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Abstract

It is often desirable to be able to guarantee the integrity of historical data, ensuring that
any subsequent modifications to the data can be detected. It would be especially convenient
to extend such proofs of integrity to certain computations performed later using the historic
data. We approach this question in the context of outsourced databases, where a data owner
delegates the ability to answer users’ queries to a service provider, and distrustful users may
desire to verify the integrity of responses to their queries on the data. We present a solution for
integrity verification of database aggregate queries, such as SUM and MAX. We design proofs
of correctness and completeness of aggregate results. What makes the problem challenging is
that individual data entries may be sensitive (e.g. as in medical databases), and should not be
revealed to the user. We give cryptographic protocols to support verification of query results in
a privacy-preserving fashion.

1 Introduction
For many applications, it is desirable to have historical data integrity, in which the integrity of some
data is established at a specific point in time, and any subsequent modifications to that data can
be detected. Of particular interest is the ability to establish the historical integrity of transactions
and event logs, which are routinely collected in IT systems for a variety of applications such as
intrusion detection, forensics, fraud detection, network monitoring and quality control. Recently,
audit logs and IT auditing have become increasingly important as a means of assuring compliance
with financial and legal regulations, such as the Sarbanes-Oxley Act (SOX) in the US and similar
regulations worldwide.

Consider the following example. A corporation logs financial transactions into a general ledger.
At periodic time intervals, a third-party audit is performed to verify that the corporation is following
legally acceptable accounting practices. Although there are checks and balances in place, there is
always a threat of fraud if an adversary is able to get access to the system and modify entries in the
ledger. These threats are traditionally addressed using carefully managed access control systems
and techniques such as segregation of duties. But this only indirectly protects the integrity of the
data.

It is feasible to address this problem using cryptographic techniques such as message authenti-
cation codes or digital signatures to protect the integrity of the data. However, these techniques
are not sufficient by themselves to protect against threats from a malicious adversary. A better ap-
proach might use a scheme guaranteeing “forward integrity” (e.g. [5, 6]), which makes it intractable
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for an adversary to change previously collected data without access to some well-guarded offline
secrets.

The adversary could be the corporation itself (or a small conspiracy of employees at that
corporation) that modifies the entries in order to hide fraudulent activity from the third-party
auditor. Here forward integrity doesn’t help, because the corporation, which has access to the
offline secrets, can always go back and reconstruct the records. One approach to this problem is
to use third-party time-stamping (e.g. [21], in which the corporation commits to the entries in the
ledger at a specific time in such a way that it is infeasible to modify the entries at a later time
without being detected. Indeed, we wish to minimize the opportunity for fraud to occur wherever
possible, so that we need only trust that the data was entered into the system correctly, without
being concerned about its integrity thereafter.

It is convenient to frame these integrity issues as a three-party model in which a data owner
first enters data into the system, and then turns that data over to a semi-trusted service provider
who answers queries from users on behalf of the data owner. The service provider is semi-trusted
in the sense that it is not expected to maintain the integrity of the data; instead, the integrity of
its answers will be verified cryptographically by the users.

This model is closely related to the problem of outsourced databases in which a data owner
stores its data at an external service provider that offers sufficient hardware, software, and network
bandwidth to maintain the data and answer queries from users on behalf of the data owner. Out-
sourcing enables fast and fault-tolerant delivery of information. It relieves the data owner of the
burden of maintaining the database servers and processing queries.

A substantial amount of research work has been done on how to verify outsourced data and
computation [7, 15, 23, 22, 24, 30, 31, 32], including the verification of both correctness and com-
pleteness of relational database queries, such as SELECT, PROJECT, and UNION. There is one
difference between the existing outsourced database models and the model that we study in this
paper. In (most) existing models [24, 31], the client queries his or her own data hosted by a service
provider (who is not trusted). Our model is more general: the data hosted by the service provider
on behalf of the data owner can be queried by arbitrary parties. Under our more general model, the
existing data encryption approach (e.g., aggregate queries over homomorphic encrypted data [24],
pre-computed and encrypted aggregation [31]) does not apply, because the encrypted data hosted
by a service provider can only be queried and decrypted by the data owner herself.

Once the integrity of the data is established, we still must be concerned about the parties to
whom the data can be disclosed. For many applications, it is undesirable to disclose specific data
elements, for example due to privacy concerns. However, it may be acceptable to disclose aggregate
statistics about the data. This is a common problem that occurs in many areas such as censuses,
medical research, and educational testing. For example, the static aggregates of confidential medical
records of a group of patients can be accessible by the public; however, the medical record of an
individual patient should be kept private. Several approaches to this problem have been proposeed,
including certain methods for perturbing individual data elements (e.g. [3]), but none of them
attempt to simultaneously guarantee the integrity of the underlying data.

1.1 Our contribution

We formalize the model and definitions for the properties integrity and privacy preserving aggregate
queries on outsourced databases. We give a general model for querying outsourced data in a three-
player setting (data owner, service provider, and user). The data owner delegates to a third-party
service provider the task of answering queries from users.

We give protocols for privacy-preserving verification of aggregate queries including SUM, MAX,
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MIN, COUNT, AVERAGE, and MEDIAN. The protocols allow a user to verify both correctness
and completeness of aggregate results while the individual data values contributing to the results
are kept secret from the user. The user interacts with the service provider to obtain aggregate
results, and can verify whether or not the service provider returns the correct and complete results.

Our solutions for SUM-related aggregate queries are based on a homomorphic commitment
scheme and make use of its linearity property. Our solutions for MIN and MAX queries are based
on the proof of knowledge of a greater-than relation of two values. We also use Merkle hash trees for
efficient authentication of commitment values. Our algorithms are efficient. Let n be the number
of elements in the data set, and m be the number of elements to aggregate. The space complexity
for the data owner and the service provider are O(n) (per setup), and O(m + log n) for the user
(per query). The time complexity is O(n log n) for the data owner (per setup), and O(m + log n)
for both the service provider and the user (per query).

Our cryptographic approach is general enough for the verification of many other types of queries,
including non-aggregate database queries [15, 33], historical persistency proofs [20], etc. Non-
aggregate queries typically include SELECT, PROJECT, JOIN, SET UNION and INTERSEC-
TION. Our protocol can be applied to prove the correctness and completeness of these queries
without revealing unnecessary data entries. For example, for set intersection of set A and B, the
verification of correctness of A∩B does not have to reveal to the user the data that is not in the re-
sult. Because the generalization of our aggregate protocols to non-aggregate ones is straightforward,
we omit the definitions, protocol descriptions, and proofs of non-aggregate query verification.

In this paper, we do not address the problem of determining whether the queries themselves leak
information. For example, it may clearly be a privacy violation if someone asks for an aggregate
statistic for a data set that consists of just a single element. Similarly, we don’t address the problem
of linkability, where a user makes multiple queries and is able to infer some privacy sensitive data
from the combined data sets. For example, one may make a series of queries that effectively amount
to a binary search over some data element.

Outline: The paper is organized as follows. Our model and security definitions are given in
§2. We describe our technical toos in §3. The protocols for verification of aggregate queries are
presented in §4, in particular, correctness protocols are given in §4.1 and 4.2, and completeness
protocol is described in §5. Security and efficiency are analyzed in §6. Related work is described in
§7. Suggestions for further research are given in §8. The proof of security is given in the appendix.

2 Model and definitions
In this section, we present our model and security definitions for aggregate query verification, and
introduce our approach with an example.

2.1 Trust model

There are three players in our model: the data owner, the service provider, and the user. The data
owner is the originator or creator of a database. The data owner delegates to the service provider
the ability to answer queries from users. The data owner gives the service provider a copy of the
database, along with auxiliary information that enables the verification of query results. The user
submits queries to the service provider, and verifies the correctness and the completeness of the
results returned by the service provider.

