O}

invent

Automated Heuristic RDF Repair

Peter Coetzee

Digital Media Systems Laboratory

HP Laboratories Bristol
HPL-2006-126
October 10, 2006*

semantic web,
RDF, eyeball, jena,
heuristic, repair,
web service

This report covers the abstract concepts behind, as well as an
implementation of, an automated heuristic RDF repair system for the
Semantic Web. This student project formed a part of the Eyeball software
originally written by Chris Dollin. This document also details the new
availability of Eyeball as a web service, including its gathering of
statistics. The web service was made available to the Jena community on
6th September 2006 on an HP external server at http:
/ljena.hpl.hp.com:5500, and analysis of some of the statistics gleaned
from its usage since that time are included.

* Internal Accession Date Only Approved for External Publication
© Copyright 2006 Hewlett-Packard Development Company, L.P.

nvent

Automated Heuristic RDF Repair

Peter Coetzee < peter.coetzee@hp.com >
Semantic and Adaptive Systems Department
Digital Media Systems Laboratory

HP Laboratories Bristol

September 2006

This report covers the abstract concepts behind, as well as an
implementation of, an automated heuristic RDF repair system for the
Semantic Web. This student project formed a part of the Eyeball
software originally written by Chris Dollin. This document also details
the new availability of Eyeball as a web service, including its gathering
of statistics. The web service was made available to the Jena
community on 6" September 2006 on an HP external server at
http://jena.hpl.hp.com:5500, and analysis of some of the statistics
gleaned from its usage since that time are included.

© Copyright Hewlett-Packard Company 2006

Automated Heuristic RDF Repair Peter Coetzee Page 1 of 30

mailto:peter.coetzee@hp.com
http://jena.hpl.hp.com:5500/

Table of Contents

Automated HeuriStiC RDF R@PAIN.c..iuiuiieieirereierrmmmrssssssssssssssssssmesssmssmsssmessessssmsssssmsssssssssssssnnsnn 1
2 - ol YOO 3
10 Yo 10Tt [1 3
Where Eyeball STands...........uueiiiiiiic it e e e e e e e e e e s e e e annne s 3

Y 110 LT LI 2 =T (o 1R 4
DT o T €0 Y- S 5
Sample Repair MEthOAS.ueeiieeiee et e e e e e e e e e e e r e e s e nn e e e e e e anneeeeenas 5

(@ 1 (- 1 /S 5

(= 6

L (=] = 1 6

(0] 1= £ 3 6
FAN g F= YA T =Y o Yo T G Vo U | 7
Eyeball Repair Configuration...........ccueeeiceiiie e it e e e s e e s e nn e e e e 7
(YT 11 (<] o - Ul TSRS 7

(@012 11 Ty Lo B [L= 7

o=l L =T = L L 8

=l o T =] Y =T 4 (ol = 9
Appendix A - Detailed Repair Methodology...........coocoeeeeeeeeeee s 16

Y| Y] o L=T 16

(@ T -1 4/ 17

[L 19

(@00 g KK (=1 0143 L= PP 20

I =] 1 21

=] P 22

(0] 7= 1 4V PN 23

[24

1= 1 TV = 1 /R 25
Appendix B - Analysis REPOIt OQUIPUL......cceeiirieiiiieeiieeee e e e cecccenre e e e e e e e eeeesnnnns e e e e e e s e s eeeeanns 26

Automated Heuristic RDF Repair Peter Coetzee Page 2 of 30

Preface

This document describes the work performed by Peter Coetzee under the guidance of
Chris Dollin as a software intern working for Hewlett Packard Labs Bristol, during the months of
June — September 2006. This work centred on extending the functionality of Eyeball' (a part of
the Jena® RDF/OWL toolkit) to include heuristic analysis and repair. Work was also carried out
for the creation of an Eyeball web service; this is documented in the latter stages of this text.

Introduction

Ontologies, schemas, and class definitions are often evolved over time, in order to
support the creation of instance data. Keeping track of all of these definitions is a non-trivial
activity for an RDF® author (whether a developer or otherwise), and attempting to do so can
hinder creative flow. As a result of these conditions, and of the open world assumptions made
by the Semantic Web*, it is not unusual for mistakes to arise. Eyeball originally grew with the
goal of heuristic RDF inspection and accuracy checking in order to allow an author to detect
any errors they may have made post-hoc. The results of this checking is delivered as an RDF
model, which can be reported either as an RDF XML® / N3° output or rendered as simple text
(made more readable using the rdfs:label statements in the Eyeball schema). It is
important to note here that the issues which Eyeball seeks are not necessarily illegal usages of
RDF. One may, for example, perfectly legally use properties in an RDF document without first
declaring them. However, it may be that an author wishes to ensure that they have declared
those which they may use; an undeclared property might indicate a typographical error, or an
omission in their ontology.

However, inspection is only half way to the solution. It is important that an RDF author
is capable of not just understanding and locating a mistake, but is also able to fix it. While one
may assume that most authors have little to problem with doing this manually, it will not always
be the case that they the time or indeed the inclination to do so; a particular problem if their
application works with the data as it is. Remedying this situation is the goal of the activity
around Eyeball Repair; a very heuristic set of attempts at automatic non-interactive analysis
and repair of an RDF model based on the reports issued by Eyeball.

Where Eyeball Stands

Eyeball is built upon the Jena Semantic Web Framework, a project from the Semantic
and Adaptive Systems Group of Hewlett Packard Laboratories, Bristol. It reads in an RDF
model in any format Jena is capable of understanding, applies an inference engine over the
top, and inspects the model for errors. The process of inspection is carried out by a series of

Automated Heuristic RDF Repair Peter Coetzee Page 3 of 30

pluggable Inspectors, each of which may issue zero or more report items. Each of these items
goes into a report model as a blank node of rdf:type eye:Item, and describes something
which the Inspector deemed to be a fault, as well as enough information to inform the
reader where in the model this fault was located (e.g. on this URI, this rdf: Statement, this
literal etc.)

