multi-column property table. However, these strategies greatly complicate query processing so they were not 
seriously considered for this first implementation. Consequently, an application must know in advance which 
properties are single or multi-valued. This is a loss of flexibility compared to a triple store. In the absence of 
any knowledge, many multi-valued tables may still be used. For some applications, this can still provide 
performance advantages over a single triple store.

In some cases, it is useful to store all members of a class together in a single table (e.g., to easily enumerate 
all instances). In effect, this amounts to storing the value of rdf:type in a property table. Each class is stored in 
its own table, spreading the rdf:type property across many tables. So, rdf:type is an exception to the rule that 
all values for a property are stored in one table. This kind of table is referred to as a property-class table. 
Besides the rdf:type value, a property-class table may also store a number of single-valued properties. Any 
single-valued property may be stored in a class table, i.e., not just those that declare the class in their domain. 
A current limitation is that a property-class table only stores instances of a single class. However, this could
be relaxed in the future to enable a single table to store sibling subclasses of a common class. As an example 
of a property-class table, consider reified statements which contain the properties rdf:subject, rdf:predicate, 
rdf:object and rdf:type, where the type value is rdf:Statement. In fact, this is how Jena stores reifications.

2.2  Column Encoding

There are many ways to encode RDF terms (subjects, predicates and objects) in a table. A commonly used 
approach is to encode each term as a number and to store that number in the triple store table. A separate 
symbols table is used to map the number to the value for the term [3]. This is an elegant and simple approach 
and saves space since each term value is stored only once in the symbols table at the expense of an additional 
join between the symbols table and the triple store. An alternative approach, used in Jena, is to store the term 
values directly in the statement table. However, some additional encoding is needed to distinguish, for 
example, URIs from Bnodes from literal values since are all stored as strings. This denormalized approach 
has the benefit of reducing the number of joins and indexes required but it complicates query processing.

Recall that a design goal is to enable property tables to look like normal database tables. Thus, it should be 
possible to store property table columns as native database datatypes, e.g., integer, float, string, date-time, 
etc. with no additional encoding. This is also needed to enable access to legacy database tables where Jena 
has no control over the choice of the column datatype. However, it is also useful to store property tables using 
the Jena encoding in order to enable joins between property tables and the triple store.

Consequently, support is needed for both encoded column values and native column values. The Jena 
triple store uses an encoded representation. A Jena property table column may be either a native database type 
or use Jena encoding. However, all values in a particular column must be the same type. The use of a native 
database type for a column reduces flexibility but enables performance optimizations (e.g., range queries).

2.3  Property Table Definition

Property tables for a graph (model) must be specified at graph creation time. This is done by providing a 
meta-graph to the graph constructor. The meta-graph contains metadata in the form of RDF statements 
defining property tables (e.g., type of property table, name) and property table columns (e.g., name, property, 
encoding, indexes, etc.). This metadata is stored in a system graph separately from the user graph. Note that 
graphs may share property tables. For large graphs where the frequently occurring patterns are unknown, 
tools may be used to discover patterns and suggest candidate tables [9].

2.4   Graphs Operations on Property Tables

Property tables present issues for the basic graph operations of add, delete, find, query. This is because the 
graph operations operate over statements while property tables operate over rows, i.e., sets of statements. At 
a high-level, each property table is modeled as a disjoint subgraph of the parent graph, i.e., it contains a set of 
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statements not stored in any other property table or triple store. So, each add, delete or find operation can be 
processed by applying the operation to each subgraph (property table or triple store) and concatenating the 
results. Below, the processing of each operation is briefly described.

Add statement

Assuming that the statement to be added is not a duplicate of an existing stored statement, an add operation
on a multi-valued property table creates a new row in the table. An add on a single-valued or property-class 
table creates a new row if the statement subject does not exist in the table. If the subject already exists, the 
row for that subject is updated with the property value.