Adapting the trust assumptions of the existing literature on outsourced databases [23, 22, 24,
30, 31, 32], we stipulate in our model that the user trusts the data owner, and in particular trusts
any messages signed with respect to the data owner’s public key. The user does not need to trust
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the service provider, and only relies on responses from the service provider that have been verified
as correct.

On the other hand, the service provider is semi-trusted by the data owner. Specifically, the data
owner outsources its database to the service provider and trusts the service provider to keep the
database secret, not releasing the plaintext data to anyone. But the data owner is not required to
trust the service provider to answer queries correctly, since users are able to verify the correctness
themselves.

In our model, there are three types of adversarial entities: a curious user who wants to infer the
individual data entries from the response to an aggregate query, a compromised service provider
who may provide untruthful aggregate results, and an adversary who may intercept and tamper
with the communications between the user and the service provider. An adversary is allowed to
modify query results, for example by inserting or deleting returned items, modifying the aggregate
results, and modifying commitments.

2.2 Operations and properties

We assume that the attribute values to be aggregated are numeric values. At setup, the data
owner takes as input a security parameter, computes a public-key/private-key pair (PK, SK) for
a digital signature system, and public parameters param. The data owner keeps SK secret. We
define an aggregate query verification protocol to have the following operations: Commit, Query,
Respond, and Verify.

Commit: The data owner takes as input a data set A = (a1, . . . , an). It generates auxiliary
information aux, and computes a digital signature Sig, and sends (A, aux, Sig) to the service
provider over a secure channel.

In our protocol, aux consists of a list of probabilistic commitments to the data items, along
with the information necessary for opening the commitments.

Query: The user, who does not know its contents, sends to the service provider an aggregate
query Q over a data set A.

Respond: The service provider takes as inputs (param, A, aux, Sig,Q). It computes the aggre-
gate answer ans, and prepares the proof pf for correctness and completeness. The service provider
gives (ans, pf, Sig) to the user.

Verify: The user takes as inputs (param, ans, pf, Sig). It verifies that the answer ans satisfies
correctness and completeness properties with proofs pf, signature Sig, and the public key PK of
the data owner (that is obtained from a trusted source).

We naturally define the correctness and completeness of an aggregate query verification protocol
by requiring that when Commit, Query, and Respond are correctly computed, ans is the correct
response to query Q.

For example, for a SUM query on a data set A = (a1, . . . , an), we require that ans =
∑i=n

i=1 ai.
For a SELECT query on the same set A, for example for elements x satisfying L < x < R, we
require that ans = {ai | L < ai < R}. The algorithms that we describe in this paper can only
handle certain types of queries.

We also desire that our aggregate query verification scheme satisfy a privacy requirement.
Intuitively, the user who receives ans as part of the response to query Q should learn no more
about the data set A than is implied by (Q, ans). We make this precise in our formal definition of
security, which is sketched in §6, and given in detail in the Appendix.

All of the algorithms discussed in this paper can be stated in terms of any sort of proofs of
integrity that begin by hashing their inputs with a one-way hash function, including both digital
signatures and time-stamp certificates. Since precise definitions of the security of time-stamping
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schemes are not yet clear in the cryptographic literature (see [21, 11, 10]), we state all our security
results only in terms of digital signatures.

2.3 Data structures

In order to illustrate the sorts of queries that we handle and how we are going to approach the
problem, in this section we give a simple example.

The data owner (and the service provider) use an expanded table T for storing and maintaining
data entries. The table not only stores the plaintext data entries, but also stores their sorting
indices and commitments of values. For example, consider a regular database table that has l
attributes, such as age, salary, and number of dependents. An expanded table T contains 3l
columns: o1, . . . , ol, C(o1), . . . , C(ol), π(o1), . . . , π(ol), where oi is the plaintext value of attribute i,
C(oi) is the commitment of oi, and π(oi) is the ordering index of oi. See Table 1. In more detail:

• Plaintext attribute values o1, . . . , ol are stored in case they are insensitive and can be revealed.
If they are sensitive and have to be kept secret from users, then they are redacted using existing
digital redaction techniques such as in the sanitizable signature scheme [27, 19].

• Commitments values C(o1), . . . , C(ol) are used for proving the correctness and completeness
of aggregate query results.

• Rankings π(o1), . . . , π(ol) are used for proving completeness, and are obtained by the data
owner sorting the data according to each attribute.

Key Age Salary Num. C(age) C(sal) C(Num) π(age) π(sal) π(num)
10001 25 $65K 0 C(25) C(65) C(0) 1 2 1
10002 30 $50K 2 C(30) C(50) C(2) 2 1 3
10003 35 $70K 1 C(35) C(70) C(1) 3 3 2
10004 40 $80K 3 C(40) C(80) C(3) 4 4 4

Table 1: An example of the expanded table maintained by the data owner and the service provider.
Key can be a serial number of the row. Num. represents the number of dependents. C(i) is the
commitment of value i. The plaintext data is in columes Age, Salary, and Num, and their rankings
are in columns π(age), π(sal), and π(num).

In our proof protocols, the data owner constructs a Merkle hash tree whose leaves consist of
the entries of the entire table, including plaintext data, their commitments, and their rankings.
Each row of the table corresponds to a subtree whose leaves are cells of the row. An internal node
contains the hash value of its child nodes. The root hash of the tree represents the digest of the
entire table, and is signed by the data owner.

3 Preliminaries
We describe the basic building blocks that are used to construct our verification protocols, which
include a Merkle hash tree, a homomorphic commitment scheme, zero-knowledge proofs of greater-
than comparison.

3.1 Merkle hash tree

We use Merkle hash trees for authentication of commitments C1, . . . , Cn. A binary Merkle hash
tree is a tree where an internal node h′ is computed as the hash value H(h1, h2) of two child nodes
h1 and h2. In our construction, the order of inputs in the hash function matters and represents
the node position in the tree, e.g., h1 is the left node. The root hash y of the tree represents the
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digest of all the values at the leaf nodes, which are commitments C1, . . . , Cn in our construction.
To authenticate that leaf Ci is in the hash tree, the proof is a sequence of hash values corresponding
to the siblings of nodes that are on the path from Ci to the root. To verify the proof, anyone can
recompute the root hash with Ci and the sequence of hash values in the proof.

3.2 Homomorphic commitment scheme

Let G be any group of large prime order q in which the computation of the discrete log is believed
to be hard (for example, q|p − 1 where p is a large prime). Let g ∈ G and h ∈ G be group
elements of order q such that the discrete log logg(h) is unknown. Let H denote a cryptographic
hash function with domain [0, q− 1]. A cryptographic commitment is a value that appears random
yet binds to a unique input. A commonly-used commitment is the Pedersen commitment [35],
where the commitment to x with randomness r is the group element Cr(x) = gxhr. Cr(x) can
be opened or de-committed by revealing r and x to a verifier. This commitment has properties
of computationally binding and unconditionally hiding. We may say that a commitment Cr(x)
corresponds to x, since Cr(x) can only feasibly be opened to value x. The Pedersen commitment
has a homomorphic property such that Cr1(x1)Cr2(x2) = Cr1+r2(x1 + x2).

3.3 Zero-knowledge proofs of knowledge

A zero-knowledge proof of knowledge allows a prover to demonstrate the knowledge of secret values
or their relations (such as ≥) without revealing them. For example, a proof of knowledge of a
Pedersen committed integer x demonstrates the knowledge of some x and r such that Cr(x) = gxhr.
We use non-interactive proofs of knowledge where the proof is contained in a single set of data that
can be verified later without the participation of the data owner or the service provider.

