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Abstract 

Information security operations ― necessary to protect the confidentiality, integrity, and availability of 

an organization’s information systems against attacks ― represent substantial investments in 

technologies, tools, and human resources. Typically, the relationship between the supplier of an 

information system and its users is regulated by a Service Level Agreement, and the supplier must 

determine the appropriate level of investment in operational resources in order to meet its contractual 

obligations whilst maintaining its economic viability. We contend that investment decisions should be 

based on analytic models of the behaviour of information systems in the context of the environmental 

threats they face. We describe a mathematical framework, together with a modelling philosophy, for 

capturing the structural and dynamical properties of systems and their associated security operations. 

We describe how a modelling tool (Demos2k) can be used to capture much of our conceptual 

framework, giving a detailed, experimental example.  We show that our models are able to predict the 

economic consequences of investment decisions for security operations. 

1. Introduction  

1.1. The economics of security operations 

Information security operations ― necessary to protect the confidentiality, integrity, and availability of an 

organization’s information systems against attacks ― represent substantial investments in technologies, 

tools, and human resources. The objective of these investments is to allow the organization to maintain its 

operational (e.g., trading) activities and so security operations investment decisions must be consistent with 

the organization’s overall operational and financial models. Indeed, estimating the return on ICT 

investments must be based on a desire to avoid losses arising from externalities, such as indiscriminate 

worms and viruses or highly focussed attacks. Such an analysis is challenging (Anderson 2001), and 

requires an approach to monetizing the loss of availability, integrity, and confidentiality, and to estimating 

the risk of occurrence. Therefore, we should no longer regard ICT security as being purely a technology 

issue, at least within the sphere of corporate business. Rather, it is helpful to regard ICT security as a 

process ― something that is done to create a smooth environment for the organization’s operations.  

In order to understand the value of operational processes, modern corporate management makes essential 

use of metrics to assess impact upon business performance, so enabling an understanding of the 

consequences of operational decisions for key indicators, such as shareholder value. For security, the 

question that then arises is that of how to measure the level of security performance that these security-

related processes achieve (Gordon & Loeb 2006).  In order to formulate this question precisely, it is 

necessary to understand the goals of security operations and to have mechanisms for predicting the 
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outcomes of specific processes. Then it becomes possible to integrate ICT security investment decisions 

within an organization’s overall operational and financial processes.   

1.2. The use of Service Level Agreements 

Typically, the relationship between the supplier of an information system and its users is regulated by a 

Service Level Agreement (SLA) between the internal functional units of an organization and, more usually, 

with external services providers. SLAs provide a contractual statement of what is to be delivered to the 

organization by the provider, internal or external. Contractual statements such as these thus formalize, to 

some extent at least, the business process relationships and their attendant expectations.  

Although use of SLAs is widespread, we make an important qualification: we are concerned only with 

SLAs that can be considered to be meaningful: that is, those that adequately map the financial value of the 

performance of business processes, running on a given infrastructure, to the cost of provisioning. With 

respect to security, these contractual statements have commonly taken the form of pure policy compliance 

statements; for example, conformance to ISO17799, and such like. Satisfaction of requirements such as 

these is then audited on a regular basis, the results of which may contribute to a corporate annual report, 

and thus have impact upon business confidence.  

1.3. A model-based approach 

The approach we have taken towards understanding the relationship between information systems 

properties and their SLAs is based on an analytical model based approach.  In particular, we focus on 

whether SLAs relating to security operations are ‘meaningful’.  This requires that we must be able to: 

1. Measure the behaviour of the security operations system in such a way that it enables effective 

control.  For example, one could measure the number of repairs currently underway involving 

operations staff, or the number of business alignment tasks in hand at this time.  Such information 

about the current situation would typically be fed into the management decision process and thus 

influence future levels of activity and response; 

2. Predict behaviour based on the use of a model of the security operations system; that is, 

answering hypothetical questions such as what is the impact on overall availability if we reduce or 

increase security operations staff by some percentage, for example. 

Given our emphasis upon measurement and prediction, we also find it useful to take a control-systems 

perspective when constructing our models.  In such a model, we will typically need to represent various 

business entities in terms of processes that respond to events occurring at particular rates and with 

particular probability.  In developing our model, we have adopted a number of guiding principles derived 

from Open Analytics practice (HP 2006). 

It is important for these models to be both tractable and intelligible.  Accordingly, we need to work at a 

suitable level of abstraction so that it remains conceptually clear how to interpret synthetic data obtained 

from simulation. We have deliberately taken an approach that is necessarily phenomenological, with the 

advantage that is not necessary to derive an exact model of the system. Primarily, our model is not too 

detailed, so as to be overly complex and slow to develop, execute and maintain; equally, it is not too 

simple, either as to miss important dynamical behaviour. Also important is the time value of modelling — 

that is, for any model to be useful it must deliver results quickly enough to contribute to a financial 

decision making process.  Clearly, the model must also carefully distinguish between cause and effect and 

thus separate out: 

• External elements corresponding to the ‘IT threat environment’ which includes the rate of 

discovery of vulnerabilities, speed to develop exploits, speed to develop patches and signatures; 

and  
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• Internal elements, such as specific tasks undertaken in security operations and the speed with 

which these tasks are undertaken, propagation models of attacks and attack effectiveness.  

1.4. The Demos 2000 language 

This paper presents the development of a preliminary model of security operations using Demos2000 

(henceforth Demos2k), as developed by Christodolou, Taylor, and Tofts (2000), for (indicative) prediction, 

based upon phenomenological parameters. Sources of data that contributed to our understanding of how to 

parametrize the model included costs of security operations and technologies, security metrics and threat 

dashboard, financial tools (roughly in line with the approach of Gordon and Loeb (2005)) and SLAs. 