Shipped Inspectors

The following Inspectors ship with the standard Eyeball 2.0 distribution:

e AllTyped — Ensures that all URI and bNode resources (and optionally literals) have an
rdf: type defined. If one isn't present, one should be defined.

e Cardinality — Checks whether all usages of a class' property conform to its cardinality
restrictions. If not, it may be necessary to add or remove usages of a property, or
possibly alter the class definition.

e Class — Every Class that is used should be defined; if one is used that is not defined, it
may be useful to define it

e ConsistentType — Checks to make sure that any subject in the model is of consistent
rdf:type, taking into account inferred types. If not, all usages of that subject should
be set to the same rdf: type.

e Literal — Ensures that datatypes and language codes are accurately specified.
Repairing this may require detecting a suitable datatype or setting a default type /
language code.

e Prefix — Inspects prefix namespaces, reporting well-known prefixes that aren't used with
their well-known URIs (or vice-versa). Repair should attempt to resolve any
mismatched prefixes and update the model accordingly.

e Property — Ensures all used properties are declared in a provided schema; if not, it is
feasible to assume that a spelling mistake has occurred, and attempt to locate the
desired property.

e URI — Checks for syntactically correct URIs using Jena's IRl code. The various errors
this creates should be dealt with according to the IRI error details.

e Vocabulary — Every used URI must be declared in its namespace's schema (if
available). Once again, if not then it is a reasonable assumption that a typographical
error occurred, and a suitable URI should be substituted accordingly.

Automated Heuristic RDF Repair Peter Coetzee Page 4 of 30

Design Goals

Eyeball was written to be extensible through a system of plugins, managed by the Jena
Assembler framework. Prior to Eyeball Repair, the only plugins Eyeball supported were
Inspectors: instances of the Inspector interface, each given the task of inspecting for one
type of 'fault’ (or inconsistency). Eyeball Repair is designed to extend these plugins to include
interfaces for Analysis and Doctor. There should be a one-to-one mapping of Analyses to
Doctors to Inspectors. A useful convention within Eyeball is to name its Inspectors according to
the type of issue which it inspects; this convention is to be maintained in writing the Analyses
and Doctors. Each Analysis module should parse the relevant portion(s) of the Eyeball report,
inspect the section of the model it refers to, and make a suggestion as to how best to fix the
error (known as analysing the report). This suggestion can then be appended onto the relevant
report item. When the Doctor receives this report, it should simply apply the fix as suggested
by the report (called doctoring the model).

End user transparency is vital; one of the powerful aspects of Eyeball (and by extension
Eyeball Repair) is that the user does not necessarily need to understand the full set of rules
that Eyeball uses to check RDF (although it is both desirable and helpful if they do). This
transparency should be extended further by Eyeball Repair, such that the user need not
understand how a fix was arrived at, provided the fix does not generate inaccurate RDF for the
user. Throughout Eyeball Repair, the fixes that are applied should be of a lowest common
denominator; that is to say, they should be as descriptive as possible while remaining as
accurate as possible. Furthermore, the output model should give no extra report items if the
Eyeball is called to inspect it again with the same configuration. Ideally, there should be no
faults reported at all after a repair, but it is important to recognise that this may not always be
possible.

Sample Repair Methods

With the overall architecture of Eyeball Repair in mind, the repair it conducts is
dependent on the Inspectors that have run. A small sample of these repairs are outlined below,
categorised according to the Inspector. They detail both the Analysis and Doctor for the
relevant Inspector shipped with Eyeball (see above). A full specification of the full suite of
repairs and analyses can be seen in Appendices A and B.

Cardinality

Description

There are three avenues of repair to be chosen from by the Analysis — increase the

Automated Heuristic RDF Repair Peter Coetzee Page 5 of 30

number of usages of property P on node X; decrease the number of usages of property P on
node X; increase the value of the maxCardinality statement on class C. The first pertains to
the situation when the cardinality of P on X is less than the minCardinality of P on C. The
second and third pertains to the opposite; the cardinality of P on X is greater than the
maxCardinality of P on C.

Class

Description

The Analysis will direct the Doctor to add a statement with a minimal framework
definition of a Class in the model. It must detect the model profile and define the class
accordingly (e.g. XYZ rdf:type owl:Class or XYZrdf:type rdfs:Class etc.)

Literal

Description

The Literallnspector checks primarily for language code and datatype definitions on
literals in the model. If the Analysis finds an eye:badDatatypeURI it should first analyse the
lexical form of that literal. If it conforms to one of the common xsd’ datatypes, it may instruct
the Doctor to alter the datatype URI to that of the relevant xsd datatype. For this version of the
code the Analysis should look for valid integers, decimals, dates, times, dateTimes, and
boolean (by means of regular expression matching of the datum's literal lexical form). If none of
these match, the tool may fall back to either setting a default language code for this literal, or
setting it to a default datatype. This behaviour must be user configurable.

Property

Description

This Analysis uses spellcheck functionality. It first builds two dictionaries of known
properties from all .rdf files in the mirror/ directory. The first of these contains the full URI of the
property, and the second only the localName part. As a first attempt, the Analysis should
attempt to find the property in some namespace in that directory. These are compared based
on localName (so if, for example, the Analysis encounters rdf:integer it can reasonably
change it to xsd:integer). If this fails, the Analysis should fall back to spellcheck systems. It
will first try and find a match in its dictionary of full URIs (i.e. the property might have been
misspelled, and still exists in this namespace, or its namespace was misspelled). If it fails to
find a match there, it will try and search the localName dictionary (i.e. the property might be
both in the wrong namespace, and be misspelled). If it cannot find a match, the repair has

Automated Heuristic RDF Repair Peter Coetzee Page 6 of 30

failed. The user must be notified of this fact.

Analysis Report Output

When the Analysis module has analysed the report and the model, and decided which
course of action should be taken, it must append its findings to the relevant report item on the
RDF model of the existing report as discussed previously. The content of these additions
should follow the definitions described in Appendix B.

Eyeball Repair Configuration

There are a number of user configurable options entailed in the repair process. It is
therefore desirable that Eyeball Repair is able to store and retrieve these configuration options;
it would be highly undesirable to force a user to set all of these options at program execution
time. The existing Jena Assembler engine used in Eyeball is configured by an RDF model,
stored in etc/eyeball2-config.n3, which drives the assembly of components. As this file
is plain RDF (in N3), it is the perfect location to store configuration options for Eyeball Repair.
As well as adding Assembler directives for the Analysis and Doctor components to this file, it
can contain the required configuration options for the various repair modules described in
Appendix A. These should all be rooted on the subject eye:repairConfig® and be
statements of the form [eye:repairConfig, eye:configOption, {“Literal Value” ||
eye:configSetting || bNode}). If the object is a bNode, then there is more than one
datum for each part of that configuration option. For example, the options to configure the
mapping of known prefixes and namespaces (eye:nsPrefix) needs to record the prefix
(eye:prefix) and URI of the namespace (eye :nsURI) for each option.