An optimization for single-valued property tables is possible when inserting batches of statements. 
Assume the statements are sorted so that all statements for a common subject are grouped. Then, rather than 
individual database operations for each statement (i.e., insert row, update, update, update), Jena maintains 
state between each add operation and performs a single insert statement for the entire row. This batch add 
operation can significantly reduce load times for single-valued and property-class tables.

Delete statement

Delete processing is similar to add processing. On a multi-valued table, a delete removes a row. On a 
single-valued or property-class table, delete changes a column value to null. If all property columns are null 
as a result, the row could be removed (garbage-collected). As with add, an optimization is possible for 
batches of statements. 

Find statement

The find operation takes a triple pattern and returns all statements that match the pattern. A triple pattern
has the form [s,p,o] where each term is either an RDF resource or literal or a don’t-care. A triple pattern can 
be easily processed over a triple store with a single SQL statement that matches each term in the pattern to the 
corresponding table column. There are eight possible pattern types (combinations of terms and don’t-care) so 
Jena predefines and caches SQL statements for all possible triple patterns over a triple store.

For a property table, the number of possible triple patterns (and associated SQL statements) is 4*(p+1)
where p is this number of property columns in the table. So, Jena does not predefine SQL statements for all 
possible triple patterns over all the property tables. For these patterns, it generates SQL dynamically and 
caches the SQL statement for reuse. Note that if the predicate term in a triple pattern is a don’t-care, then all 
property tables and the triple store must be searched for matching statements. The results are concatenated.

Query processing

An in-depth discussion of query processing is beyond the scope of this paper. However, it is worth 
pointing out an advantage and disadvantage of query processing over property tables. A simple query is just a 
conjunction of triple patterns in which variables may appear as terms. The goal is to convert this query into a 
single SQL statement. As before, if a predicate term in some triple pattern in the query is a don’t-care or a 
variable, then that pattern could match statements in any property table as well as the triple store. A single 
SQL statement for that query would involve a large SQL union. Consequently, for this case the query 
processor avoids the union and queries each table separately.

An important optimization for property tables is that joins can be eliminated. Consider a query consisting 
of two triple patterns: [?var,p1,-] and [?var,p2,-]. Processing this query over a triple store requires a join. But 
if properties p1 and p2 are both stored in the same property table, then the join can be replaced by a simple 
select operation since it is known that a subject may only have one value for its p1 and p2 properties.

2.5   Legacy Database Tables

Given the capability to read and write Jena property tables, it might seem a small stretch to extend this 
capability to access legacy database tables, i.e., non-Jena tables created and managed by other applications. 
D2RQ [2] and SquirrelRDF [6] already provide this capability for read-only access. Our goal is to support 
modification of legacy tables. This section presents an overview of our mapping between legacy tables and 
RDF. While it is not as flexible as D2RQ, it is a starting point and should support access to an interesting 
subset of legacy tables. For more details, see [4].
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Given the flexibility of the relational model, there are countless different data modeling strategies. But, at 
a high level, we can categorize a table as one of three types: object table1, relationship table or mapping table. 
A mapping table is used to encode or transform data from one representation to another, e.g., from an integer 
code to a character string. For now, mapping tables are ignored. 

We can assume that an object table will have a single key to identify the object instance and a relationship 
table will have multiple keys to identify all objects that participate in the relationship. If we assume that each 
key can be stored in a single column (no compound keys), then it is relatively straightforward to access an 
object table as a property table. See Figure 2, where the property values are stored as columns vi. Note that the 
key, by definition, uniquely identifies a row. So, duplicates are not an issue. Access to tables with compound 
keys is discussed next.