Demos2k is a semantically justified discrete event simulation language implemented in Standard ML and 

available for download under an experimental licence from HP.    Appendix A contains some further 

discussion of Demos2k and the basic modelling concepts it support directly.  Such concepts find specific 

uses within our model as follows:  

• entities correspond to internal security operations tasks (test patches, clean machines, routine 

patching) and to external activities (exploit development, patch development);  

• resources equate directly to the Full Time Equivalent
1
 (FTE) security operations staff required to 

perform security activities;  

• constants, drawn from distributions, often equate to metrics; that is, meaningful measurements of 

the system being modelled; either existing metrics (e.g., Intrusion-Detection System (IDS) detects, 

publicly announced vulnerabilities, IT Security Incident-Response Team cases), or others as they 

become feasible to measure. Rates associated with external elements will have to be best guesses 

based on intelligence gathering and/or threat assessments and may be supplied by external 

organizations;  

• variables are used to count basic events and so forth.  In the model, these values contribute to 

SLAs or components thereof. 

The rôles of Demos2k entities, resources, constants, and variables that are described here derive from an 

understanding of how to model the static and dynamic components of a (security) system, as sketched in 

(Monahan and Pym 2006).   In that work, a theoretical framework is proposed in which systems that 

deliver services are described by structured collections of locations, at which reside structured collections 

of resources, which together support the execution of processes. The properties of such a system are then 

described by a system of logic that exploits the structure of the locations and resources in order to account 

for concepts such as sharing and privacy. We return to these issues briefly in §2.1. 

1.5. The prediction of performance against Service Level Agreements 

The potential security SLAs developed through this work should provide a focus for the cost−benefit 

analysis of security operations. As a consequence we should be in a position to answer questions such as: 

“What would happen to performance against the security SLAs if the number of security operations FTE 

were reduced 10%?”; or “What would happen to the performance against security SLAs if the rate of 

discovery of security vulnerabilities increased by 50%?”. These are either very broad or quite narrow 

questions depending on the scope of the SLAs, where scope can be defined by whatever criteria would 
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breaks, holidays, and illness rates. 
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define a meaningful SLA. For example, the security SLA may refer to the availability of a critical business 

application running on a particular set of servers.    

1.6. The focus on availability modelling 

As stated, the classic objectives of security are protecting the confidentiality, integrity and availability of 

information assets and systems within an organization. Of these, our focus in this paper is on availability 

modelling. We therefore monetize lack of availability information system as a cost to the organization 

arising from the negative impact on the performance of business processes, and ultimately on revenue. 

However, it must be stressed that loss of integrity and breaches of confidentiality also lead to financial 

losses but these are not discussed in detail in this paper and modelling them are the subject of further 

research. 

2. Developing a Predictive Model (and Modelling Framework)  

2.1. The conceptual and mathematical framework  

In this section, we explain informally the theoretical basis of our modelling technology by describing our 

semantic analysis of the structure and dynamics of the systems that we aim to model. We begin with a brief 

account of our conceptual analysis, then give a brief description of its mathematical realization in the 

synchronous calculus of resources and processes (SCRP, for short) and an associated modal logic (MBI) 

(Pym and Tofts 2006, Monahan and Pym 2006), and conclude with a brief summary of the extent to which 

our framework is partially realized by the Demos2k tool.  

Our conceptual framework for modelling the integrity and performance of systems is based on an analysis 

of four key concepts.  

• Resource.  Informally, we consider resources to be the consumable, static components of a system. 

Examples include computer memory, processor cycles, docking bays in a port, and money, among 

many other similarly natural examples. Considering these examples, it is natural to require that it 

should be possible to combine resources. For one example, two pots of money may be combined 

to form another (larger) pot of money. For another, two regions of computer memory maybe 

combined provided they do not overlap. Conditions such as this latter one are known as 

separation conditions and have been studied in some detail in, for example, (Pym 2002, Ishtiaq 

and O’Hearn 2001, Reynolds 2002). It is also natural to be able to compare resources. For 

example, we might compare pots of money, as above, or the size of a region of computer memory. 

For another example, resources might be regions of a file system ordered by an access control 

régime such as the Bell-La Padula protection model. 

• Process. We consider processes to be the dynamic parts of systems, which manipulate — for 

example, consume, move, combine — resources. For instance, the basic functions of an operating 

systems, or the movements of a boat around a dock as it arrives, is loaded or unloaded, and 

departs. Fortunately, there is a well-developed mathematical theory of processes (Milner 1983, 

Milner 1989, Pym and Tofts 2006) which is well-suited to our purposes. It is sketched very briefly 

below.  

• Location.  The idea of location is an intuition derived from the physical concept of place. For one 

example, regions of memory to which an operating system must write may be located on different 

disk drives. For another, a port may have several docking bays and the choice of which to use for 

any given boat may depend on the widths and depths of the access channels to the different bays. 

Considering the various examples of location, it seems that a model should capture the following 

features (Monahan and Pym 2006): there should be a notion of sub-location, a notion of 

connection between locations, and a notion of zooming in and out to consider more or less detail 
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of the ‘map’. For more technical reasons, we also need a notion of the product of locations. In the 

security domain, a concept of location arises naturally and essentially. For example, an infection 

starts at some place(s) then spreads around the system following an epidemiological pattern that 

depends, among other things, on the connectivity of the system components. Understanding the 

topological properties of the system, such as connectivity, is therefore essential to determining the 

appropriate deployment of countermeasures.  

• Environment.  Systems, be they IT, social, business, or physical, are intended to perform functions 

within an environment of events. In our framework, we capture the environment of events 

stochastically. That is, we assume that given classes of events occur — that is, are incident upon 

the system of interest — with given probability distributions. For example, we might assume that 

boats arrive at a port according to a negative exponential distribution with parameter λ. Given 

such an assumption, it is then natural to understand the flow of resources between locations, 

described as a collection of processes, as a system of queues.  

Our mathematical framework reflects the conceptual structure outlined above. Each of the key concepts, 

resources, process, and location, is captured mathematically by considering the basic mathematical 

properties that we expect of it. So, our methods are those of classical applied mathematics but using 

mathematical tools drawn from logic, theoretical computer science, and probability theory. 