User Interface

Command Line

With all of the repair functionality integrated into Eyeball, as Eyeball 2.1 (E2.1), the user
interface must also be updated. The implementation of the configuration is such that only two
extra options are needed. These are “-~analyse” and “-repair”. The former will access each
of the Analysis components which are configured, applying updates to the report to suggest
the repairs to be carried out (as specified in Appendix B). The “~repair” option will direct the
Eyeball to both analyse and doctor the model, applying all of the repairs which are specified in
the Analysis-generated report. The vocabulary for model output is determined according to the
value of the “~render” switch. If E2.1 is configured to output its report as N3, the repaired

Automated Heuristic RDF Repair Peter Coetzee Page 7 of 30

model will also be output as N3. Otherwise (E2.1 is outputting the report as RDF/XML or
simple text), the model is output as RDF/XML.

The “-repair” switch has an optional data part; if left off, the model will be output to
the standard E2.1 output stream before the report. Otherwise, E2.1 will attempt to safely output
to the location specified in this data part. If this data part starts in “jdbc:”, it is assumed to
refer to a database; otherwise a file. The database location is specified in the same method as
database input (“jdbc :DB:head:model”). If it exists already, the model will be backed up in
the same database as modelName.old-systemTimeInMilliseconds. It is vital to note
that for very large models or very slow database connections this could take a significant
amount of time; the entire model must be re-written to the database irrespective of the number
of changes which occur. In a similar vein to database output, if the specified file path exists, it
will be backed up as fileName.old-systemTimeInMilliseconds.

Experimental GUI

Eyeball 2.0 features an experimental graphical user interface based on Swing. E2.1
extends this Ul, adding its new functionality. Essentially the E2.0 GUI implements the CLI
options in graphical form. E2.1 adds to this its own options for analysing and / or repairing the
model. Like on the CLI, if the model is repaired it must be analysed first — this restriction is
enforced on the GUI as well as the CLI. Assorted refactoring and improvements are also
needed on the GUI for the 2.1 release; the addition of scrollbars to report and model output is
vital to make it usable, as well as a means to select output format (text, RDF/XML, N3 etc.)
E2.1 also adds the ability for a user to directly save output results (report, output model etc.) to
their filesystem from within the Eyeball GUI.

Interactive Model Repair

With the current E2.0 notion of implementing CLI options graphically, it would be up to
the user to read and understand in conjunction the report and both input and output models in
order to properly understand what has taken place. The E2.1 GUI should be able to make this
easier to digest by making the repair procedure interactive. In its simplest form, the GUI can
render a plain text version of each of each eye:Item in the report, and allow the user to select
whether or not to include that repair suggestion in the repairs to be carried out. If the user
elects not to, the item is removed from the temporary working report model. Once all items
have been configured, Eyeball may run the repair, with this working model as its report input.
This mode is not designed to allow the user to choose how each repair is carried out (this
would violate the automated aspect of the RDF repair activity), but simply whether each repair
is carried out.

Automated Heuristic RDF Repair Peter Coetzee Page 8 of 30

Eyeball Web Service

In a similar vein to other HP Labs Semantic Web projects, E2.1 is offered online as a
web service. Usage of this service may take one of two forms, depending on the user's need;
either a web-based form for the user to configure the Eyeball and upload RDF, or an RPC
interface, allowing programmatic access to the Eyeball service. It may be useful to also offer
this with a lightweight embedded server (such as Jetty) as a part of the Eyeball package at a
later date.

Web Service Implementation

In the interests of demonstration, the web service is constructed in two main sets of
components; the service itself, and a service client, written as an interactive web form. The
service expects request variables to be passed to it in a particular form in order for it to
operate. The following operations are recognised by the service, either as HTTP GET or POST
requests. Operations are specified as a request key, with a value expected for some. The
service will respond according to the nature of the request (as detailed below)

submitRDF - expects an RDF model (in N3, RDF/XML or N-TRIPLE)

getReport - returns the report, rendered according to the configuration

getRepairedModel - returns the repaired model, in the same language as the input

getValidInspectors - returns a model of inspectors, plus their descriptions

getBuiltInAssumes - returns a model of the built in assumes

setupConfig - expects an RDF/XML model of configuration options. The following

options are supported® as the predicate of a statement:

O eyesvc:doRepair - can take any value. If a statement is present with this as its
predicate, analysis and repair flags will be set

O eyesvc:doAnalysis - can take any value. If a statement is present with this as its
predicate, analysis flag will be set

O eyesvc:uselnspector - each of the values of statements with this predicate will
be added as inspectors

O eyesvc:addAssume - each of the objects (as literal values or URIs) of statements
with this predicate will be added as assumes

O eyesvc:withBaseUrl - should specify one URI resource only as the object;
specifies the base URI for reading the model

O eyesvc:inputModelType - should specify one literal only as the object (a valid
Jena model type, e.g. N3 / RDF-XML or 'Best Guess', in which case the service will
attempt to guess the model type)

O eyesvc:reportFormat - should specify one literal only as the object (a valid
Eyeball report render format, e.g. text / n3 / xml)

O eyesvc:collectStatistics - should specify one value only (true / false,

Automated Heuristic RDF Repair Peter Coetzee Page 9 of 30

yes / no, or on / off. Any case is accepted; however if it is not one of these, it is
taken to mean false.) as the object; allows the user of the service to specify
whether or not they wish to allow the service to collect usage statistics

If the requested operation is not recognised, or something goes wrong with the service
operation, the service will return an error. Otherwise, it will return a single RDF/XML model with
its response, depending on the action(s) requested. If no action is requested, there will be no
error; simply a blank RDF/XML model. In the absence of a standard for named subgraphs in
RDF at the time of writing, an implementation of a similar notion has been used. The E2.1
service adds a statement for each subject in the model, specifying which piece of output it
eyesvc:belongsTo. Resources are given for eyesvc:report, eyesvc:outputModel,
eyesvc:inspectors, and eyesvc:assumes.