Virtual bnodes for compound keys

The key of a relationship table (e.g., key1..keyn in Figure 2), is a compound key that represents a 
relationship among two or more objects. RDF does not directly support compound keys, i.e., each subject of 
an RDF statement is a single URI. So, given a compound key, we infer the existence of an anonymous object 
that represents an instance of a relationship among the objects in the compound key. To do this, we create a 
new type of anonymous object, a virtual bnode. It is a surrogate for a compound key and identifies a row in a 
table. It is virtual because it is not stored in a table but is constructed on demand when a row is extracted. 
More details about virtual bnodes are available in [4]. This approach can also be used for object tables with 
compound keys.

3.0  Benchmark

To study the performance tradeoffs of property tables, a synthetic dataset was created and queries were run 
against that dataset under two different storage schemas. The first storage schema is the (default) Jena triple 
store. The second schema augments the triple store with the set of property tables described below. This 
section describes the dataset, the schema and the queries. A more detailed description of the dataset and 
queries is presented in [5]. We chose to develop our own dataset and benchmark that was tailored to this 
implementation in order to better understand the cost and benefit of different aspects of property tables. In the 
future, we may run a general-purpose RDF benchmark (e.g., [10]) to better evaluate the overall impact of 
property tables on applications.

3.1   Dataset.

The dataset consists of two object classes and a number of properties on the instances. Most properties are 
single-valued, datatype properties (literal-valued). The main object class, S10K, has 10,000 instances. A 
second object class, S100, has 100 instances but no properties. It is only used as the range of an object 
property for S10K.

  
1 Unfortunately, the word object is overloaded. It is used here in the sense of object-oriented modeling and should not be 

confused with RDF statement objects.

key v1 v2 vn

key1 keynkey2 v1 v2 vk

Relationship table becomes single or multi-valued property table

Object table becomes a single or multi-valued property table

FIGURE 2. Tables serve different purposes in a relational database
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There are three groups of datatype properties. A set of integer-valued properties, two short (5 character) 
string-valued properties and a long (50 character) string-valued property. The properties differ in the 
cardinality of the range. Some properties map to unique values, others have a fixed number of values ranging 
from 2 values (for a binary valued property, like gender), 10 values, 100 and 1000. The actual integer and 
string values are unimportant but they are stored as typed literals. In this experiment, the object values are 
chosen uniformly random, typically with replacement (non-unique values), but sometimes without 
replacement (unique values). Also, there are no missing values, i.e., each instance has at least one value for 
each property.

The datatype properties for class S10K are listed in Table 1. The datatype properties should be 
self-explanatory. The object properties for S10K are listed in Table 2. The Uniq property links an instance of 
S10K to a randomly chosen, unique instance of S10K. The Nonuniq also links to an S10K instance but that 
instance may be linked to many times. The S100C5 property is a multi-valued property that links an S10K 
instance to five randomly chosen instances of class S100. The tree properties link the S10K instances into a 
tree structure with a fan-out of five. The instances are enumerated either in a depth-first or breadth-first order. 

TABLE 1. Datatype Properties for class S10K
Property Domain Range Description

intR2 S10K int 0..1 single-valued, int, cardinality 2

intR10 S10K int 0..9 single-valued, int, cardinality 10

intR100 S10K int 0..99 single-valued, int, cardinality 100

intR1K S10K int 0..9999 single-valued, int, cardinality 1000

str5R10 S10K 5 char string single-valued, 5 char string, cardinality 10 strings

str5R100 S10K 5 char string single-valued, 5 char string, cardinality 100 strings

str50 S10K 50 char string single-valued, 50 char random string

TABLE 2. Object Properties for class S10K
Property Domain Range Description

S10Kuniq S10K S10K single-valued, random unique instance of S10K

S10Knniq S10K S10K single-valued, random instance of S10K

S100C5 S10K S100 multi-valued, 5 random instances of S100

S10KtreeC5DF S10K S10K tree of S10K instances, fan-out 5, depth-first enum.

S10KtreeC5BF S10K S10K tree of S10K instances, fan-out 5, breadth-first enum.