• Resource.  We have seen that the key aspects of resource that we want to capture are unit, 

composition, and comparison. Mathematically, we capture these properties by requiring that 

resources carry the structure of a pre-ordered, commutative, partial monoid (subject to some mild 

algebraic conditions).  We write  

R   = (R  ,  o  ,  e  ,  ⊆⊆⊆⊆) 

to denote the evident quadruple, consisting of an underlying set of resources (r, s ∈∈∈∈ R), a 

composition operation (r o s), a unit (e, the identity element for composition), and a comparison 

relation (r ⊆⊆⊆⊆  s) defining the monoid. An example, corresponding to money, is given by the natural 

numbers combined using addition, with unit zero, and ordered by less than or equals.   

For SCRP, we take sets of resources over such an underlying monoid, lifting the monoidal 

structure in a straightforward way.   

o Composition (and unit).  The composition of a set of resources is given by the set of 

compositions of elements of the underlying set.  The unit is then {e}.        

o Comparison. There are some choices, one example being R ⊆ S if, for all r ∈∈∈∈ R, there is 

an s ∈∈∈∈ S, such that r ⊆⊆⊆⊆ s.  

• Process.  Our model of process is based on a development, SCRP, of Milner’s SCCS (Milner 

1983) which integrates our model of resource.  The basic components of SCRP can be 

summarized as follows: 

o Actions, which carry the structure of a monoid — so any two actions  a and b can be 

combined to form a composite action, a # b;  

o Combinators, which allow processes to be built out of actions. The combinators we take 

are action prefix, which allows the sequencing of actions, non-deterministic choice 

between processes, concurrent composition of processes, a local binding of resources to 

processes, and recursion (via constant definitions). Formally, the grammar of processes, 

E, is given as follows, following the order of introduction above:  

E  ::=  a  a : E  E + F   E × F  (νR) E  C := E . 
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                            The connection between actions and processes is expressed using a modification  

function, µ, a partial function that maps an action together with a resource to a resource. 

The meaning of this syntax is given by an operational semantics, expressed as a collection of 

inference rules. For example, the rule for action prefix 

µ (a,R)↓
R,a : E

a →  µ (a,R),E
,       

       says that, provided the effect of the action a on the resource R be defined, then, with resources R 

the process a : E can evolve by the action a to become the process E with resources µ(a,R) as 

specified by µ.  Another example is given by the  rule for concurrent composition,   

''),,#(,

'),,(,'),,(,
#

FESRbaFESR

FSbFSERaER
ba

ba

×→×
→→

oo µ
µµ

 , 

       provided the modification ),#( SRba oµ  is defined. This rule expresses how we form a 

concurrent process from its components. Notice that the composite resource is determined by the 

composition in the resource monoid, where our separation conditions can be imposed.      The 

rules for the other combinators are expressed similarly. 

       Finally, we remark that equality between SCRP processes is given by bisimulation (Milner 1983, 

Milner 1989) relative to a given resource and modification function.  

• Location.  Our model of location, capturing the conceptual requirements described above, is very 

simple. We require a mathematical structure that supports the following: 

o A collection of locations, L, L’, M, M’, etc;  

o Substitution of locations, M[L’/L], of a location L’ for a sub-location L of M . This idea 

requires a suitable notion of arity of location, so that substitution suitably preserves 

connectivity; 

o A notion of connection between locations L and M; 

o Finally, a product of locations.  

             Directed graphs provide a simple and natural example of a model of location.  

• Environment. As we have seen, we treat the behaviour of the environment stochastically. The 

simplest way to understand the relationship the stochastic environment and the process-theoretic 

structure of our models is via actions. An example will make things clear. Consider again the 

example of boats in port. We have a process that describes the movements of a boat around the 

port. But how do we initiate such a process?   When a boat arrives at the port, according to the 

probability distribution for such arrivals, such as negative exponential or Poisson, the first action 

in a boat process is initiated. This happens for each incidence of a boat, and multiple boats execute 

in the system as concurrent processes (see above). Note that this gives us an example of a 

separation condition; concurrent boats may not share the same docking bay; their respective 

docking-bay resources must be separate.    

The modelling language used in our examples, Demos2k, provides a partial realization and 

implementation of our mathematical model of our conceptual framework. Summarized below is the extent 

to which Demos2k (see Appendix A) captures our framework, concentrating on just the key points.  

• Resource.  Demos2k has several notions of resource, primarily bins and resources. Bins provide a 

basic form of resource that is essentially counters: processes put elements in and may (then) take 
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them out. They have no in-built notion of composition or comparison beyond numerical ordering. 

Demos2k’s resources provide stocks of elements for which concurrent processes (called entities) 

may compete. Just as for bins, resources also have no in-built notion of composition or 

comparison.  

• Process.  The basic notion of process in Demos2k is the entity. Entities may be thought of as 

(recursively defined) sequences of actions. Entities manipulate resources.     

• Location.  There is no inherent notion of location in Demos2k. Location must be represented 

implicitly in models. In particular, the model discussed in 3.1 represents different locations using 

distinct names.  In more complex models, the complexity introduced in this way would become 

difficult to manage.  

• Environment. Demos2k supports a very wide range of probability distributions for representing 

the behaviour of the environment and, indeed, stochastic aspects of the internal construction and 

operation of models.  

A process-theoretic semantics for Demos2k has been provided in (Birtwistle and Tofts 1993, 1995). 

Similar analyses, exploiting SCRP’s built-in resource semantics, can be given in our setting. 

Our mathematical framework admits also the possibility, not exploited in this paper, of providing a system 

of logic, tailored to our model of resources and processes, in which system properties can be expressed. 