For example, to extract the report from the data stream (assuming the report was
requested as RDF rather than a simple text rendering), one could query the graph using a
simple SPARQL query as follows:

PREFIX eyesvc: <http://jena.sourceforge.net/EyeballService#>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

CONSTRUCT { ?subject ?predicate ?object . }
WHERE
{ ?subject ?predicate ?object ;
eyesvc:belongsTo eyesvc:report
FILTER (?predicate 1= eyesvc:belongsTo)
}

This query will construct the entire report in its original format. It is important to note that
while one may obviously substitute eyesvc:modelOutput (to get the repaired model) for
eyesvc:report, if the model includes a statement with predicate eyesvc:belongsTo, that
statement will be removed by the FILTER. If this is likely to be a problem, one may need a

more complicated SPARQL query to parse the results.

The web form serves as a demonstration of some of the potential of this service. The
form itself is, where relevant, dynamically generated; it queries the web service to find the
available assumes and inspectors (as well as the rdfs:1labels for the inspectors), and
constructs HTML accordingly. When submitted, it collects form variables entered by the user,
and builds a request accordingly. It submits the RDF/XML configuration model to the service,
and collects its response. This response is read into a model, and queried (as detailed above)
in order to construct each of the needed models (the report and, if requested, the repaired
model), serialise them, and sanitise the serialisation for HTML output.

Collection and Analysis of Statistics

As mentioned in the abstract, the E2.1 web service is capable of collecting and collating
statistical data on its usage. The goal of these statistics modules is to answer questions on a
number of aspects of Eyeball, to feed back into future repairs. Some of the questions that we

Automated Heuristic RDF Repair Peter Coetzee Page 10 of 30

hope to glean answers to are;

e What type of issues do real-life RDF instance data seem to have, and how common
might these issues be?

e The popularity of the various aspects of Eyeball; e.g. are some inspectors favoured
over others? How often does a user ask the Eyeball to analyse or repair these issues?

e How drastic are the changes that the Eyeball Repair functionality typically makes to the
input model?

e What are the ontologies that people commonly use? Are certain prefixes favoured over
others for these ontologies?

e What are the attributes of a typical RDF model? For example, what is its average size
in triples?

It was deemed from an early stage that in order to maximise the amount of user data
that is submitted, and minimise privacy concerns, it is vital that no personal data is collected as
part of the statistics; no portion of the model may be persisted in the statistical data.

Similarly to the analyses and doctors, the statistics modules were designed to integrate
into Eyeball using the Assembler framework. As such, the notion of (and interface for) a
Statistician has been defined. Each Statistician contains (at minimum) a method to gather
the statistical data, and a method to analyse the data, returning a String of its report. The data
itself is persisted in a database (configured as part of the configuration file etc/eyeball2-
config.n3) as a Jena RDF model. The philosophy behind the statistics is wherever possible
to collect only raw data (e.g. “these inspectors were used”) at the time it is gathered, so as to
minimise any impact on the user experience. This raw data can then be analysed at the time
the statistical reports are requested (e.g. “what percentage of the time were these inspectors
used?”). The following statistics are currently collected and analysed:

e Model size (number of triples)
e Ontologies and prefixes prefix-mapped
e Issues E2.1 raised
O Raw number of each issue reported
O Type of issue
e Configuration Eyeball run with
O Inspectors used
O Assumes requested

O Was the Eyeball asked to Repair or Analyse?

Automated Heuristic RDF Repair Peter Coetzee Page 11 of 30

e Percentage delta in model from input to output

O This analysis should be done at gather time, in order to satisfy privacy concerns, as
it prevents the statistician having to collect any model data for later analysis

e Date/ Time of request

At present, the most accessible way to access these statistics are from the service's
web interface. The statisticians may also be run from the command line (the executable class
com.hp.hpl.jena.eyeball.web.statistics.runReports currently does this). Both of
these creates a statisticalAnalyser object, which is responsible for coordinating the
assembly of the statisticians, connection to the database, as well as calling the analysis of the
statistics upon request (it also handles the gathering of statistics from an eyeballer object).
At present the statistics are not used with the default Eyeball command line, or the Eyeball GUI
in the interests of ease of installation for the casual end user. It would, however, only be a
small amount of work for a developer to create and integrate a statisticalAnalyser for
these uses of the Eyeball.

Sample Live Statistics

The web service has, at the time of writing, been live for approximately one week.
During this period of operation, 29 sets of statistics have been collected. Their analysis (as
provided by the Statisticians) can be seen below.

Report generated on 14/09/2006 at 09:24:11.

MetaDataStatistician has analysed 38 sets of statistics and found that
requests were made on the following dates:

On 2006-09-05 there were 8 requests made of the service.
On 2006-09-06 there were 9 requests made of the service.
On 2006-09-11 there were 8 requests made of the service.
On 2006-09-12 there were 4 requests made of the service.

On 2006-09-14 there were 9 requests made of the service.

ModelStatistician has analysed 38 sets of statistics and acquired the
following results.

The average size of model submitted for eyeballing is 79.5 triples.
The following information was gathered about ontology usage:

http://schemas.talis.com/2006/bigfoot/configuration# occurred on
average 0.02 times per model. It was used with the following
prefixes: bf (1 time).

Automated Heuristic RDF Repair Peter Coetzee Page 12 of 30

http://www.w3.0rg/1999/02/22-rdf-syntax-ns# occurred on average
0.89 times per model. It was used with the following prefixes:
rdf (34 times).

http://schemas.talis.com/2006/frame/schema# occurred on average
0.02 times per model. It was used with the following prefixes:
frm (1 time).

http://www.w3.0rg/2000/01/rdf-schema# occurred on average 0.60
times per model. It was used with the following prefixes: rdfs
(23 times).

http://www.w3.0rg/2001/XMLSchema# occurred on average 0.36 times
per model. It was used with the following prefixes: xsd (2
times), xmls (6 times), j.0 (6 times).

http://purl.org/dc/elements/1.1/ occurred on average 0.28 times
per model. It was used with the following prefixes: dc (31
times).

http://www.w3.0rg/2002/07/owl# occurred on average 0.55 times per
model. It was used with the following prefixes: owl (21 times).

http://my.domain.com/ occurred on average 1.28 times per model.
It was used with the following prefixes: stillMine (20 times),
mineAlso (15 times), my (14 times).

http://hahah/this/isnt/dc/ occurred on average 0.52 times per
model .