Suppose C1 and C2 are commitments of x1 under random value r1 and x2 under random
value r2, respectively. Let φ(x1, x2) be the relation of x1 and x2 to be proved. We use the
notation POK (x1, r1, x2, r2|C1 = gx1hr1 , C2 = gx2hr2 , φ(x1, x2)) to denote a zero-knowledge proof
of knowledge of (x1, r1) and (x2, r2) satisfying all of C1 = gx1hr1 , C2 = gx2hr2 , and φ(x1, x2). This
notation has been previously used [12]. The bit verification proof can be expressed as POK (x, r|C =
gxhr, x ∈ {0, 1}).

Bit verification proof is used to prove that x is either 0 or 1 without revealing the actual value of
x. The proof is a special case of OR proof [13, 38], and contains a five-item tuple (C, r1, r2, c1, c2),
such that c1 + c2 = H(y1, y2) mod q, where y1 = hr1C−c1 and y2 = hr2(C/g)−c2 . The choice of
c1 and c2 depends what is to be proved. If x = 1, then c1 is random, otherwise, c2 is random.
We describe the completeness, zero-knowledge, and soundness properties of this protocol in the
Appendix. The bit verification proof is used in the zero-knowledge proof of knowledge of greater-
than relation of two values, which is described next.

Our protocols need proofs that two committed integers, x1 and x2, satisfy an inequality such as
x1 ≥ x2 [9, 13, 16, 28]. One approach is to show that x1−x2 ≥ 0. We review the greater-than proof
by Durfee and Franklin that is based on the bit commitments of the difference x1 − x2, following
their descriptions [16]: POK (x1, r1, x2, r2|C1 = gx1hr1 , C2 = gx2hr2 , x1 − x2 ≥ 0).

The prover can compute the commitment C ′ = Cr1−r2(x1−x2), and the verifier can compute this
as C ′ = C1/C2. Let (γi)t−1

i=0 be the binary representation of x1−x2, i.e., x1−x2 =
∑t−1

i=0 2iγi, where t
is the bit length of the difference. Choose random values s1, . . . , st−1 and set s0 = r1−r2−

∑t−1
i=1 2isi.

Let αi = Cγi(si) = gγihsi for all i ∈ [0, t − 1]. Suppose the verifier knows that the bound x1, x2 ∈
[0, 2t) holds. The prover provides the commitments α0, . . . , αt−1 along with a proof that each γi is
a bit (either 0 or 1). The verifier checks the proof that each bit committed by αi is either 0 or 1
and confirms that equation C2

∏
α2i

i = C1 holds. Suppose the verifier does not know the bound of
x1 or x2. Then, a zero-knowledge proof that x1 ∈ [0, 2t) and x2 ∈ [0, 2t) can be constructed in a
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similar fashion. In our protocol, we assume the bounds of x1 and x2 are known by the verifier (or
the user), which is usually the case for most database entries such as zip code, salary, age, etc.

A special case of greater-than proof called interval proof. An interval proof proves that a
committed integer satisfies an inequality such as x ≥ A or y ≤ B, where A and B are constants:
POK (x1, r1|C1 = gx1hr1 , x1 −A ≥ 0), POK (x2, r2|C2 = gx2hr2 , B − x2 ≥ 0).

4 Verification protocols for aggregate queries
We present our verification protocols for sum, max/min, count, and average queries. Our protocols
can be generalized to answer combined aggregate queries, aggregate query with selection clause,
generalized sum queries such as linear combination, generalized max queries such as median and
top k-th. In this section, to clarify our explainations, we use a simple table with one attribute and
no plaintext data. These building blocks can be easily expanded to include the general form of
data structure as in §2.3.

We use the cryptographic tools described in §3. For each query-type, we present four operations:
Commit, Query, Respond, and Verify. We present protocols for correctness verification first,
and then give our solution for verification of completeness. The following protocols are run by the
data owner, service provider, and the user to answer aggregate queries and verify the correctness of
results. In the protocols described in S4.1 and §4.2, we assume that the query is over the complete
set of unsorted data (a1, . . . , an). To handle tables with multiple attributes, we generalize our
protocol in §5.1.

General Settings: The data owner chooses a public/private key-pair (PK, SK) in a secure dig-
ital signature scheme. The data owner chooses a group G of order q, and two elements g and h in G
such that the discrete log logg(h) is unknown. The public parameters param = (PK, C, H, S,POK ),
where C is a commitment scheme, H is a hash function, S is the signature scheme, and POK is a
zero-knowledge proof protocol of greater-than.

Denote the set A of data by (a1, . . . , an). Denote the Pedersen commitment of data ai with
random value ri by Ci (see §3). The data owner has an unsorted set A of data (a1, . . . , an).
The data (in plaintext) is given to the service provider along with auxiliary information including
commitments and a signature on the digest of commitments. The service provider answers aggregate
queries on behalf of the data owner without revealing the data (a1, . . . , an). Yet, the user is able
to verify the result.

4.1 SUM queries

For sum query, the user obtains the sum s of set A from the service provider, and verifies the
correctness of s with respect to the commitments (C1, . . . , Cn) of the data along with data owner’s
signature on the root hash of commitments. The details are as follows.

Commit: The data owner with public/private key pair (PK, SK) and data (a1, . . . , an) com-
mits and signs the data as follows. Choose n random values (r1, . . . , rn). Compute the Pedersen
commitment Ci of ai with ri as Ci = gaihri . Construct a Merkle hash tree with commitments
C1, . . . , Cn as leaf nodes of the tree, and denote the root hash of the tree by hr. Sign the root hash
hr with the private key SK of the data owner, which gives a signature Sig. Send the following in-
formation to the service provider in a secure channel: {(a1, . . . , an), (r1, . . . , rn), (C1, . . . , Cn), Sig)}.
The random value ris are for the service provider to open commitments of the sum (see operation
Respond).

Query: The user queries for the sum of the data set A.
Respond: The service provider obtains from the data owner the following information:

{(a1, . . . , an), (r1, . . . , rn), (C1, . . . , Cn), Sig)}. It prepares the sum and its proofs as follows. Com-
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pute the sum of data s =
∑n

i=1 ai. Compute the sum of random values r′ =
∑n

i=1 ri. Send the
following information to the user: {s, r′, (C1, . . . , Cn), Sig}.

Verify: The user receives {s, r′, (C1, . . . , Cn), Sig} from the service provider. The user verifies
the correctness of sum s as follows. Confirm the following equation holds: gshr′ =

∏n
i=1 Ci.

Construct a Merkle hash tree with (C1, . . . , Cn) as leaf nodes. Compute the root hash hr and
verify signature Sig of hr with the public key PK of the data owner. We assume that the user
obtains PK through a regular public key certificate process. Sum s is accepted if all verifications
are successful, rejected otherwise.

The security and efficiency of the protocol in analyzed in §6. Our above protocol can be gener-
alized to a query for any linear combination of sum without revealing the data values themselves.
For example, a user can query for the sum of 3a1 + 5a2 + 12a3 + . . ., which can be easily computed
by the service provider who has ai values. Our protocol can be easily modified to allow verification
of the sum in a privacy-preserving fashion.

The verification protocols of count and average queries can be built based on the sum query.
We consider aggregation over the entire set A. For verification of count result n, the user simply
counts the number of commitments (C1, . . . , Cn), and confirms that it is n. The user constructs
the Merkle hash tree of commitments Cis and verifies the signature Sig of the root hash with the
public key of the data owner as in sum protocol. The protocol for average query can be built by
combining the sum and count verifications, and is not repeated here.

4.2 MAX/MIN queries

For a sorted list, the max/min query can be easily solved as follows. The data owner sorts and
signs the root hash of the Merkle tree. The service provider returns the max or min element, and
proves that the element is the last or the first element of the sorted list. The user trusts the data
owner for sorting the list, and therefore the verification of correctness is equivalent to verifying the
position of the result in the list.

We focus on how to verify the correctness of max/min query for unsorted data. We present our
correctness verification protocol for max query, which can be easily modified to answer min query.
The proofs generated by the service provider for max query are more complex than for sum query.
We use the zero-knowledge proof of greater-than described in Section 3 for the proof of comparison
result.