The basic idea is to set up a logical judgement relating resources, processes, and their logical properties, as 

expressed as 

R  ,  E  ╞  φ 

and read as the property φ holds ― that is, is true of ― of process E relative to the set R of resources.  
The relationship of truth between propositions, resources, and processes is defined inductively on the 

structure of propositions, with a case of the induction for each of the logical connectives that is supported 

by the semantics. A full discussion of the basics of this logic, called MBI, is provided in (Pym and Tofts 

06) and is beyond our present scope. For now, however, we remark that logical assertions φ might be used, 

for example, to express access control policies for the system (model) described by the resource-process 

R,E, so that the judgement  R  ,  E  ╞  φ  will hold just in case the system (model) is compliant with the 

policy.  

MBI is based on the logic of bunched implications, BI, introduced in (O’Hearn and Pym 1999, Pym 1999, 

Pym 2002, Galmiche, Méry, and Pym 2005), and Hennessy-Milner logic (Stirling 2001). The main point 

about BI is that it permits both ‘additive’ and ‘multiplicative’ logical connectives at the same level of 

abstraction as one another, thereby admitting, when combined with modalities in the sense of Hennessy-

Milner logic, a logical analysis of the global and local properties of systems. This point may be seen quite 

quickly by considering the difference between the additive and multiplicative conjunctions, ∧ and ∗, 

respectively. We have  

R  ,  E  ╞  φ  ∧ ψ    iff    R  ,  E  ╞  φ   and   R  ,  E  ╞  ψ, 

which refers to the resource and process only locally. On the other hand, we have  

R  ,  E  ╞  φ  ∗ψ    iff    S  ,  F  ╞  φ   and   T  ,  G  ╞  ψ, 

where R is the composition of S and T, and where E is bisimilar to F × G. Notice here that the definition of  

the truth condition for φ ∗ ψ  refers to the global structure of the model of the system and, as a 

consequence, provides a logical characterization of concurrent composition (Pym and Tofts, 2006).   

As in Hennessy-Milner logic, the connection between the logic and the dynamics of the processes is 

facilitated by the modalities, [a] and 〈a〉. In MBI, these modalities have both additive and multiplicative 
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forms, analogous to the conjunctions described above. The additives may be seen as ‘temporal’ and the 

multiplicatives as ‘spatial’ or ‘resourceful’. These logical ideas can be further enriched with our notion of 

location, leading to a logical judgement of the form  

L  ,  R  ,  E  ╞  φ  . 

which, when given with an account of how resources are located using a modification function that is 

parametrized on locations, is read as property φ  is true of the process E relative to resources  R  located at  

L. The operational counterpart, depending on the same parametrized modification function, then takes the 

form 

',',',, ERLERL
a→ , 

where  µ(a, L, R) = (L’,R’),  with suitably parametrized rules for each of the combinators.  

The remaining active strand of research in this area concerns the key security concept of access control. 

We can consider a user or a group of users, or rôle, that is to say, a principal, to be a process that is being 

executed on a system; that is, relative to some resources that are situated at locations. Building on some 

ideas introduced by Abadi et al (1993) we are able to make mathematically precise their conception that 

impersonation — hence groups, rôles, etc — is a form of concurrent composition of the impersonated and 

impersonating principals. Using the ideas from logic to which we have alluded above, we can integrate 

specifications of access control régimes.  

2.2.  The modelling process  

The framework in which the availability model has been developed is shown in Figure 1. We refer to the 

mathematical basis, as explained in §2.1, as ‘SCRP/MBI + location’ for brevity. Of course, this account 

must be embedded in a stochastic treatment of environmental and operational events, also as discussed in 

§2.1.   
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Figure 1. Framework used to derive availability model. 

Demos2k has been used to develop the model described in this paper. As we have explained in 2.1, 

Demos2k embodies the stochastic treatment of environmental and operational events but has just an 

‘atomic’ notion of resource, lacking the structural content of resources that allows resource composition 

and comparison, and also lacking a notion of location. The integration of these concepts into a basis for 

Demos2k-like tool is the purpose of further theoretical and implementation research on SCRP/MBI-based 

tools.  

We have focussed initially on threat modelling and internal mitigation processes associated with 

vulnerabilities such as patching and fixing compromised machines. Misalignment modelling is relatively 
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less well-understood and ripe for further research effort. Internal alignment processes include the 

following: configuring new users, new devices, new customers, and new partners; updating configurations 

based on change requests; and non-standard business-critical fixes. Instead of modelling many individual 

processes, however, we have for now abstracted away into a single ‘align’ process that consumes 

operational resources for an average job-time, set by the change management request rate. The average 

job-time and change-management rate are two operations metrics that it would be useful to capture within 

the organization. 

This abstraction to highly aggregated components of the system has advantages, such as conciseness, and 

efficiency. Moreover, such a modelling style is strongly suggested by the form of Demos2k with its lack, 

as discussed above, of substantial structural components (of course, we could code them in for any given 

model, but there would be significant loss of clarity, efficiency, and modelling rigour). 



   

10   

3. The Demos2k Availability Model  

The focus in this paper is on modelling availability with a view to predicting performance against a 

meaningful SLA. Sources of downtime, or lack of availability, of an ICT system can be characterized as 

follows: 

1. Fix time: time taken to repair specific components of the system that have been compromised or 

damaged by attack. Typically this would be cleaning or rebuilding a computer including the time 

taken to recover data. This source of downtime arises from vulnerabilities;  

2. Misconfiguration: lack of access to a significant business2 component of the system (e.g., a 

business application like an ERP system). By misconfiguration we mean any configuration of the 

system incompatible with operation of business processes (e.g., authentication failure, incorrect 

assignment of rôle) which would require security operations resources to resolve. Also note the 

principle of constant change, there is never a correct system configuration. This source of 

downtime arises from lack of alignment; 

3. Intrinsic reliability: the intrinsic reliability of the components that make up the system, the way 

in which they are connected; and their dependency on operational level agreements in place for 

break/fix constitute the usual domain of availability analysis and typically the focus of SLAs in 

current IT Outsourcing (ITO) and application management contracts;  

4. Network: a catch all for lack of availability caused by the network itself being swamped by non 

authorised, non business related, traffic perhaps due to a Denial of Service (DoS) or worm attack. 