http://eyeball.jena.hpl.hp.com/eg# occurred on average 0.31 times
per model. It was used with the following prefixes: rlybad (6
times), eg (7 times).

http://www.rdfdata.org/ns/ occurred on average 0.02 times per
model. It was used with the following prefixes: rd (1 time).

http://www.eswc2006.org/technologies/ontology# occurred on
average 0.02 times per model. It was used with the following
prefixes: eswc (1 time).

http://xmlns.com/foaf/0.1/ occurred on average 0.02 times per
model. It was used with the following prefixes: foaf (1 time).

http://a9.com/-/spec/opensearch/1.1/ occurred on average 0.02
times per model. It was used with the following prefixes: os (1
time).

http://www.w3.0rg/2001/vcard-rdf/3.0# occurred on average 0.02
times per model. It was used with the following prefixes: vcard
(1 time).

http://jena.hpl.hp.com/EyeballService# occurred on average 0.02
times per model. It was used with the following prefixes: eyesvc
(1 time).

http://www.daml.org/2001/03/daml+oil# occurred on average 0.02

Automated Heuristic RDF Repair Peter Coetzee Page 13 of 30

times per model. It was used with the following prefixes: daml (1
time).

http://jena.hpl.hp.com/2003/08/jms# occurred on average 0.02
times per model. It was used with the following prefixes: jms (1
time).

http://jena.hpl.hp.com/Eyeball# occurred on average 0.02 times
per model. It was used with the following prefixes: eye (1 time).

http://www.example.org/ occurred on average 0.02 times per model.
It was used with the following prefixes.

http://purl.org/rss/1.0/ occurred on average 0.02 times per
model. It was used with the following prefixes: rss (1 time).

http://jena.hpl.hp.com/2005/11/Assembler# occurred on average
0.02 times per model. It was used with the following prefixes: ja
(1 time).

EyeballingStatistician has analysed 38 sets of statistics and found
the following failures;

eye:unknownPredicate occurred on average 3.42 times per
eyeballing.

eye:unknownClass occurred on average 2.92 times per eyeballing.
eye:hasNoType occurred on average 4.55 times per eyeballing.
eye:badURI occurred on average 3.31 times per eyeballing.

eye:badNamespaceURI occurred on average 0.68 times per
eyeballing.

eye:cardinalityFailure occurred on average 0.52 times per
eyeballing.

eye:multiplePrefixesForNamespace occurred on average 0.63 times
per eyeballing.

eye:badDatatypeURI occurred on average 1.57 times per eyeballing.
eye:notFromSchema occurred on average 1.44 times per eyeballing.

eye:jenaPrefixFound occurred on average 0.15 times per
eyeballing.

On average, models were changed by 41.5% during eyeballing (note: this
includes times the model was not repaired!)

ConfigStatistician has analysed 38 sets of statistics and found that;
The eyeballer was requested to analyse the model 86.8% of the time.
It was also asked to repair the model 76.3% of the time.

The following input model types were used:

Automated Heuristic RDF Repair Peter Coetzee Page 14 of 30

N3, used in 52.6% of models.
RDF/XML, used in 47.3% of models.
The following report formats were used:
Text, used in 81.5% of requests.
N3, used in 18.4% of requests.
The popularity of Inspectors can be seen below:
prefix was requested in 100.0% of eyeballings.
literal was requested in 97.3% of eyeballings.
cardinality was requested in 100.0% of eyeballings.
property was requested in 94.7% of eyeballings.
consistentType was requested in 97.3% of eyeballings.
class was requested in 97.3% of eyeballings.
allTyped was requested in 94.7% of eyeballings.
vocabulary was requested in 94.7% of eyeballings.
uri was requested in 100.0% of eyeballings.
Finally, the popularity of the assumes:
dc-all was assumed in 34.2% of eyeballings.
owl was assumed in 60.5% of eyeballings.
dc was assumed in 2.63% of eyeballings.

dcterms was assumed in 2.63% of eyeballings.

Automated Heuristic RDF Repair Peter Coetzee Page 15 of 30

Appendix A - Detailed Repair Methodology

This Appendix details the repair methodology for each of the repairs that E2.1 carries
out. For ease of understanding, an example of input and output is given for each. The
examples are colour coded, such that statements to be added by the Doctor are green on the
output, any to be removed are red on the input, and those for the Doctor to modify are blue on
both input and output.

AllTyped

Description

This tool attempts to generate an rdf : type statement for each reported node. This is
based on what is described loosely as the 'subbiest-subclass'; a class in the class hierarchy
which is furthest 'down' from rdfs:Resource and has no possibility of being wrong. To put it
differently, if the hierarchy of classes is represented as a graph (drawn as tree-like as possible)
modelling rdfs:subClassOf relationships, the subbiest-subclass is located at the lowest
point on the graph where the breadth of the tree is only one and no leaves exist higher up. By
way of illustration (for an arbitrary hierarchies of classes Cl,);

rdfs:Relsuurce rdfs:Resource
|
Clo Clb Cle
T T N
Cle Cld
Cle Cld Cld Cle
AN |
Cle CIf @ Clf
VAN N
Clg Clh i Clg Clg Clh
VA VAN N\
Cli CI Clh Cli Cli Cl

In this way, the Analysis will adhere to the 'maximally descriptive; maximally accurate'
design goal. When the subbiest-subclass has been found, a statement can be added to the
model setting the rdf: type for the reported node to this subclass.

Example
Input
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix : <http://eyeball.jena.hpl.hp.com/eg#> .

Automated Heuristic RDF Repair Peter Coetzee Page 16 of 30

:spoo rdfs:subClassOf rdfs:Datatype ;
rdfs:subClassOf rdf:List ;
rdfs:subClassOf rdf:Statement ;
rdfs:subClassOf rdfs:Literal ;

rdfs:subClassOf rdfs:ContainerMembershipProperty .

:flarn rdfs:subClassOf :spoo .
:splee rdfs:subClassOf :spoo .

:mine rdf:value "1829"

Output
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix : <http://eyeball.jena.hpl.hp.com/eg#> .

:spoo rdfs:subClassOf rdfs:Datatype ;
rdfs:subClassOf rdf:List ;
rdfs:subClassOf rdf:Statement ;
rdfs:subClassOf rdfs:Literal ;

rdfs:subClassOf rdfs:ContainerMembershipProperty .

tflarn rdfs:subClassOf :spoo .