Commit: Same as in sum protocol.
Query: The user queries for the maximum element of set A.
Respond: The service provider computes the maximum element aj of data set A which contains

(a1, . . . , an). For each data value ai ∈ A and i 6= j, prepare the zero-knowledge proof pi for aj ≥ ai:

pi = POK (ai, ri, aj , rj |Ci = gaihri , Cj = gajhrj , aj − ai ≥ 0)

The service provider gives the following information to the user:
{aj , rj , (C1, . . . , Cn), (p1, . . . , pj−1, pj+1, . . . , pn), Sig}. Note that all the data in A except the
max is not revealed to the user.

Verify: The user obtains the following information from the service provider:
{aj , rj , (C1, . . . , Cn), (p1, . . . , pj−1, pj+1, . . . , pn), Sig}, where pi is the zero-knowledge proof of aj ≥
ai. The user does: Open commitment Cj with aj and rj . Construct a Merkle hash tree with
(C1, . . . , Cn) as leaf nodes. Compute the root hash hr and verify signature Sig of hr with the
public key PK of the data owner. We assume that the user obtains PK through a regular public
key certificate process. Sum s is accepted if all verifications are successful, rejected otherwise.
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4.3 Median or top k-th queries

A query for the median of a set of elements can be answered in a similar fashion as the max/min
query. The main difference is the requirements on the comparison results. Namely, in Verify, the
user verifies zero-knowledge proofs {pi} to ensure that there are n/2 number of items greater-than
the median and n/2 number of items less-than the median. Our solution also applies to a more
general top k-query, which is to return the top k-th element of a set. Top k-queries are important
constructs in many data mining applications. To answer it, in Verify, the user verifies in a zero-
knowledge fashion that there are k − 1 items greater-than the result and the rest of items are
less-than the result.

The above protocols assume that the queries are over the complete set of data. We generalize
our solutions to handle tables with multiple attributes in §5.1.

4.4 Nested aggregate queries

Our correctness protocols can be composed and generalized to verify more complex aggregate
queries, namely, nested aggregate queries. Nested aggregate queries are an important and expressive
type of query in database systems. For example, a query asks for the max of the counts of numbers
of cancer patients per year. The yearly cancer patient numbers are first counted, and then the
maximum is found. Or, for example, a query asks for the max of the sums of revenues per quarters.
The quarterly revenues are first summed up, and then the maximum is computed. Our previously
presented protocols can be composed with an arbitrary depth to support nested aggregate queries.
The integrity verification hides not only individual data entries but also intermediate values in
nested aggregate queries.

To give a concrete example of protocol for nested aggregate query, we choose to present the
verification protocol for max-sum nested pair next. There are m data sets: A1, . . . , Am. The user
wants the maximum sum of individual sets.

Commit: The data owner commits and signs elements in each set of A1, . . . , Am, similar to
the sum protocol. The data owner computes commitments of each data value in all sets, and signs
the root hash of Merkle tree built over the commitments. Let {C} represent all the commitments,
Ci,k be the commitment of k-th element in set Ai, and Sig be the signature.

Query: The user queries for the maximum number of the sums of individual set A1, . . . , Am.
Respond: The service provider does: For each set Ai (i ∈ [1,m]), compute the sum si. Com-

pute the commitment Di of si by multiplying commitments of Ai’s data in {C}: Di =
∏|Ai|

k=1 Ci,k.
Note that the service provider also has the random values to open Dis. Compute the maximum
number of all sums, which is denoted by sj (j ∈ [1,m]). For each sum si, prepare the zero-knowledge
proof pi for sj ≥ si:

pi = POK (si, ti, sj , tj |Di = gsihti , Dj = gsjhtj , sj − si ≥ 0)

The above proofs are for the maximum computation. The service provider also needs to show
proofs for summation computation using commitments {C}, and the authenticity of commitments
{C} is proved with signature Sig. The service provider gives the following information to the
user: {sj , {C}, (p1, . . . , pj−1, pj+1, . . . , pm), Sig}. Note that the intermediate sums are not revealed
except the max.

Verify: The user obtains the following information from the service provider:
{sj , {C}, (p1, . . . , pj−1, pj+1, . . . , pm), Sig}, where pi is the zero-knowledge proof of sj ≥ si. The
user constructs a Merkle hash tree with {C} as the leaf nodes. The user then computes the root
hash and verifies signature Sig with the public key PK of the data owner. We assume that the user
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obtains PK through a regular public key certificate process. She then computes the commitment
Di of intermediate sum for all i ∈ [1,m] as Di =

∏|Ai|
k=1 Ci,k. Finally, the user verifies pi for all

i ∈ [1,m] and i 6= j using commitments Di. Max sj is accepted if all verifications are successful,
rejected otherwise.

5 Verification of completeness
The definition of the completeness of aggregate queries is directly based on the completeness of
selection queries. The basic building block is the existing proof-of-knowledge protocol for proving
greater-than relation of two values. One requirement of our solution is that the attributes used for
selection need to be sorted by the data owner. For a relational database table, indices can be built
for arbitrary attributes. For a table that has multiple attributes, the attribute used for selection
can be different from the attribute for aggregation, for example, average blood pressure for patients
older than 55. In this example, we require the table to be sorted under attribute age, but not under
attribute blood pressure.

Our description of completeness verification proof requires a generalization of Commit opera-
tion in the previous section to support multiple attributes.

5.1 Support of multiple attributes

To support flexible aggregate with selection queries, we generalize our Commit, Respond, and
Verify operations in the previous section to handle tables with multiple attributes. The main
addition to Commit operation is that for a data entry with multiple attributes, each attribute
value is committed and the hash value of concatenated commitments is used to build a Merkle hash
tree. The commitments are also required for verification in Verify operation.

Let (T1, . . . , Tl) be the attributes of a database table, and l is the number of attributes. Denote
the value of attribute Ti by ti (for i ∈ [1, l]). We assume that all the attributes are sensitive and
cannot be revealed to users. If certain attributes are insensitive (and the problem becomes simpler),
then the attribute values rather than their commitments are computed in the hash value.

In Commit, for each database table entry, the data owner commits to attribute value ti for
all i ∈ [1, l], by computing Ci = gtihri , where ri is chosen at random. The data owner computes
the hash value of concatenated commitments: h = H(C1, . . . , Cl), and constructs Merkle hash tree
with all the hash values as leaf nodes. As before, commitments, database tables, random values,
and the signature are given to the service provider.

Suppose a user submits an aggregate query for attribute T1. In response, the service provider
prepares correctness proofs for attribute T1 as in previous protocols. The service provider also gives
commitments C1, . . . , Cl of all attributes T1, . . . , Tl for each entry and proofs to the user. The user
reconstructs the hash root and verifies the correctness of query result.

5.2 Completeness verification protocol

We present a completeness proof for aggregate queries with selection. Consider a table with l
attributes T1, . . . , Tl. Our presentation of the protocol uses a range query [a, b] for an attribute Tj ,
and aggregation is over attribute Ti. We augment the operations to support proof of completeness.

For simplicity, we assume that data entries on the Merkle hash tree are sorted under attribute
Tj . That is, the left most entry on the tree has the smallest Tj value, and so on. Our protocol can
be modified to allow arbitrary orderings without revealing unnecessary ranking information, which
is discussed at the end of this section.

Commit: The data owner sorts data entries from small to large, based on one or more attributes
that are used for selection, computes commitments as described in §5.1, constructs Merkle hash
tree, and signs the root hash. Let the signature be Sig.
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Query: Without loss of generality, let the user’s query be an aggregation of attribute Ti

(i ∈ [1, l]) over the selection over attribute Tj (j ∈ [1, l]) whose values lie between [y1, y2].
Respond: To construct the proof for completeness, the service provider Selects the entries that

lie in the selection range, which are denoted by A. Then computes the required aggregate (such as
sum, max, etc) of attribute T1.