This source of downtime arises from vulnerabilities. 

We make an essential distinction between downtime arising from vulnerabilities (1, 4) and alignment (2). 

Typical analyses of threat environments and attack profiles have tended to concentrate on the former 

(Wing et al. 2002).  Both, however, must be monetized for any derived SLA to be considered meaningful. 

3.1. A description of the model 

The parameters for the Demos2k model corresponding to Figure 2 are given in Appendix B structured 

according to the components listed in Appendix A. The following internal processes consume security 

operations staff resources: 

1. Continuous change management (relationship between users, resources and processes) which 

has been aggregated into a single business alignment services process; 

2. Repair compromised or damaged machines; 

3. Processes associated with patch management including testing and deployment; 

4. Implementing workarounds as mitigating actions; 

5. Deployment of IPS signatures; 

6. Vulnerability assessment ― determining corporate patching deadlines and associated risk 

levels. 

The threat model provides the stimulus to all of the security operations tasks indicated above.   We 

acknowledge that it is a radical simplification of the known threat space ― for example, the vulnerability 

intelligence capability could be split into White Hat, Grey Hat and Black Hat operations ― but the present 

model suffices for our present purposes.  It is clearly an area of modelling that warrants further  

                                                      

2
 We have used business (alignment, process, etc.) throughout and intend this to be a generic label for any enterprise. 
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Figure 2. High-level process view of causative spawning dependencies in the model.  The thick arrows represent 

event flows between processes and queues.  Processes decorated with circular arrows indicate ‘perpetual’ processes 

that continually execute, consuming events as they do so. 
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development in its own right and is potentially useful outside the context of this paper; however we have 

made the following assumptions:  

All vulnerabilities are naturally present in all unpatched systems ― they do not need to be ‘caught’ or 

‘infected’: 

• Viruses, Worms, and Trojans (VWT) exploit vulnerabilities that remain unpatched.  These VWT 

are the infection agents; 

• Typically, there has to be some external access for VWT to become active; 

• Patching systems will eliminate the vulnerabilities and remove the effects of the infective agents. 

In order to avoid situations where our model suffers from the runaway affects of an attack leading to an 

implausible number of unavailable machines, we have modelled spread effects by introducing forms of 

damping. The number of machines requiring repair and the number of machines on the repair queue will 

grow under attack at two different rates, where the time constant of the repair queue is slower than the 

number of machines requiring repair. Since the length of the repair queue would be monitored we 

introduce a ‘crisis’ threshold. At the time the crisis occurs the following take place: 

• The organization is effectively down for a number of days; 

• Utilization of security operations staff during this down time is 100%; and 

• At the end of the down time the number of machines on the repair queue becomes equal to the 

number of machines that needed repair at the time of the crisis. 

The present model can be broadly calibrated by measuring the following aggregated parameters from the 

organization: 

• The aggregation of individual FTE security operations staff into teams that govern the 

concurrency limits within the model; 

• The average amount of time taken to undertake the processes and the number of security 

operations staff typically assigned to work on each process. 

The following is a suggested list of metrics. Not all of these may be measurable in practice but are included 

here for discussion.  

1. The amount of time taken to assess the potential impact of a new vulnerability for which a patch 

exists before deciding to deploy; 

2. The effectiveness of attacks, patching and workarounds; 

3. Deployment coverage measurements associated with patch management, Virus signature 

distribution and workarounds; 

4. The characteristics of specific attacks; 

5. The characteristics of the patching process. 

5. Results 

The results from the model presented here should be considered as preliminary, demonstrating the basic 

feasibility of the approach rather than a specific prediction for a specific system. We also assume that 

should an organization decide to use an availability SLA then loss of availability can be adequately 

monetized. The model is currently homogenous with respect to systems but the approach we have used 

could be replicated to represent different processes for different subsystems but still drawing from a shared 
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resource pool and with no loss of desirable properties; parametrizing Demos2k processes through use of a 

job ticket mechanism is reasonably easy to code. 

The model has been used to investigate two key questions: firstly, the impact on predicted availability of a 

system and utilization of reducing the number of security operations staff resources; and, secondly, the 

impact on availability and utilization if the threat environment changes. Some of the runs produced using 

an early forerunner of this model produced what could only be regarded as devastating loss of availability 

due to single attack, effectively rendering the organization non-viable. This early model was clearly too 

naïve and was rectified by the creation of a more elaborate ‘damped attack’ model described in §3.1 which 

also permitted greater subtlety in the modelling of defensive processes.  

We have chosen a system with 20,000 devices which equates to a high end Small to Medium Enterprise 

(SME) or institution similar in size to a medium-sized European University. Given that the parameters in 

the model have not been calibrated we chose a ‘reasonable’ starting set and explored the number of 

security operations staff that gave achievable utilization rates when exploring increased threat and reduced 

numbers of operational staff. This gave a baseline model in which 3 security operations FTE staff were 

required, assuming single site operation. In order to acquire reasonable statistics, each simulation run of 

365 days was repeated 100 times. Using the model as shown in Appendix B as a baseline we obtain an 

average predicted availability of 98.15%. The corresponding average utilization of the security operations 

staff was 57.45%. Data from a typical run with Np=0 showing daily availability over a period of 365 days 

is shown in Figure 3 below.  
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The model presented here is quite complex for Demos2k and presents some challenges in understanding 

the complexity of the dynamic behaviour exhibited.  

Figure 3.  Daily availability per day, from a typical simulation run.   This shows the many minor 

fluctuations on availability caused by a continuous stream of change management requests arising 

from misalignment.  In addition, there are more significant dips arising from attacks enabled by the 

presence of vulnerabilities etc. 
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Data visualization 

We have used a 3D visualization approach built by one of the Demos2k authors that renders some or all of 

a trace file from an experimental run into VRML.  In the illustration given in Figure 4 below, various data 

traces spanning a whole year are shown as labelled columns.  The various planes (shown in grey) represent 

points in time (days) cutting across each column.  The particular traces shown here are the needsRepairs 

and needsPatching queues, the cumulative cAttackDeployed and cPatchDev counts and the 

attackImpact and sysAvail measures.  The VRML visualization gives the analyst modeller an intuitive 

way of viewing and selecting data to highlight aspects of interest arising in Demos2k traces.  As such, only 

a subset of the data that could be visualized from the Demos2k traces generated is given here. 