:splee rdfs:subClassOf :spoo .

:mine a :spoo ;

rdf:value "1829"

Cardinality

Description

There are three avenues of repair to be chosen from by the Analysis — increase the
number of usages of property P on node X; decrease the number of usages of property P on
node X; increase the value of the owl:maxCardinality statement on class C. The first
pertains to the situation when the cardinality of P on X is less than the owl :minCardinality
of P on C. The second and third pertains to the opposite; the cardinality of P on X is greater
than the owl :maxCardinality of P on C.

Adding usages of P on X is a simple affair; the Doctor may add statements with subject
X and predicate P. The object that is used should be a blank node, as Eyeball Repair has no

Automated Heuristic RDF Repair Peter Coetzee Page 17 of 30

way of determining a value, literal or otherwise. The user should be aware of this, and able to
check it accordingly (ideally leading them to enter data rather than leave the bNode in place).
Removing the usages of P is a slightly more complex problem. For this version of Eyeball
Repair, the Analysis will decide which statement(s) to remove statistically. It will attempt to
determine the most common datatype of literal values of P. It will then proceed to remove
usages of P where its datatype is different to the most common form, until either no more
statements exist that match this criterion; or enough statements have been removed to bring
the cardinality of P on X down to the owl :maxCardinality of P on C. If the Analysis finds
there are not enough statements to remove to reduce the cardinality of P on X sufficiently, it
will instruct the Doctor to increase the owl:maxCardinality of P on C by the minimum
amount necessary for correctness.

Example
Input
@prefix rdf: <http:
@prefix rdfs: <http:
@prefix owl: <http:
@prefix my: <http:
my : Mumps

a rdfs:Class ;

//www.w3.0rg/1999/02/22-rdf-syntax-ns#>.

//www.w3.0rg/2000/01/rdf-schema#>.
//www.w3.0rg/2002/07/owl#>.

//my.domain.com/> .

rdfs:subClassOf [

my:y a my:Mumps ;
my:spoo 17 ;
my:spoo 42 ;
my:spoo 93 ;

my:spoo "132"

Output
@prefix rdf: <http:
@prefix rdfs: <http:
@prefix owl: <http:
@prefix my: <http:
my : Mumps

a rdfs:Class ;

owl:onProperty my:spoo ;
owl:minCardinality 1 ;
owl:maxCardinality 2

]

//www.w3.0rg/1999/02/22-rdf-syntax-ns#>.

//www.w3.0rg/2000/01/rdf-schema#>.
//www.w3.0rg/2002/07/owl#>.

//my.domain.com/> .

rdfs:subClassOf [

Automated Heuristic RDF Repair

Peter Coetzee

Page 18 of 30

my:y a my:Mumps

owl:onProperty my:spoo ;
owl:minCardinality 1 ;

owl:maxCardinality 3

my:spoo 17 ;
my:spoo 42 ;
my:spoo 93
Class
Description

The Analysis will direct the Doctor to add a statement with a minimal framework
definition of a Class in the model. It must detect the model profile and define the class
accordingly (e.g. XXX rdf:type owl:Class or XXX rdf:type rdfs:Class etc.)

Example
Input
@prefix
@prefix

@prefix

rdfs:
rdf:

owl:

@prefix :

:Room a

rdf:value

Output
@prefix
@prefix

@prefix

rdfs:
rdf:

owl:

@prefix :

:NoSuchClass

a
:Room a

rdf:value

<http://www.w3.0rg/2000/01/rdf-schema#> .

<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .

<http://www.w3.0rg/2002/07/owl#> .

<http://eyeball.jena.hpl.hp.com/eg#> .

:NoSuchClass ;

L AL

<http://www.w3.0rg/2000/01/rdf-schema#> .

<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .

<http://www.w3.0rg/2002/07/owl#> .

<http://eyeball.jena.hpl.hp.com/eg#> .

owl:Class .
:NoSuchClass ;

L AL

Automated Heuristic RDF Repair

Peter Coetzee

Page 19 of 30

ConsistentType

Description

The Analysis for this must first attempt to discern if one rdf:type is more common

than others for this node. If it is, then it should instruct the Doctor to remove all other
rdf:types from the declaration of the node. If it is not, then it may remove all rdf:types
from it, instead setting it to be of rdf:type a new class, which is defined as the
rdfs:subClassOf all previously held rdf: types.

Example
Input

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix : <http://eyeball.jena.hpl.hp.com/eg#> .
:Left a rdfs:Class .
:Right a rdfs:Class .
:Bl a :Left ;

tspoo 56 .
:B1l a :Right ;

:flarn 19 .

Output
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix : <http://eyeball.jena.hpl.hp.com/eg#> .
:Left a rdfs:Class
:Right a rdfs:Class
:B1 a [a rdfs:Class ;
rdfs:subClassOf :Right ;
rdfs:subClassOf :Left] ;
:flarn 19 ;
:spoo 56 .
Automated Heuristic RDF Repair Peter Coetzee Page 20 of 30

Literal

Description

The Literallnspector checks primarily for language code and datatype definitions on
literals in the model. If the Analysis finds an eye:badDatatypeURI it should first analyse the
lexical form of that literal. If it conforms to one of the common xsd types, it may instruct the
Doctor to alter the datatype URI to that of the relevant xsd datatype. For this version of the
code the Analysis should look for valid integers, decimals, dates, times, dateTimes, and
boolean (by means of regular expression matching of the datum'’s literal lexical form). If none of
these match, the tool may fall back to either setting a default language code for this literal, or
setting it to a default datatype. This behaviour must be user configurable.

However, the Literallnspector will only report one instance of a fault. If the same error
occurs more than once, it will not report it. What is more, the bad datatype URI that the
Inspector reports may exist on a literal with a different lexical form, and which requires a
different datatype (see the example below for datatype my:bad). Therefore, when the
LiteralDoctor has fixed one instance of the fault, it must invoke the Literallnspector,
LiteralAnalysis, and a new LiteralDoctor to inspect, analyse and doctor the model respectively,
in order to ensure that there are no further instances of this fault.