3.2  Schema

A set of property tables was created to store the S10K properties (Table 3). For the datatype properties, the 
table columns are created as either SQL integer or character columns. For object properties, the table columns 
are created as character columns using the same URI encoding as in the Jena triple store. This simplifies joins 
between the triple store and a property table. 

Each property table includes a primary key column that contains the URI of an S10K instance (i.e., the 
subject of triples stored in the rows of the property table). For the single-valued property table, indexes were 
created for the intR1K, S10Kuniq and S10Knniq properties. There seemed little value in creating an index on 
low selectivity properties, intR2, intR10, intR100. For each multi-valued table, an index was created on the 
property value column in addition to an index on the subject column. The triple store includes an index on the 
object value column and a multi-column index on the subject and predicate columns.   
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TABLE 3. Property Tables for class S10K
Table Name Table Description

S10K_SV Stores all single-valued properties of class S10K (9 properties total)

S10K_S100_MV Stores the S100C5 property

S10K_DF_MV Stores the S10KtreeC5DF property (depth-first tree)

S10K_BF_MV Stores the S10KtreeC5BF property (breadth-first tree)

3.3  Data Loading

In order to determine the impact of property tables on the time to load the dataset, a number of different 
datasets were loaded. These are listed in Table 4. Unless otherwise stated, all datasets are in RDF/XML
format and duplicate checking is disabled for loading since the dataset has no duplicate triples. The first 
configuration is the complete dataset. Note that in RDF/XML format, the property values for an instance are 
often listed consecutively. For property tables, this means that successive statement add operations can be 
optimized as a single table row insert.

To measure the effect of this optimization, the second dataset contains only the single-valued properties 
while the third dataset contains only the multi-valued properties. A final dataset includes all single-valued 
property values, as in the S10K_SV dataset, but this time encoded in N-Triple format and the statements are 
randomized. In this way, property values for the same instance are scattered throughout the load file. 

 

TABLE 4. Configurations for Dataset Load
Dataset Description

S10K_All Contains triples for all S10K property values

S10K_SV Contains triples for S10K single-valued properties

S10K_MV Contains triples for S10K multi-valued properties

S10K_SV_Rand (NT) Contains triples for S10K single-valued properties but in random order (Ntriples)

3.4   Queries

The queries over the dataset are summarized in Table 5. The SPARQL syntax for each query is included in 
the Appendix2. 

TABLE 5. Queries on class S10K
Query Description

Query1 Retrieve many properties for all S10K instances with a given intR1K value (indexed)

Query2 Retrieve many properties for all S10K instances with a given intR100 value (unindexed)

Query5 A path expression using the S10Kuniq and S10Knniq properties

Query6 A cross-product that returns 10,000 results

Query8 A simple selection on the intR2 property and the intR1K property

Query9 Same as Query8 but the order of the selection predicates is reversed

Query10 Retrieve the S100C5 values for one S10K instance (multi-valued property retrieval)

Query11 Retrieve all property values for one S10K instance (query with an unspecified predicate)

  
2 Note that the queries were actually run using RDQL. The integration of property tables and SPARQL is not yet 

complete but is not expected to significantly change the results here.
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Query1 and Query2 are similar. They retrieve a large number of single-valued properties for selected 
S10K instances. However, Query1 selects instances using the intR1K property which has approximately 10 
matches. Query2 selects the same properties but using the intR100 property which has approximately 100 
matches. So the result sizes differ by an order of magnitude. Note that for the property table schema, Query1 
has an index available for intR1K while no index is available for intR100 in Query2. Also, for the triple-store
schema, both queries require a 7-way self-join. But, for the property table schema, the query can be optimized
to a simple selection (no join required).