 

Figure 4. Visualization using VRML of data traces selected from an experimental run of the model 

Data summary 

With all other parameters held constant, the effect of reducing the number of operations staff by 33% and 

of increasing the rate at which vulnerabilities are discovered by 50%, have been investigated and 

summarized in Table 1. In terms of meeting the requirement of achieving cost-effective modelling, each 

365 day simulation takes approximately 120 seconds to run on a 1.6GHz Pentium notebook machine. A 

more thorough examination of the space of models provides an interesting topic for further work.
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 Nops Vulnerability 

Rate 

Availability 

(Average) 

Availability 

(Min) 

Availability 

(Max) 

Utilization 

(Average) 

Utilization 

(Min) 

Utilization 

(Max) 

P(Np=0) P(Np=1) P(Np=2) P(Npa> 2) 

1 3 Negexp(365/24) 98.15% 95.86% 99.54% 57.45% 42.35% 81.96% 86% 13% 1% 0% 

 Nops Vulnerability 

Rate 

Availability 

(Average) 

Availability 

(Min) 

Availability 

(Max) 

Utilization 

(Average) 

Utilization 

(Min) 

Utilization 

(Max) 

P(Np=0) P(Np=1) P(Np=2) P(Np> 2) 

2 0% +50% -0.95% -3.05% -0.24% +7.55% +5.09% +7.38% 71% 28% 1% 0% 

3 -33% 0% -0.82% -2.47% -0.31% +22.38% +22.93% +16.47% 72% 25% 3% 0% 

4 -33% +50% -1.98% -3.42% -0.39% +26.34% +24.48% +14.51% 50% 40% 10% 0% 

 

Table 1.  Summary of data for 4 scenarios: changing the number of operations staff and the rate of discovery of vulnerabilities. The data in the first row are presented as a baseline 

case. Data for availability and utilization for cases 2, 3 and 4 are presented as deltas. 
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6. Discussion and conclusions 

In this paper, we show early development stages of a framework within which meaningful security SLAs 

for security operations can be developed.  We have outlined a mathematically well-founded modelling 

system, partially realized within the Demos2k tool, allowing us to predict the availability of systems 

vulnerable to downtime arising from attacks and from business misalignments.   The attacks in question are 

assumed to exploit the pervasive presence of systems security vulnerabilities. 

Based on our current understanding of security operations dynamics, the results obtained from simulating 

the model show that there is not an unexpected correlation between increases in utilization rate for security 

operations staff and reductions in number of operations staff available and similarly, increases in potent 

threat from the environment. 

It is clear that the quality and significance of our modelling strongly depends upon the structural 

description of business processes we obtained through using it.  This means that we can critique and test 

how well our understanding is reflected by the process structure.  A further strength of our process-driven 

modelling approach is that our models happen to be executable and can thus generate synthetic data for 

analysis.  This potentially allows us to make quantitative, predictive conjectures that are measurable and 

hence testable, under the appropriate circumstances. 

We have thus successfully modelled (lack of) availability that arises from attacks and business 

misalignment.  This demonstrates a rational basis for answering some of the basic questions posed earlier 

and fulfils the basic requirement of providing a predictive capability for a candidate availability SLA, 

modulo calibration with actual business situations.  Such a capability clearly contributes to helping make 

investment decisions with respect to security operations and the associated security infrastructure. 

There are a number of ways to extend the reach and scope of the modelling work reported here; for 

example: 

• Exploring how much additional detail to include in the model to obtain calibration with particular 

business instances.  There is an important trade-off to be made here since adding too much detail and 

the model becomes intractable and unanalysable ― too little detail and the model becomes too broad 

and much harder to correlate with specific business process characteristics; 

• We encountered various runaway conditions in the model that were directly provoked by attacks, 

illustrating a need for more detailed models of attack mechanisms and defensive processes.  The point 

here is that although any given attack may not in itself be all that damaging, but given how stretched 

the allocation of resources could be, the attack may be “the straw that breaks the camel’s back”, forcing 

a crisis to occur.  Future versions of the model could explore these issues of sensitivity, given greater 

depth of attack/threat modelling; 

• It is clear from our model that a number of processes (e.g., patching) appear to be critical to the 

effective network defence of a large organization.  How critical are they really?  What would happen if 

they could be replaced by less expensive options?    Adding extra automation can reduce the need for 

staff ― but what happens when these complex systems breakdown (as they inevitably will do).  What 

about maintenance schedules?  What are the cost-benefit trade-offs? 

• The modelling framework needs to incorporate location-sensitive resources to fully account for the 

richness inherent in many business situations.  For example, this would permit us to model separations 

better; the use of an operations centre that is geographically situated elsewhere implies that there may 

be greater potential for communications disruption, differences in staffing allocation, increased 

dependence upon the reliability of networking infrastructure, etc.  All of these would have cost 

implications for the kinds of resources needed; 

• Our models explicitly cover availability issues for security operations.  It would be interesting to 

extend our approach to cover both confidentiality and integrity issues as well, so obtaining a well-

rounded approach to understanding the economic cost/benefits of IT security.  
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Appendix A: A Brief Guide to Demos2k 

In reality, Demos2k is two things ― firstly, it is a semantically justified discrete-event systems modelling 

language (see §3.1); and, secondly, it is a simulation-based environment to support the examination and 

exploration of systems so described. 

An advantage of this semantic justification activity is that, having done this work, it contributes extensively 

to the integrity of the implementation, thus ensuring accuracy and fidelity of the simulation results obtained 

using the tools.  Broadly speaking, this means that Demos2k users can be highly confident in the numbers 

produced during and resulting from their simulations and in the patterns of behaviour observed.  With this 

underpinning, we can be much more certain that our results are genuine consequences of the model and not 

mere artefacts of simulation.  