• If the selected entries has two immediate neighboring entries, then the service provider con-
structs a zero-knowledge proof that the two entries are beyond the selection range [y1, y2].
Denote the zero-knowledge proofs as pleft and pright. The ZK proof pleft shows that the entry
immediately to the left 1 of the set of selected entries A has a Tj attribute value vleft smaller
than y1, i.e., vleft < y1. The ZK proof pright shows that the entry immediately to the right
of the set of selected entries A has a Tj attribute value vright larger than y2, i.e., vright > y2.
The proofs show that all of the entries satisfying the range are selected.
Let rleft and rright be the random values used by the data owner to compute the commitments
of vleft and vright in Commit, respectively. The proofs pleft and pright are expressed below.

pleft = POK (vleft, rleft, |Cleft = gvlefthrleft , y1 − vleft > 0)
pright = POK (vright, rright, |Cright = gvrighthrright , vright − y2 > 0)

The service provider gives the following information to the user: commitments of selected
entries denoted by CA, commitments of neighbors Cleft and Cright, proofs pleft and pright,
data owner’s signature Sig, and companion hashes. Recall companion hashes are hash values
at the roots of disjoint subtrees of the Merkle hash tree all of whose leaves correspond to
commitments of unseleted data entries (i.e., not in set A).

• If the selected entries has one immediate neighboring entry, then the service provider con-
structs a zero-knowledge proof that the entry is beyond the selection range [y1, y2] as above,
i.e., either vleft < y1 or vright > y2.

• If no element is out of the selection range, i.e., all entries are selected, the Merkle tree
contruction implicitly proves the completeness. Hence, the service provider returns all the
commitments and signature Sig.

Verify: The user verifies the completeness of results by computing the root hash of Merkle
hash tree with commitments CA, Cleft, Cright, and companion hashes, verifying the signature Sig
on the root hash with data owner’s public key, and verifying the proofs pleft and pright. The query
is accepted if all verifications are successful, rejected otherwise.

The above protocol uses a range as the selection clause. For just ≥ or ≤ predicates, a sim-
plied version of our protocol suffices, as the proof of only one neighbor is needed. For an equality
predicate, a completeness ZK proof can be prepared in a similar fashion, showing immediate neigh-
bors of selected entries are either larger or smaller than the predicate. Similarly, ZK proofs for
inequality predicates can be computed. The solution presented supports the selection of one at-
tribute. For more complex selections of multiple attributes, for example, age ≥ 30 and height ≥ 6’,
a multi-dimensional range tree [33] has to be constructed by the data owner.

5.3 Generalizing the Completeness Proof

Above we assumed that entries on the hash tree are sorted under attribute Tj , which is also used
for the selection. In order to support general completeness proof, the data owner also sorts the

1Sorting in Commit is from small to large.
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data under each attribute, and the indices or rankings are stored as part of the table, as shown,
for example, in Table 1 in §2.3. To further hide the rankings, the rankings can also be committed
and then folded into the hash tree, as described above. We demonstrate this using an example as
follows.

Consider Table 1, instead of using ranking 3 for entry $70K for attribute π(sal) in the Merkle
hash tree, the data owner computes a randomized commitment of 3, denoted by Cπ = g3hr for
some random r. Similarly, for entry $65K, let C ′

π = g2hr′ be a commitment of ranking 2, for some
random r′.

Suppose that the selection criteria of a user’s query is for salary greater-than $67K. This selects
$70K entry, but not $65K entry. To prove that the selection is complete, the service provider
shows that (1) $65K < $67K, (2) ranking 3 is higher than ranking 2 by 1, and (3) $65K has
ranking 2 and $70K has ranking 3. Requirement (3) is proved implicitly because in Merkle hash
tree commitments of $65K and ranking 2 are grouped and hashed together and similar for $70K
and ranking 3. Requirement (1) can be proved with zero-knowledge proofs without revealing
$65K. Finally, requirement (2) can be proved by showing that Cπ/C ′

π is a commitment of 1:
Cπ/C ′

π = g3−2hr−r′ = ghr−r′ . The user is given r − r′ to open the commitment of 1. Due to space
limit, we omit the formal description of this generalized protocol in this version.

6 Security and efficiency
In this section, we analyze the adversarial model and prove the security of our protocols. We
also give the complexity analysis of our verification protocols. We give formal security definitions
in a random oracle model, using a game-based definition generalizing the one used to define the
semantic security of an encryption scheme [17]. We allow an attacker to issue commit queries and
sign queries, i.e., queries for commitments and signatures of data sets, respectively, and aggregate
queries, i.e., queries for aggregate results and their proofs. Also, we allow the adversary to choose
the data set on which it wishes to be challenged. Notice that an adversary may choose its targets
adaptively. An adversary that chooses its targets adaptively first makes queries, and then chooses
its targets based on the results of these queries. At the end of the query phase, the adversary
outputs a guess aiming to break the correctness verification. In the statement of the following
theorem, we define a protocol to be secure if no feasible adversary, issuing a polynomial number of
queries in the game we define, achieves a non-negligible advantage in the game.

Theorem 1 The verification protocols of aggregate query results on outsourced databases are se-
cure.

The proof of Theorem 1 is given in the appendix using security reduction. Our proof strategy is
outlined here. Suppose there is an adaptive adversary Adva that has combined advantage ε against
the verification protocol targeting one or more correctness, completeness, and privacy properties,
and that makes a polynomial number of commit, sign, and aggregate queries. If the hash functions,
H, used in answering sign queries is a random oracle, then there is an algorithm that breaks one
or more of a collision-free hash function, a secure commitment scheme with binding and hiding
properties, and a signature scheme secure against existential forgery with combined advantage
O(ε) and running time O(time(Adva)).

6.1 Efficiency

We analyze the complexities of operations in our verification protocols, which is summarized in
Table 2.

Our verification algorithms have cost linear in the number of data elements selected by a query.
This is to be expected, given our approach, since in essence our procedures verify each of these data
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Commit Respond Verify Update Storage
Data owner O(n log n) – – O(k log n) O(n)

Service provider – O(m + log n) – O(k log n) O(n)
User – – O(m + log n) – O(m + log n)

Table 2: Time and space complexities of the protocol. We consider the verification of both cor-
rectness and completeness. The analysis is independent of the specific type of aggregate query. n
is the size of all data, and m is the size of data selected for query. k in Update is the number of
data elements updated.

elements’ contribution to the correct response. We leave to future work the problem of breaking
this apparent lower bound.

Windowed aggregate: In certain applications (e.g., streaming databases, continuous
queries [1]), the aggregate queries are pre-defined by users and known by the data owner in ad-
vance. The data comes from a dynamic data stream (e.g., stock quotes). The data owner can
pre-compute, commit, and sign intermediate computation results, e.g., local max/min and sum.
The intermediate values replace the original data and serve as basic data elements. Therefore, the
computation leading to intermediate values does not need to be verified by the user, which saves
communication and computation costs. Note that the verification time is still linear in the size of
inputs, which are intermediate values.

7 Related work
With the increasing development of IT outsourcing, a substantial amount of research work has been
done on how to verify outsourced data and computation [7, 15, 23, 22, 24, 30, 31, 32], including the
verification of both correctness and completeness of relational database queries. Existing literatures
on database query verification have focused on non-aggregate queries such as select, project, join,
set union, and set intersect. Merkle hash trees have been used extensively for authentication of
data elements [29]. Aggregate signatures are another approach for data authentication, where each
data tuple is signed by the data owner [32]. Most recently, the privacy issue in verifying non-
aggregate queries was first addressed by in [34], which gave an elegant solution using hashing for
proving the completeness of selection queries without revealing neighboring entries. We provide an
alternative solution for the privacy issue in completeness proof by utilizing zero-knowledge proofs
and a commitment scheme.