Query6 is a cross-product that retrieves a large number of matches (10,000). The response time should be 
dominated by data transfer costs. Query8 and Query9 are identical except the order of the selection 
conditions is reversed. These queries are intended to show the benefit of statistics in query optimization. The 
intR1K predicate is much more selective than the intR2 predicate (one returns 100 instances, the other returns 
5000 instances). A good query optimizer should detect this and process the intR1K predicate first. However, 
for the triple store schema, such detailed statistics are typically not stored3. So the optimizer has no way of 
knowing which predicate is more selective and will typically process the predicates in the order given. 
Consequently, for the triple store we should see large differences in response time for these two queries while 
for the property tables we should see little difference.

Query10 retrieves the value of a multi-valued property for an S10K instance. We should not expect a huge 
difference between the two storage schemes for this query. However, Query11 retrieves all properties for the 
same S10K instance. The query contains an unspecified predicate. It can be processed as a simple select on 
the triple store. However, for the property tables, several queries are required, one for each table. So, the 
triple store should out-perform the property table for this query. 

4.0  Performance Results

This section presents the response time measurements for the load and query operations discussed above. 
The times were measured at the application level (Jena API). Each operation was executed multiple times, 
outliers ignored and the results averaged. The table indexes were created prior to loading a dataset. After each 
operation, the database buffer cache was flushed. Table statistics were computed over all tables before 
running the queries so that the optimizer had accurate information. The measurements were performed using 
Jena 2.4 with a widely-used relational database engine, running on 2.8 GHz Pentium Xeon Windows XP 
system with SCSI disks, 1.5 GB RAM. In the results below, the absolute response times should be viewed as 
less interesting than the relative times.

4.1  Dataset Loading

The times for loading the various datasets under the triple store and property table schemas are listed in 
Table 6. As should be expected, the load time for the complete dataset (S10K_All) is approximately equal to 
the sum of the load times for the single valued and multi-valued properties (S10K_SV and S10K_MV) for 
each schema. Recall that there are nine single-valued properties for S10K. One might expect the load time for 
the single-valued property table to be nearly an order of magnitude lower than the load time for the triple 
store since the property table inserts 10,000 rows compared to 90,000 rows for the triple store. But this is not 
the case. The property table load time is roughly one-quarter the triple store load time (14.4 vs. 60.9). 
However, considering that the time spent in the Jena storage subsystem is only a fraction of the total path 
length for adding a triple, this is a significant improvement.

Note that there is not much difference between the two schemas in the load times for the multi-valued 
properties. Both schemas store the same number of rows. Still the property table has a slight advantage. This 
may be because the property table only stores two columns and so transfers less data.

  
3 Database statistics on the triple store table would indicate the number of triples with a particular object value, e.g., 1 or 

9, or the number of triples with a particular predicate value, e.g., property intR2 or int1K. But, what is needed are 
multi-variate statistics, e.g., the number of triples with property intR1K and the value 9. Only sophisticated query 
optimizers maintain such statistics and only upon request because they consume much space.
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The results for loading the randomized triples are very interesting. In this case we see that the triple store 
performs better than the property table. This is likely due to thrashing. The triple store can simply append 
rows. The property table must update table rows out of order and so performs more random disk I/O.

Recall that duplicate checking was disabled for these loads. An experiment was performed to determine 
the impact of duplicate checking. This test was run using the single-valued dataset and the results are labeled 
S10K_SV (Dup Chk) in Table 6. Here, response times for both schemas increase by a similar percentage.

As a final comment, we ran several experiments to determine the impact of indexes on load times. 
Specifically, if a property table has several indexes, each row inserted must update those indexes. So, a 
possible performance optimization is to drop indexes before loading a property table and recreate them 
afterward. In fact, we found no significant benefit for doing this. Response times for loading the property 
table were similar regardless of whether or not indexes existed. 