The Demos2k environment has been designed to support the precise examination of simulation oriented 

descriptions of systems.  These can be compiled or automatically rewritten into multiple representations 

dependent upon the questions that must be asked of the model such as correctness, performance, 

availability, or agility, etc. 

Systems descriptions written in Demos2k tend to be high-level, pleasingly short and to the point.  The 

modelling philosophy supported is very much akin to ‘extreme modelling’, where the systems 

analyst/modeller can rapidly construct high-level models representing the customer's core business 

concerns.  A key contribution to this capability is the exploitation of probability theory to abstract away 

from extraneous details. 

We now outline the basic ‘shape’ of a typical Demos2k definition of a model.  Although not syntactically 

mandated in any sense, as a general rule Demos2k models/programs pragmatically adopt the following 

pattern: 

Constant definitions: 

• Demos2k constants are special in that they may be defined in terms of probability distributions – 

each time such 'constants' are evaluated during simulation, a fresh sample is taken from the specified 

distribution.  The probability distributions supported include standard distributions such as Uniform, 

Binomial, Geometric, Negative Exponential, Normal, Poisson, and Weibull, as well as arbitrary 

point/discrete distributions; 

Global variable definitions: 

• Variables are typically used to count the number of events of a certain kind, or the number of times a 

particular process is activated;  

Resource definitions: 

• Resources represent pure synchronizations (in the process-calculus sense) and can be claimed and 

released by means of getR and putR expressions; 

Bin definitions: 

• Bins represent synchronizable entities (note that the term ‘resource’ is used in the rest of the paper to 

encompass both the Demos2k notion of ‘resource’ and the Demos2k notion of ‘bin’, as described 

here) into which some quantity of material may be placed and retrieved.  These may be used to 

provide the effect of one entity making a synchronous, concurrent process call on another; 

Class definitions: 

• Each entity is a concurrently executing instance of some class. Classes thus represent the behaviour 

of entities in conventional procedural terms, by manipulating resources in some fashion and by 

‘holding’ (letting time pass) for defined periods of time; 

Initial model population, and entity creation; 
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Run length control, typically a hold of some fixed duration; 

The all-important close statement ends the simulation run. 

In this form, we may regard Demos2k descriptions as defining behaviour in terms of a Dijkstra-like 

guarded command language.  All active commands test the current system state. If the condition they 

represent can be met then they are executed --- otherwise they are blocked until such time as the condition 

holds, if at all.  Note that Demos2k simulations will typically run for a specified length of time.  If either 

deadlock or livelock arise during simulation runs then these situations are checked for pragmatically.  The 

major difference between process oriented simulation languages (like Demos2k) and pure guarded 

command languages is that the conditions may have side effects, principally due to the assignment of 

resource to the active entity. Hence change of state is mediated not only by assignments to variables, and 

by the claim of resource, but also by entities becoming resources themselves. 

Demos2k has been given a simple, elegant and informative semantics, abstracting away from the stochastic 

data collection, in the process calculi SCCS and CCS (Milner 1983, Milner 1989).  It can be argued that the 

representation of resource in the synchronous semantics (SCCS) is superior to that in the asynchronous 

semantics (CCS) - see (Tofts 2003). 

Appendix B contains a condensed version of the security operations model discussed in §3.1 of this paper 

– a complete Demos2k model may be found in the appendix to (Monahan and Pym 2006).



   

20   

Appendix B – Availability Model 
 

// Security operations model - Mike Yearworth, Brian Monahan & David Pym 

// version 1.5 (condensed) 

// 19 July 2006 - update a 

// Constants 
// Timescale constants 

cons days    = 1; 

cons hrs    = days/24; 

cons mins    = hrs/60; 

cons secs    = mins/60; 

// Simulation time 

cons holdTime    = 365;    // int: sim. period -- in days 

// General Parameters 

cons totalSys      = 20000;   // number of desktop systems under management 

cons NsecOps       = 2;    // number of operations staff 

cons Nanalysts     = 1;    // number of security risk analysts 

cons patchTeams         = 4;    // number of patch teams 

cons repairStreams   = 4;    // number of repair streams 

cons serviceTeams   = 4;    // number of biz align service teams 

cons sysForAlign   = 1;    // number of systems needed per alignment request 

cons maxPatchLimit   = 30;    // maximum number of systems patched concurrently by single team 

cons lowerAvailLimit   = 90/100;   // lower limit of acceptable availability 

cons max_days_unavailable_limit  = 3;    // maximum number of days consecutively unacceptable availability 

cons max_repairs_limit    = 850;    // max acceptable length of repair queue 

cons clearUpTime   = 2;    // number of days needed to clear up crisis 

cons accountingSamplesPerDay  = (24*(60/15));   // number of accounting samples taken per day  

cons rebootTime   = normal(10*mins, 1*mins); // avg. reboot time 

cons patchDeployTime   = normal(1*hrs, 15*mins); // avg. time to apply a patch to system 

cons sigsDeployTime   = normal(10*mins, 1*mins); // avg. time to update signatures 

// Environment related 

cons vulnerabilityInterval  = negexp(365/24);  // Avg. time between vulnerability discovery  

cons isExploitable   = binom(1, 40/100);  // Prob. of vuln. being exploitable 

cons devExploitTime   = negexp(19*days);  // Avg. time to develop exploit  

cons vulnDiscoveryTime   = negexp(14*days);  // Avg. time to discover/expose intell. on vuln. 

cons sigsEffectiveness   = uniform(10/100, 20/100); // level of effectiveness of signatures 

cons attackEffectiveness  = uniform(05/100, 85/100); // normalized measure of attack capability ... 