The aggregate query verification problem has been studied in database-as-a-service (DAS)
model [24, 31]. The DAS model [23, 31], is an instantiation of the computing model involving
trusted clients, who store their data at an untrusted server that are administrated by the service
provider. The challenge is to make it impossible for the system provider to correctly interpret
the data. The data is owned by clients. The clients only have limited computational power and
storage, and they rely on the server for the mass computational power and storage. The server
exposes mechanisms for the clients to create and manage the client databases at the server. Data
originates from the client. The recent paper by Hacigümüs, Iyer, and Mehrotra [24] addresses the
execution of aggregate queries over encrypted data using homomorphic encryption scheme. Myk-
letun and Tsudik [31] proposed an alternative approach where the data owner pre-computes and
encrypts the aggregate results and stores them in the service provider. This approach avoids the
use of homomorphic encryption, which was found to have a security flaw when used for DAS [31].
The correctness and completeness definitions do not apply to these models as the user is also the
data owner in DAS. Our model is different from DAS, and is suitable for a more general security
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Ours NT [32] DGMS [15] PJRT [34] HIM [24]/MT [31]
Aggregate Q. Yes No No No Yes

Non-aggregate Q. Yes Yes Yes Yes No
Correctness Yes N/A N/A N/A N/A

Completeness Yes Yes Yes Yes N/A
Authenticity Yes Yes Yes Yes Yes

Privacy Yes No No Yes Yes
Data Structure Tree-based Signature chain Tree-based Tree-based N/A

Table 3: Comparisons of functionalities of our verification protocols with some of the existing
approaches developed for outsourced systems.

setting, as the data does not have to be originated from the client. We compare major features of
our work with existing solutions in Table 3.

Hohenberger and Lysyanskaya were the first to give formal security definitions for outsourced
computation, and probabilistic solutions for checking failures in outsourced exponentiation and the
Cramer-Shoup cryptosystem [26]. Their model has two parties: the data owner and the untrusted
service provider. Our work studies a three-party model where the client who queries the service
provider may not the same as the data owner.

Searchable symmetric-key encryption schemes for private-key storage outsourcing have been
previously studied (e.g., [2, 39]). Most recently, improved security definitions and constructions
are proposed by Curtmola, Garay, Kamara, and Ostrovsky [14]. Public-key systems have also
been used to construct searchable encryption schemes [2, 8, 41], including a practical searchable
and encrypted audit log system [41]. In general, symmetric key encryption is more efficient than
public-key encryption. In the meantime, the symmetric key encryption typically requires live key
updates, which incur communication costs. Our authentication protocol differs from the above
work in that it focuses on the validation of query results, and supports data aggregate besides
search (i.e., equality and comparison-based selection).

In data-mining literature [3, 37, 40, 42], an important approach to protect data privacy is to
modify database tables such that an individual entry enjoys certain degree of anonymity. Our
solutions differ from existing efforts in that we support authenticated ad hoc data analysis without
releasing the microdata to the public. Because the aggregate is computed over exact data instead
of generalized data, there is no loss of data accuracy in the aggregate results.

8 Future work
One interesting future direction is to develop unlinkable and verifiable data aggregation. The link-
age problem occurs when a prover (database holder) answers several different queries from the
verifier and returns the same set of commitments. Then, there is a possible leakage of information.
For example, if one query asks how many people live in Springfield and another query asks how
many are over forty years old, then by viewing the returned commitments the verifier could de-
termine how many people over forty there are in Springfield, i.e. an information leakage occurred.
One way to prevent this is to change commitments over time; for example, a prover could random-
ize commitments. This procedure should not require interaction from the prover with the proof
preparer. In the meantime, a user should still be able to verify the randomized commitments are
generated from authentic data.

The lower-bound given in Section 6 is proved based on input commitments whose size is linear
in m, where m is the size of data selected for query. A possible future direction is to study whether
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pre-computations by the data owner can reduce the input size of the Verify algorithm. The data
owner might use auxiliary data structure (preferrably with a linear or polynomial complexity in
the total size of data n). The auxiliary data structure is signed and given to the service provider,
so that the user can verify the correctness of any aggregate query result with a number of inputs
sublinear in m.
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A Zero-knowledge OR proof properties
For the completeness of our protocols, we review security properties of OR proof, which is the basis
for bit verification proof used in our max/min proofs. The properties include completeness, zero-
knowledge, and soundness. The non-interactive version of OR proof is called Sigma protocol [13],
using the Fiat-Shamir transformation to replace the random challenge with a hash function H.
The security of the non-interactive proof is in the random oracle model [4].

Completeness: Intuitively, completeness means that honest prover who knows the secret con-
vinces the verifier with overwhelming probability. For commitments Cr(0) and Cr(1), such a proof
can be efficiently computed as follows. If x = 1, thus commitment C = g1hr, then let r1, c1, u2 be
chosen by the prover at random. The prover fakes (simulates) a proof for x = 0. Let a1 = hr1C−c1

mod p, a2 = hu2 mod p, c = H(a1, a2), c2 = c − c1, and r2 = u2 + c2r mod q. In the case where
x = 0, thus commitment C = g0hr, then let r2, c2, u1 be chosen by the prover at random. The
prover fakes a proof for x = 1. Let a2 = hr2(C/g)−c2 mod p, a1 = hu1 mod p, c = H(a1, a2),
c1 = c− c2, and r1 = u1 + c1r mod q.
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Soundness (being a proof of knowledge): Intuitively, soundness means that no one who does not
know the secret can convince the verifier with non-negligible probability. Formally, this property
shows that two acceptable protocol interactions {a1, a2, c, r1, r2, c1, c2} and {a1, a2, c

′, r′1, r
′
2, c

′
1, c

′
2}

for a fixed commitment C with different challenges {c1, c2} 6= {c′1, c′2} can be used to compute a
witness pair (x, r) for C = gxhr. If x = 0, observe that h(r1−r′1)/(c′1−c1) = C. And if x = 1, observe
that h(r2−r′2)/(c′2−c2) = C/g. Therefore, in either case, a value pair (x, r) that can open commitment
C = gxhr is found. The non-interactive version of the proof is sound by forking lemma [36] in the
random oracle model.

Zero-Knowledge: Intuitively, the proof is zero-knowledge if what the verifier sees during the
protocol (i.e., the transcript) can be simulated without knowing the secret. The OR proof is honest
verifier zero knowledge, which means that if the verifier follows the protocol, the transcript can
be simulated. For any commitment C and challenge c, a simulator chooses r1, c1, r2, c2 at random
such that c = c1 + c2. The simulator who then computes a1 = hr1C−c1 and a2 = hr2C/g−c2 ,
therefore, can simulate the interactions. The non-interactive version of the proof of OR protocol is
zero-knowledge in the random oracle model [4].

B Adversarial model and security proofs
In this section we give our game-based definition of security, and then prove that our protocols
satisfy this definition.

Definition 1 A verification protocol for aggregate queries on outsourced databases is secure against
adaptive correctness, completeness, and privacy attacks, if no polynomial time bounded adversary
has a non-negligible advantage against the challenger in the game defined below.

For simplicity, the game definition is for a single attribute table. It can be generalized to
multiple attribute queries and is omitted.

Setup: The challenger takes a security parameter k, and generates public parameters param,
which is given to the adversary. The challenger keeps the private key SK to itself.

Phase 1: The adversary issues queries q1, . . . , qm, where qi is one of the followings:

1. Commit query (A): The challenger computes commitments of data elements in set A. The
commitments and random values used are given to the adversary.

2. Sign query (hr): The challenger signs the root hash hr with its private key.
3. Aggregate query (A,Q): The challenger runs the corresponding Respond algorithm to an-

swer query Q of A. The resulting answer ans, correctness and completeness proofs pf, and
the signature Sig of A are sent to the adversary.