TABLE 6. Dataset Load Times (sec)
Dataset Triple 

Store
Property 

Table

S10K_All 114.9 58.4

S10K_SV 60.9 14.4

S10K_MV 47.9 42.5

S10K_SV_Rand (NT) 66.7 108.7

S10K_SV (Dup Chk) 152.6 23.5

4.2   Query Response Times

The query response times for both schemas are shown in Table 7. The first two queries are similar. They 
retrieve a number of single-valued properties for a subset of the S10K instances. Query1 selects the instances 
with an equality condition on the intR1K property. Query2 uses an equality condition on the intR100 
property. For query1, we see the property table performs nearly five times better than the triple store. This is 
somewhat surprising since an index was available for the triple store. However, the triple store must perform 
a 7-way join to process this query. The property table can process this query as a simple row selection.

For query2, we expected the property table to perform worse since it has no index on the intR100 property 
and must perform a full table scan to process the query. In contrast, the triple store does have an index. 
However the performance difference grows and is now a factor of seven. In fact, the triple store index does 
little good here since it is not very selective. A match on the S100 column returns 100 rows and for each such 
row there is a 7-way join. 

Query5 implements a path expression as a 3-way join. We expected the triple store and property table 
performance to be similar since they both perform the same number of joins. In fact, the property table is a 
factor of two better than the triple store. Query6 implements a large cross product. Once again, we expect the 
property table and triple store to perform similarly. In fact, that is the case here. However, response time is 
surely dominated by data transfer time because so many tuples are returned. We note that the property table is 
slightly faster, perhaps because it moves less data (the property URIs are not stored in the property table and 
so are not transferred from the database engine).

Queries 8 and 9 demonstrate a key advantage of property tables, i.e., their ability to leverage the query 
optimizer. The queries are identical except for the order of the equality conditions. One equality is on the 
intR2 property. This is not very selective and will match one half of the S10K instances. The second equality 
is on the intR1K property. This is more selective and will match one tenth of the S10K instances. Clearly, in 
doing a join the best strategy is to evaluate the most selective condition first. 

For the property table schema, the optimizer has good statistics on the intR2 and intR1K columns and so 
can determine the most selective condition. However, for the triple store, statistics on the object column are 
useless. What is needed are multi-variate statistics on the predicate and object columns which this database 
engine does not use (as least with the default statistics). We see that the property table response times are 
roughly equal for queries 8 and 9. However, the triple store times for these queries differ by a factor of two. 
This indicates that the optimizer chose different execution plans for what are semantically identical queries. 
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The purpose of query10 is to detect any performance difference between a property table and a triple store 
when retrieving a multi-valued property. The response times are essentially the same as expected. Query 11 
illustrates a fundamental weakness of property tables compared to a triple store. It retrieves all property 
values for an instance and so the query contains an unspecified predicate. This query can be processed as a 
selection over the triple store. However, for the property tables, each table must be queried separately. 

TABLE 7. Query Response Times (msec)
Query Triple 

Store
Property 

Table

Query1 1136 239

Query2 2850 406

Query5 1331 450

Query6 93907 84029

Query8 3465 246

Query9 7156 234

Query10 218 228

Query11 230 309

5.0  Summary and Next Steps

Property tables augment the Jena triple store by providing efficient storage for frequently occurring 
patterns of statements. They are space efficient in that the predicate URI of a statement is not stored. They are 
time efficient in that a single database operation can store or retrieve a set of RDF statements, encoded as a 
single table row. Property tables are less flexible than a triple store and the basic graph operations over 
property tables are more complicated. However, the core functionality enables Jena to access and update 
legacy relational database tables and so helps to bridge the gap between structured and semi-structured 
information.

This paper describes the Jena implementation of property tables and presents a preliminary analysis using 
a small query set. The results look promising in that the performance of property tables is generally as good
or better than a triple store. And, since property tables make good use of the query optimizer, their 
performance is more robust with respect to the way a query is expressed. And some property tables enable 
some optimizations that offer big performance improvements for loading and eliminating joins in queries. 
However, the benefits come at the cost of reduced flexibility.