Example
Input
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .
@prefix : <http://eyeball.jena.hpl.hp.com/eg#> .
:mine
rdf:value "1829" ,
"chat"@en ,
"1066"~“<my:bad> ,
"sometext"”"<my:bad> ,
"alphabetic"”"<xsd:integer> .
Output
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .
@prefix : <http://eyeball.jena.hpl.hp.com/eg#> .
:mine

rdf:value "1829" ,

"chat"@en ,

Automated Heuristic RDF Repair Peter Coetzee Page 21 of 30

1066 ,
"sometext"”""<xsd:string> ,

"alphabetic"”"<xsd:string> .

Prefix

Description

This set of modules will perform one of two tasks. It should either remove duplicate
prefixes from a model, or replace a namespace prefix. The former may be done entirely
arbitrarily: it will keep one namespace <=> prefix mapping, and delete all others. Once again,
the latter is the more complex of the two. It must first be configured (by the user) with a
collection of known and desired prefixes and namespaces. The Analysis must then decide;

e Is the prefix specified mapped to a URI in our configuration?

o If so, change the PrefixMapping, and all affected usages of the URI to that defined
in the configuration

O If not, is the URI which the prefix maps to in our configuration?
m |f so, change the prefix to that which the configuration associates with the URI

m If not, use the value of eye:Expected as the URI for that prefix (change the
PrefixMapping, and all affected usages of the URI to that defined in the
configuration)

It is important to note here that the Doctor must not just alter the PrefixMapping if the
URI is to be changed. Because of how Jena handles prefixes, the URI must be altered on all
nodes on which it is used (otherwise the old URI will remain, without any prefix).

Example
Input
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix eg: <http://eyeball.jena.hpl.hp.com/eg#> .
@prefix bad: <http://eyeball.jena.hpl.hp.com/eg#> .
@prefix : <http://eyeball.jena.hpl.hp.com/eg#> .

eg:bl rdf:value "bloop"
bad:b2 rdf:value "bleep"
:b3 rdf:value "blarp"
bad:b5 rdf:value "blirp"
Output
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .

@prefix eg: <http://www.example.org/> .

Automated Heuristic RDF Repair Peter Coetzee Page 22 of 30

@prefix bad: <http://eyeball.jena.hpl.hp.com/eg#> .

bad:bl rdf:value "bloop" .
bad:b2 rdf:value "bleep" .
bad:b3 rdf:value "blarp" .
bad:b5 rdf:value "blirp" .

Property

Description

This Analysis uses spellcheck functionality'. It first builds two dictionaries of known
properties from all .rdf files in the mirror/ directory. The first of these contains the full URI of the
property, and the second only the localName part. As a first attempt, the Analysis should
attempt to find the property in some namespace in that directory. These are compared based
on localName (so if, for example, the Analysis encounters rdf:integer it can reasonably
change it to xsd:integer). If this fails, the Analysis should fall back to spellcheck systems. It
will first try and find a match in its dictionary of full URIs (i.e. the property might have been
misspelled, and still exists in this namespace, or its namespace was misspelled). If it fails to
find a match there, it will try and search the localName dictionary (i.e. the property might be
both in the wrong namespace, and be misspelled). If it cannot find a match, the repair has
failed. The user must be notified of this fact.

Example
Input
prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix : <http://eyeball.jena.hpl.hp.com/eg#> .
:mine
:ID "blobby" ;
:srting "1829" .
Output
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
@prefix : <http://eyeball.jena.hpl.hp.com/eg#> .

:mine
xsd:ID "blobby" ;

xsd:string "1829" .

Automated Heuristic RDF Repair Peter Coetzee Page 23 of 30

URI

Description

This module uses spellcheck functionality. The current scope of URIAnalysis specifies

five faults to detect and repair. These are as follows;

eye:unrecognisedScheme — First of all, attempt to spellcheck the scheme of the
URI against a user-configurable list of valid schemes. If this fails, default to a user-
configurable default scheme.

eye:uriContainsSpaces — Attempt to separate the domain and local part of the
URI. If they cannot be separated, it is not a URL and for the purposes of this analysis,
take 'domain part' to mean the entire URI. Delete any spaces from the domain part.
Replace those in the local part with “%20” (without the quotes!).

eye:uriNoHttpAuthority — Attempt to replace the broken start of the URI with
“http://".

eye:uriHasNoLocalname — Strip off a trailing '/, \', ' ', '.", ',', or 'I' from the the URI.
eye:schemeShouldBeLowercase — Convert the scheme of the URI to lowercase.

Once the URI repair has been specified, it is up to the Doctor to replace all usages of

that URI (in the subject or the object of the statement) with the new, repaired one.

Example

Input
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.0rg/2002/07/owl#> .
@prefix : <http://eyeball.jena.hpl.hp.com/eg#> .
<hTtP://nowhere-else/> a rdfs:Class .
<unknown : scheme> a rdfs:Class .
<http:no-authority> a rdfs:Class .
<http://no where/with spaces> a rdfs:Class .
<gobbledegook> a rdfs:Class .

Output
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.0rg/2002/07/owl#> .
@prefix : <http://eyeball.jena.hpl.hp.com/eg#> .

Automated Heuristic RDF Repair Peter Coetzee Page 24 of 30

<http://nowhere-else> a rdfs:Class .

<file:///scheme> a rdfs:Class .
<http://no-authority> a rdfs:Class .
<http://nowhere/with%20spaces> a rdfs:Class .
<gobbledegook> a rdfs:Class .
Vocabulary
Description

The VocabularyAnalysis happens in much the same way as that of PropertyAnalysis.
The only major difference is that when VocabularyAnalysis finds a replacement URI, it must
check for usages of that URI in the predicate and object of statements in the model and fix

them all.
Example
Input
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.0rg/2002/07/owl#> .
@prefix : <http://eyeball.jena.hpl.hp.com/eg#> .
:mine
rdfs:type owl:itn
; owl:srting "string content”
Output
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.0rg/2002/07/owl#> .
@prefix : <http://eyeball.jena.hpl.hp.com/eg#> .
:mine

rdf:type xsd:int
; xsd:string "string content"

.

Automated Heuristic RDF Repair Peter Coetzee Page 25 of 30

Appendix B - Analysis Report Output

The content of Eyeball Repair's additions to the report should follow the definitions

(described in N3) below, with the instance dependent data highlighted in bold:

e AllTypedAnalysis

[] eye:repairType eye:addDefaultType ;
eye:statementAdded
[a rdf:Statement ;
rdf:object subbiestSubClass ;
rdf:predicate rdf:type ;
rdf:subject nodeURI
13
eye:repairConfidence eye:low ;

eye:checkFix rdf:object .

e CardinalityAnalysis

[1 eye:repairType eye:increaseNumProperties ;

eye:statementAdded
[a rdf:Statement ;
rdf:object [] ;
rdf:predicate propertyURI ;
rdf:subject subject
1
eye:repairConfidence eye:low ;

eye:checkFix rdf:object .