These queries may be asked adaptively. Also, the queried set at each query may be distinct.
Once the adversary decides that Phase 1 is over, she chooses a challenge for attacking privacy.
(No need of choosing challenge for attacking correctness and completeness.)

Privacy challenge: The adversary outputs two distinct equal size sets A0 and A1 and an
aggregate query Q∗ to be challenged, such that query Q∗ on set A0 and A1 gives the same result
– the adversary cannot tell them apart by just seeing the query result. The challenger picks a
random bit b ∈ {0, 1}, computes the query results and proofs on set Ab by running Respond
algorithm, which outputs (ans∗, pf∗, Sig∗). It sends (ans∗, pf∗, Sig∗) as a challenge to the adversary.
The adversary needs to guess whether A0 or A1 is used to produce the aggregate result ans∗.

Correctness challenge: The adversary outputs a data set Ã = (ã1, . . . , ãn), commitments
{C̃} = (C̃1, . . . , C̃n) of data elements, and random values r̃1, . . . , r̃n used in computing the com-
mitments. The challenger opens the commitments by re-computing them with ãi and r̃i. If all the
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commitments are verified successfully, the challenger constructs the Merkle hash tree and signs the
root hash. The signature S̃ig is given to the adversary.

Phase 2: The adversary issues more queries qm+1, . . . , qn, where qi is one of:

1. Commit query (A): The challenger responds as in Phase 1.
2. Sign query (hr): The challenger responds as in Phase 1.
3. Aggregate query (A,Q): The challenger responds as in Phase 1.

Guess: The adversary outputs one or more of three guesses for attacking correctness, com-
pleteness, and privacy, respectively.

• Privacy guess: The adversary outputs a guess b′ ∈ {0, 1}. The adversary wins the game if
b = b′. We define its advantage in attacking the scheme to be |Pr[b = b′]− 1

2 |.
• Correctness guess: The adversary outputs (Q̃, Ã, ˜ans, p̃f, ˜Sig∗), such that ˜ans is not the

correct result of query Q̃ over data set Ã, however p̃f is an acceptable proof of correctness
of result ˜ans, and ˜Sig∗ is an acceptable signature. We allow ˜Sig∗ to be different from what
is given in Correctness challenge. However, the additional constraint is that ˜Sig∗ is a
signature of a message (root hash) that has not been signed in Phase 1 or Phase 2. In
other words, the adversary can demonstrate that a wrong answer can pass the correctness
verification. Note that the adversary needs to output the individual data values of Ã in her
attack.

• Completeness guess: The adversary outputs (Q̃, Ã, ˜ans, p̃f, S̃ig), such that ˜ans is not the
complete result of query Q̃ over the data set Ã, however p̃f is an acceptable proof of com-
pleteness and S̃ig is an acceptable signature of commitments of the data. In other words, the
adversary can demonstrate that an incomplete answer can pass the completeness verification.

B.1 Building blocks in proofs

The security is proved based on the security of collision-free hash function, commitment scheme
with hiding and binding properties, and signature scheme secure against existential forgery. We
give simple definitions of security for all three commonly used primitives next. The game definitions
of these primitives can be easily generalized and are omitted in this paper.

Definition 2 Security of collision-free hash function H: a polynomial-time adversary has negligible
probability of finding two different message m1 6= m2 such that their hash values are the same, i.e.,
H(m1) = H(m2).

Definition 3 Security of commitment scheme with binding and hiding properties: a polynomial-
time adversary has negligible probability of breaking the hiding property by identifying from a com-
mitment its corresponding message which is one of the two messages of her choice [25], and has
negligible probability of breaking the binding property by finding a commitment that can be opened
to two different messages.

Definition 4 Security of signature scheme with existential unforgeability [18]: a polynomial-time
adversary has negligible probability of forging a valid signature S of a signer on a message m such
that the signer has never signed m.

Definition 5 Security of a zero-knowledge proof of a greater-than relation has the following three
properties. Completeness: the honest prover who knows the secrets a and b (a ≥ b) convinces the
verifier that a is greater-than-or-equal to b with overwhelming probability. Soundness: no one who
does not know the secrets a and b (a ≥ b) can convince the verifier with non-negligible probability.
Zero-Knowledge: what the verifier sees during the protocol (i.e., the transcript) can be simulated
without knowing the secret.
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Proof sketch of Theorem 1: For simplicity, our proof is for a single attribute table. The
proof generalizes to multiple attribute queries naturally, which is omitted. Let Adva be the ad-
versary that has advantage against our correctness or completeness verification protocol. Let us
construct an adversary Advb that uses Adva to gain advantage against collision-free hash function,
secure commitment scheme, secure signature scheme, or zero-knowledge proof of greater-than. The
adversary Advb acts as the challenger for Adva and uses Adva’s outputs as her own outputs. Advb

answers Adva’s queries as follows.
Setup: Advb’s challenger chooses hash function H, commitment scheme C, signature scheme

S, and the zero-knowledge proof P of greater-than for Advb to break. Advb’s challenger gives Advb

a public key PK of the signature scheme S. Advb then gives the adversary Adva the resulting
public parameters param = (PK, H,C, S, P ). Note that Advb does not know the private key SK
of signature scheme S.

Phase 1: For query qi, Advb answers Adva’s queries as follows. The queries may be asked
adaptively. Also, the queried document at each query may be distinct.

1. Commit query (A): Advb runs the first several operations in Commit algorithm on A, includ-
ing computing commitments, building hash tree over commitments, and gathering auxiliary
information Info. The commitments and Info are given to the user.

2. Sign query (hr): Advb does not know how to sign the root hash, because he does not have the
private key. Therefore, Advb submits a signing query on the root hash to his challenger (of the
signature scheme to break), and obtains a signature Sig (the game definition for signature
scheme is not given, please see [18]). Signature Sig is given to the user.

3. Aggregate query (A,Q): Advb runs a commit query and a sign query on A to obtain the signa-
ture Sig, commitments, and auxiliary information Info. Then Advb runs the corresponding
Respond algorithm to compute query Q on A. The resulting answer ans, correctness and
completeness proofs pf, and the signature Sig of data set A are sent to Adva.

Once Adva decides that Phase 1 is over, she chooses a challenge for attacking privacy.
Privacy challenge: Adva outputs two distinct equal-size (n) data sets A0 and A1 and an

aggregate query Q∗ to be challenged, such that query Q∗ on set A0 and A1 gives the same result
(Adva should not be able to tell them apart by just seeing the query result or the size.) Advb

chooses a random i ∈ [1, n], such that the i∗-th elements of A0 and A1 are distinct. Denote the two
elements by a0

i∗ and a1
i∗ , respectively.

Advb needs to use Adva’s advantage against the confidentiality to break the hiding property of
commitment scheme. Advb needs to embed his commitment challenge in the challenge of Adva.
Values a0

i∗ and a1
i∗ are Advb’s two messages of choice for breaking the hiding property of commit-

ment C. Advb’s challenger generates a challenge for Advb as follows. Advb’s challenger picks a
random bit b ∈ {0, 1}, and computes a commitment of ab

i∗ . Denote this challenge as Cb
∗.

Although Advb does not know b, Advb needs to compute commitments of elements in Ab (b ∈
{0, 1}) such that the correctness verification can pass. Advb first computes the aggregate result
ans∗ of query Q∗, then Advb chooses a random guess b′′ ∈ {0, 1}. Note that, b′′ = b with probability
1/2. For each j-th element in Ab′′ for all j 6= i∗ and j 6= 1, Advb computes a commitment Cj .

Advb distinguishes two cases.