The next steps are to finish the implementation, including access to legacy database tables. A more 
comprehensive set of queries is also needed. Along these lines, queries over the schema itself should be 
added (see [8] for examples) as these are common in RDF applications. Also of particular interest are queries 
that span property tables and the triple store, queries over multi-valued property tables and queries in which 
the predicate is unspecified (requiring a scan of all tables). 

Another interesting area to study is the effect of sparsity on performance. For example, in the dataset used 
here the property tables are dense, i.e., every instance has a value for every column. In real-word datasets, the 
data may not be so regular and so the properties tables will be less dense. As the density decreases, it will be 
interesting to see if property tables retain any performance advantage over a triple store. Queries over the tree 
structures should be studied as examples of queries over taxonomies. And, more complicated graph 
navigational queries should be considered in addition to the simple query, Query6. Finally, note that property 
tables perform poorly for queries with an unknown predicate and this effect should be studied.

Acknowledgements. Katie Portwin provided helpful comments on an earlier draft of this paper.
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Appendix - Queries

Query 1
PREFIX  xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX  s: <http://invent.hpl.hp.com/rdfgen/>

SELECT  ?s1 ?vi2 ?vi10 ?vi100 ?v5s100 ?v5s10 ?v50s
WHERE
{ ?s1  s:intR2     ?vi2 ;

s:intR10    ?vi10 ;
 s:intR100   ?vi100 ;

 s:str5R10   ?v5s10 ;
 s:str5R100  ?v5s100 ;
s:str50    ?v50s ;
 s:intR1K    "99"^^xsd:int .

}

Query2
PREFIX  xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX  s: <http://invent.hpl.hp.com/rdfgen/>

SELECT  ?s1 ?vi2 ?vi10 ?vi100 ?v5s100 ?v5s10 ?v50s
WHERE
{ ?s1  s:intR2     ?vi2 ;

s:intR10    ?vi10 ;
 s:intR100   ?vi100 ;

  s:str5R10   ?v5s10 ;
 s:str5R100  ?v5s100 ;
 s:str50    ?v50s ;
s:intR100   "99"^^xsd:int .

}
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Query5
PREFIX  xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX  s: <http://invent.hpl.hp.com/rdfgen/>

SELECT  ?s1 ?s2 ?s3 ?vs50
WHERE
{ ?s1  s:intR1K    "99"^^xsd:int ;

 s:S10Kuniq  ?s2 .
?s2  s:S10Knniq  ?s3 .
?s3  s:str50     ?v50s .

}

Query6
PREFIX  xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX  s: <http://invent.hpl.hp.com/rdfgen/>

SELECT  ?s1 ?s2 ?s1s50 ?s2s50
WHERE
{ ?s1  s:intR100  ?v1 .

?s2  s:intR100  ?v1 .
?s1  s:str50   ?s1s50 .
?s2  s:str50   ?s2s50 .
FILTER ( ?v1 = "9"^^<http://www.w3.org/2001/XMLSchema#int> ) 

}

Query8
PREFIX  xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX  s: <http://invent.hpl.hp.com/rdfgen/>

SELECT  ?s1
WHERE
{ ?s1 s:intR1K "10"^^xsd:int ; s:intR2 "1"^^xsd:int . }

Query9
PREFIX  xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX  s: <http://invent.hpl.hp.com/rdfgen/>

SELECT  ?s1
WHERE
{ ?s1 s:intR2 "1"^^xsd:int ;  s:intR1K "10"^^xsd:int . }

Query10
PREFIX  xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX  s: <http://invent.hpl.hp.com/rdfgen/>

SELECT  ?o1
WHERE
{ <http://invent.hpl.hp.com/rdfgen/S10K/10>  s:S100C5  ?o1 . }

Query11
PREFIX  xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX  s: <http://invent.hpl.hp.com/rdfgen/>

SELECT  ?p1, ?o1
WHERE
{ <http://invent.hpl.hp.com/rdfgen/S10K/10>  ?p1   ?o1 . }