cons attackDeploymentTime  = negexp(20*days);  // Avg. time to deploy an attack, given an exploit exists 
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cons isZeroDayAttack   = binom(1, 1/10);  // Prob. of exploit being immediately deployable 

cons isDeployableAttack  = binom(1, 8/10);  // Prob. of exploit being eventually deployable  

cons isExposable   = binom(1, 9/10);  // Prob. of vulnerability being exposable (i.e. subject of intell.) 

cons patchDevTime   = negexp(15*days);  // Avg. time to develop patch 

cons sigDevTime   = negexp(5*days);  // Avg. time to develop signatures 

cons attackRounds   = puni(1, 3);   // Avg. number of attack attempts. 

cons attackInterval   = normal(2*days, 16*hrs); // Avg. time between attack attempts 

// Business related staffing limits 

cons staffForPatching   = 1;    // number of staff needed for patching activity 

cons staffForSigs   = 1;    // number of staff needed for updating signatures 

cons staffForAlign   = 1;    // number of staff needed for alignment request 

cons staffForRepair   = 1;    // number of staff needed for repairing systems 

// Biz alignment 

cons bizAlignInterval   = negexp((1/30)*days);  // avg. time between requests 

cons bizAlignTime   = negexp(60*mins);  // avg. time taken to complete biz align tasks. 

cons someReassessment   = puni(0, 3);   // avg. number of vulnerability reassessments performed 

cons vulnAssessTime   = negexp(2*hrs);  // avg. time taken to assess vulnerabilities 

cons patchAssessTime   = negexp(2*hrs);  // avg. time taken to assess suitability of patches 

cons assessmentInterval  = negexp(1*days);  // avg. time between vulnerability assessments 

cons isVulnHigh   = binom(1, 2/10);  // prob of vulnerability being urgent 

cons isVulnLow    = binom(1,  7/10);  // prob of vulnerability being non-urgent, but useful 

cons repairQCheckInTime  = normal(8*mins, 1*mins); // time taken to check in systems to repairQ 

cons canQuickFix   = binom(1, 1/10);  // prob. of system being fixable quickly 

cons repairTime   = normal(3*hrs, 10*mins); // avg. repair time 

cons patch_is_irrelevant  = binom(1, 1/10);  // prob. of patch being neither relevant nor useful 

cons patchMaintenanceInterval  = normal(14*days, 1*days); // avg. time between patch maintenance 

cons sigMaintenanceInterval  = normal(7*days,  1*days); // avg. time between sig. defence maintenance 

cons systemsNeedingPatching  = uniform(10/100, 95/100); // proportion of systems that need patching 

cons sysNeedSigs   = uniform(50/100, 90/100); // proportion of systems requiring signatures  

// Variables 
var day     = 0; 

var vulnerableSystems   = 0; 

var attackImpact   = 0; 

var sysAvail    = 1; 

var cSysAvail    = 0; 

var cStaffUtil    = 0; 

var availSys    = totalSys; 

var needsRepairs   = 0; 

var needsPatching   = 0; 
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var online    = 1; 

var daysUnavailable   = 0; 

var manpowerUsedToday   = 0; 

var systemsAvailToday   = 0; 

var cVuln    = 0; 

var cCrises    = 0; 

var cAttacked    = 0; 

var cRepaired    = 0; 

var cExploit    = 0; 

var cPatchDev    = 0; 

var cSigDev    = 0; 

var cAttackDeployed   = 0; 

var cBizRequests   = 0; 

var cBizRequestsServed   = 0; 

var cPatchesApplied   = 0; 

var cSigsApplied   = 0; 

// Resources 
res(lock, 1); 

res(analysts, Nanalysts); 

res(opsStaff, NsecOps); 

bin(vulnAssessQ, 0); 

bin(patchPublishQ, 0); 

bin(sigPublishQ, 0); 

bin(bizAlignQ, 0); 

bin(vulnHighQ, 0); 

bin(vulnLowQ, 0); 

bin(batchPatchQ, 0); 

bin(repairQ, 0); 

// Classes 
// External processes/activities 

// (the { . . . } notation below represents details omitted for lack of space) 

class vulnerable = { . . . } 

class devExploit = { . . . } 

class vulnIntelligence = { . . . } 

class devPatch = { . . . } 

class devSig = { . . . } 

class deployAttack = { . . . } 

class attack = { . . . } 

// Internal IT activities 
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class bizAlignRequests = { . . . } 

class bizAlignService = { . . . } 

class vulnerabilityAssessment = { . . . } 

class assessment = { . . . } 

class patchManagement = { . . . } 

class maintainPatch = { . . . } 

class deployPatch = { . . . } 

class patchApplication = { . . . }  

class deploySig = { . . . } 

class repairManagement = { . . . } 

class repair = { . . . } 

class detectCrisis = { . . . } 

class crisisManagement = { . . . } 

// Management 

class accounting = = { . . . } 

class reporting = { . . . } 

// Entities 
entity(vuln, vulnerable, vulnerabilityInterval);     // generate vulnerabilities ... 

entity(biz,  bizAlignRequests, 0);     // generate biz alignment requests ... 

entity(vulnAssess, vulnerabilityAssessment, 0);   // vulnerability assessment ... 

entity(patchMgmt, patchManagement, 0);    // patch management ... 

entity(patchMtn, maintainPatch, 0);     // maintain patching process ... 

entity(sigDefMtn, maintainSigDefence, 0);    // maintain signature defence process ... 

entity(patchDep, deployPatch, 0);     // deploy patches ... 

entity(sigDefDep, deploySig, 0);     // deploy defensive signatures ... 

entity(repairMgmt, repairManagement, 0);    // repair Management ... 

do serviceTeams  { entity(bizService,  bizAlignService, 0); }   // service biz alignment requests ... 

do repairStreams { entity(repair,      repair,          0); }  // repair teams ... 

// business mgmt & reporting 

entity(check, detectCrisis, 0);     // check for crisis conditions 

entity(accounts, accounting, 0);     // perform accounting ... 

entity(reports, reporting, 0);     // perform reporting ... 

// Run the simulation ... 

hold(holdTime); 

close; 
 