• For sum-related query Q∗, Advb chooses random r and computes a commitment for the
sum: Cs = gans∗hr. (The sum is the same for A0 and A1 as defined.) Advb then computes
the commitment C1 for the first element as C1 = Cs/(Cb

∗ ×
∏n

j=2,j 6=i∗ Cj). Now, Advb has
embedded his commitment challenge at the i∗-th position of A’s challenge. ans is the aggregate
result. Random value r and commitments Cj (j 6= i∗, j ∈ [1, n]) and Cb

∗ are correctness proof
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pf∗ for summation. Advb also obtains a signature Sig∗ as in sign query. (ans∗, pf∗, Sig∗) is
given to Adva. Readers can verify that the correctness verification of (ans∗, pf∗, Sig∗) should
be successful even though Advb does not know b.

• For max/min type of query Q∗, for the i∗-th position, Advb does not know ab
i∗ , therefore, he

has to simulate the greater-than proof (i.e., transcript). The simulation can be done, because
of the zero-knowledge property of greater-than protocol, which guarantees that the verifier
sees during the protocol (i.e., the transcript) can be simulated by anyone without knowing
the secret. Denote the simulated proof by pi∗ . One goal in simulating the proof is to prepare
commitments α0, . . . , αt−1, each corresponding to a random commitment of 0 or 1, such that∏t−1

i=0 α2i

i is a commitment of |ab
i∗ − ans∗|, as in the zero-knowledge proof of greater-than.

W.l.o.g., we assume that ans∗ > ab
i∗ and the query is max. Denote the commitments of ab

i∗

and query result ans∗ by Cb
∗ and Cans∗ , respectively. Note that Advb does not know ab

i∗ , thus
does not know the bit presentation of ans∗−ab

i∗ . Advb first chooses random commitments for
α1, . . . , αt−1, and then computes α0 = Cans∗/(Cb

∗
∏t−1

i=1 α2i

i ).
In addition, Advb has to simulate zero knowledge proofs to show that values committed
by α0, . . . , αt−1 are either 0 or 1. This can be done without Advb knowing the real values
committed, because of the zero-knowledge property of the OR proof (see the previous section
for the definition of zero-knowledge property). Therefore, Advb can simulate proof pi∗ . We
omit further details of proof simulation and refer readers to literature for details [9, 13, 16, 28].
The correctness proof pf∗ contains pj (j ∈ [1, n], j 6= i∗ ) and pi∗ . Advb also obtains a signature
Sig∗ as in sign query. (ans, pf∗, Sig∗) is given to Adva.

Advb can also generate completeness proof in pf∗ (if it applies). Because completeness proof
would be the same for A0 or A1, it cannot be used to gain advantage for privacy attack, hence is
omitted here.

Correctness challenge: Adversary Adva outputs a data set Ã = (ã1, . . . , ãn), commitments
{C̃} = (C̃1, . . . , C̃n) of data elements, and random values r̃1, . . . , r̃n used in computing the commit-
ments. Adversary Advb opens the commitments by re-computing them with ãi and r̃i. If all the
commitments are verified successfully, Advb constructs the Merkle hash tree. Then, Advb asks its
challenger to sign the root hash. The resulting signature S̃ig is given to Adva.

Phase 2: The adversary issues more queries qm+1, . . . , qn, where qi is one of:

1. Commit query (A): The challenger responds as in Phase 1.
2. Sign query (hr): The challenger responds as in Phase 1.
3. Aggregate query (A,Q): The challenger responds as in Phase 1.

Guess: Adversary Adva outputs one or more of three guesses for attacking correctness, com-
pleteness, and privacy, respectively.

• Privacy guess: Adversary Adva outputs a guess b′ ∈ {0, 1}. Advb outputs b′ as his guess
for breaking the hiding property of the commitment scheme. If Adva has advantage ε1 in
breaking the confidentiality property, then Advb has advantage at least ε1/2 in breaking the
commitment scheme. Recall that Advb does not know b and thus when computing commit-
ments in the proofs for Adva, it guesses randomly whether to use elements from A0 or A1.
For half of the time, Adva is given the right combination of committed values. Thus, Advb

carries over advantage ε1/2 in breaking the hiding property of the commitment scheme.
Adversary Adva may also try to gain advantage from proof information other than com-
mitments, for example, from zero-knowledge proofs of great-than relation. Reduction can be
directly constructed from advantages in such attacks to breaking the zero-knowledge property
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of the greater-than proof protocol, and is omitted here.
• Correctness guess: Adversary Adva outputs (Q̃, Ã, ˜ans, p̃f, ˜Sig∗), such that ˜ans is not the

correct result of query Q̃ over data set Ã, however p̃f is an acceptable proof of correctness,
and ˜Sig∗ is an acceptable signature of commitments of data.
Advb’s goal is to try to convert Adva’s output into either breaking the binding property of
commitment scheme or an existential signature forgery. We distinguish two cases.

– ˜Sig∗ 6= S̃ig: ˜Sig∗ is not the same as given in Correctness challenge. As defined, the
constraint is that ˜Sig∗ is a signature of a message (root hash) that has not been signed
in Phase 1 or Phase 2. This means that Advb obtains a signature that breaks the
existential unforgeability property. Advb outputs ˜Sig∗ and the corresponding message
(which is the root hash of Merkle tree and can be easily obtained from the proof p̃f).
If Adva has advantage ε2 in this attack, then Advb has advantage ε2 in breaking the
existential unforgeability of the signature scheme.

– ˜Sig∗ = S̃ig: Denote the commitments in p̃f by {C̃∗}. We distinguish the following three
cases.
1. If the commitments {C̃∗} are the same as the commitments {C̃} (computed in

Correctness challenge) and the query Q̃ is summation-based (e.g., sum, count,
etc), then Advb can break the binding property of commitment scheme as follows.
Advb computes the correct answer ans of set Ã for query Q̃, and computes the
commitment Cans of ans based on the commitments C̃1, . . . , C̃n: Cans =

∏n
i=1 C̃i.

Cans is also the commitment of the incorrect result ˜ans, because
∏n

i=1 C̃i =
∏n

i=1 C̃∗
i.

Advb outputs Cans as the commitments for both ans and ˜ans to its challenger. If Adva

has advantage ε3 in this attack, then Advb has advantage ε3 in breaking the binding
property of the commitment scheme. (Advb also knows how to open commitment
Cans.)

2. If the commitments {C̃∗} are the same as the commitments {C̃} (computed in Cor-
rectness challenge) and the query Q̃ is comparison-based (e.g., min, max), then
Adva can cheat on the greater-than protocol in the correctness proofs of max/min
query. This means that Advb can break the soundness of zero-knowledge proof of
greater-than. The analysis is similar to our completeness analysis (below), and is
omitted here.

3. If the commitments {C̃∗} are different from the commitments {C̃}, then Adva has
find a hash collision. That is, Adva has find at least a different message pair (commit-
ments) giving the same hash value (and thus same signature). If Adva has advantage
ε4 in finding such a message-signature pair, then Advb has advantage ε4 in breaking
the collision-free hash function.

• Completeness guess: Adversary Adva outputs (Q̃, ˜ans, Ã, p̃f, S̃ig), such that ˜ans is not the
complete result of query Q̃ over a set of data, however p̃f is an acceptable proof of completeness
and S̃ig is an acceptable signature of commitments of data. Let the selection range be [x, y].
This means that Adva cheats on the zero-knowledge greater-than proof in either one or both
cases: (1) proving in zero-knowledge that aleft < x, however aleft ≥ x; (2) proving in zero-
knowledge that aright > y, however aright ≤ y. If Adva achieves this, Advb can break the
soundness of zero-knowledge proof of greater-than. Recall that soundness means that no one
who does not know the secret can convince the verifier with non-negligible probability. In this
proof protocol, it means that no one who does not know a secret satisfying the greater-than
relation can convince the verifier with non-negligible probability. If Adva has advantage ε5
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in cheating the completeness proof, then Advb has advantage ε5 in breaking the soundness of
zero-knowledge proof of greater-than.

�
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