[1] eye:repairType eye:increaseCardinality ;
eye:statementRemoved
[a rdf:Statement ;
rdf:object object ;
rdf:predicate propertyURI ;
rdf:subject subject
13
eye:repairConfidence eye:moderate ;

eye:checkFix rdf:Statement

Automated Heuristic RDF Repair Peter Coetzee

Page 26 of 30

[1 eye:repairType eye:decreaseNumProperties
eye:statementRemoved
[a rdf:Statement ;
rdf:object object ;
rdf:predicate propertyURI ;
rdf:subject subject
13
eye:repairConfidence eye:moderate ;

eye:checkFix rdf:Statement

e ClassAnalysis

[1 eye:repairType eye:defineClass ;
eye:statementAdded
[a rdf:Statement ;
rdf:object owl:Class ;
rdf:predicate rdf:type ;
rdf:subject classURI
13
eye:repairConfidence eye:moderate ;

eye:checkFix rdf:Statement

e ConsistentTypeAnalysis

[1 eye:repairType eye:defineClass ;
eye:repairConfidence eye:good ;

eye:checkFix rdf:Statement

[1 eye:repairType eye:removeType ;
eye:statementRemoved
[a rdf:Statement ;
rdf:subject subject ;
rdf:predicate rdf:type ;
rdf:object object
13
eye:repairConfidence eye:good ;

eye:checkFix rdf:Statement

Automated Heuristic RDF Repair Peter Coetzee

Page 27 of 30

e LiteralAnalysis

[1 eye:repairType eye:setDatatype ;
eye:newValue "newDataType" ;
eye:repairConfidence eye:moderate ;

eye:checkFix rdf:object

[1 eye:repairType eye:setLanguage ;
eye:newValue "newLanguage" ;
eye:repairConfidence eye:moderate ;

eye:checkFix rdf:object

e PrefixAnalysis

[1 eye:repairType eye:removeDuplicatePrefixes ;
eye:repairConfidence eye:good ;

eye:checkFix eye:namespacePrefix .

[1 eye:repairType eye:replaceNamespace ;
eye:repairConfidence eye:low ;

eye:checkFix eye:namespacePrefix .

e PropertyAnalysis

[1 eye:repairType eye:replacePredicate ;
eye:newValue "newPredicateURI" ;

eye:repairConfidence eye:moderate

e URIAnalysis

[1 eye:repairType eye:schemeToLowercase ;
eye:newValue "fixedURI" ;
eye:repairConfidence eye:good ;

eye:checkFix rdf:subject

[] eye:repairType eye:removeIllegalChars ;
eye:newValue "fixedURI" ;
eye:repairConfidence eye:moderate ;

eye:checkFix rdf:subject

Automated Heuristic RDF Repair Peter Coetzee

Page 28 of 30

[1] eye:repairType eye:formHttpAuthority ;
eye:newValue "fixedURI" ;
eye:repairConfidence eye:low ;

eye:checkFix rdf:subject

[] eye:repairType eye:addDefaultScheme ;
eye:newValue "fixedURI" ;
eye:repairConfidence eye:low ;

eye:checkFix rdf:subject

[1 eye:repairType eye:removeSpaces ;
eye:newValue "fixedURI" ;
eye:repairConfidence eye:moderate ;

eye:checkFix rdf:subject

e VocabularyAnalysis

[1] eye:repairType eye:replaceURI ;
eye:newValue "newURI" ;
eye:repairConfidence eye:moderate ;

eye:checkFix rdf:Statement

Automated Heuristic RDF Repair Peter Coetzee Page 29 of 30

1 see also: http://jena.sourceforge.net/Eyeball/
2 see also: http://jena.sourceforge.net/

3 For the purposes of this document, “RDF” refers to the collection of W3C standards around the

Resource Definition Framework; including RDF, OWL, RDFS etc.
see also: http://www.w3.org/RDF
http://www.w3.0rg/2004/0WL

http://www.w3.org/TR/rdf-schema/

4 see also: http://www.w3.org/2001/sw

5 see also: http://www.w3.org/TR/rdf-syntax-grammar

6 see also: http://www.w3.org/DesignlIssues/Notation3

7 see also: http://www.w3.org/XML/Schema

8 Throughout this document, the namespace <http://jena.hpl.hp.com/Eyeball#> is given the
prefix eye:

9 The prefix eyesvc: in this document maps to

<http://jena.sourceforge.net/EyeballService#>

10 Eyeball 2.1 implements spellcheck functionality using the Jazzy Core engine, a Java implementation
of the aspell algorithms.
see also: http://jazzy.sourceforge.net

Automated Heuristic RDF Repair Peter Coetzee Page 30 of 30

http://jena.sourceforge.net/Eyeball/
http://jazzy.sourceforge.net/
http://jena.sourceforge.net/EyeballService
http://jena.hpl.hp.com/Eyeball
http://www.w3.org/XML/Schema
http://www.w3.org/DesignIssues/Notation3
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/2001/sw/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/2004/OWL/
http://www.w3.org/RDF/
http://jena.sourceforge.net/
http://jena.sourceforge.net/Eyeball/

	Automated Heuristic RDF Repair
	Preface
	Introduction
	Where Eyeball Stands
	Shipped Inspectors

	Design Goals
	Sample Repair Methods
	Cardinality
	Description

	Class
	Description

	Literal
	Description

	Property
	Description

	Analysis Report Output
	Eyeball Repair Configuration
	User Interface
	Command Line
	Experimental GUI
	Interactive Model Repair

	Eyeball Web Service
	Web Service Implementation
	Collection and Analysis of Statistics
	Sample Live Statistics

	Appendix A - Detailed Repair Methodology
	AllTyped
	Description
	Example

	Cardinality
	Description
	Example

	Class
	Description
	Example

	ConsistentType
	Description
	Example

	Literal
	Description
	Example

	Prefix
	Description
	Example

	Property
	Description
	Example

	URI
	Description
	Example

	Vocabulary
	Description
	Example

	Appendix B - Analysis Report Output

