

Resolving Layout Interdependency with Presentational Variables♦

John Lumley, Roger Gimson, Owen Rees
Digital Media Systems Laboratory
HP Laboratories Bristol
HPL-2006-107
August 22, 2006*

XML, XSLT,
SVG, document
construction,
functional
programming

In the construction of variable data documents, the layout of component
parts to build a composite section with heterogeneous layout functions
can be implemented by a tree-evaluating layout processor. This handles
many cases with well-scoped structure very smoothly but becomes
complex when layout relationships between components cut across a
strict tree. We present an approach for XML-described layouts based on a
post-rendering set of single-assignment variables, analogous to XSLT,
that can make this much easier, does not compromise layout extensibility
and can be a target for automated interdependency analysis and
generation. This is the approach used in the layout processor associated
with the Document Description Framework (DDF).

* Internal Accession Date Only
♦ ACM Symposium on Document Engineering, 10-13 October 2006, Amsterdam, The Netherlands
 Approved for External Publication
© Copyright 2006 ACM

1

Resolving Layout Interdependency with Presentational
Variables

John Lumley
Hewlett-Packard Laboratories

Filton Road, Stoke Gifford
BRISTOL BS34 8QZ, U.K.
john.lumley@hp.com

Roger Gimson
Hewlett-Packard Laboratories

Filton Road, Stoke Gifford
BRISTOL BS34 8QZ, U.K.
roger.gimson@hp.com

Owen Rees
Hewlett-Packard Laboratories

Filton Road, Stoke Gifford
BRISTOL BS34 8QZ, U.K.
owen.rees@hp.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DocEng’06,October 10-13, 2006, Amsterdam, Netherlands.
Copyright 2006 ACM 1-59593-515-0/06/0010...$5.00.

ABSTRACT
In the construction of variable data documents, the layout of com-
ponent parts to build a composite section with heterogeneous lay-
out functions can be implemented by a tree-evaluating layout pro-
cessor. This handles many cases with well-scoped structure very
smoothly but becomes complex when layout relationships
between components cut across a strict tree. We present an
approach for XML-described layouts based on a post-rendering
set of single-assignment variables, analagous to XSLT, that can
make this much easier, does not compromise layout extensibility
and can be a target for automated interdependency analysis and
generation. This is the approach used in the layout processor asso-
ciated with the Document Description Framework (DDF).

Categories and Subject Descriptors
I.7.2[Computing Methodologies]: Document Preparation —
desktop publishing, format and notation, languages and systems,
markup languages, scripting languages

General Terms:Languages

Keywords:XSLT, SVG, Document construction, Functional

programming

1. INTRODUCTION & MOTIVATION
In the development of the Document Description Framework[1]
(DDF), a major component was an extensible layout processor [2]
which interpreted a tree of layout instructions to create composite
graphical presentations, the result being described in an SVG tree.
This approach has proved very successful in our experimentation,
as the tree nature of the 'construction program' maps well to a
logical structural view of documents and scoping can be used to
considerable advantage where most layout relationships are
between a parent and direct children. However, there are some
cases where relationships are required that cut across the strict
tree. Thus it has been necessary to add means of resolving such

relationships, but as the set of layout functionalities available is
extensible, a primary challenge was to make a 'universal' system
that would be capable of resolving acyclic dependencies.
The basic model of layout used in DDF is that of a declarative
tree, where presentation 'instructions' are represented as nodes and
the components to be laid out are children of that node. All
instructions are expected to evaluate to a canonical form (in our
case SVG groups, with a bounding rectangle) and can equally
expect their children do. Evaluation is through a recursive tree-
descender, choosing a suitable agent to process the given node. In
our case this processor is written primarily in XSLT2.0 with a
very few Java-based extensions to handle complex layouts, such
as linear constraints or specialist leaf nodes, such as line-wrapped
text blocks.

Figure 1 is an example of resolving a simple compound layout:

flow(x)

fo:block flow(y)

svg:polygon svg:circle

flow(x)

A block of
text

flow(y)

svg:polygon svg:circle

flow(x)

A block of
text

flow(y)

flow(x)

A block of
text

A block of
text

Figure 1. Successive evaluation of a composite layout

This technique can be extended to some apparently complex prob-
lems of layout, upto and including forms of pagination, as used in
this document. But there are situations in which the layout intent
cuts across the tree such as in Figure 2

This text should
track the ellipse.

This is a flow of text and
pieces, some elements of
which might be variable and
hence could change in size

Several pieces are here
and the number could
change as a result of
programmatic selection of
variable input data.
But for this piece we want a
marginal note.
And this is some more
content that in this case
follows the targetted block.

This is the marginal note,
which follows the start of
the source.

Figure 2. A tree-breaking example

In this case we want the marginal pieces to be placed next to the

2

relevant paragraph or element, but that component is under a ver-
tical flow (of hetereogenous components, not just a text flow) and
hence can move up and down. So we cannot establish the vertical
position of the marginal note until the flow has been evaluated,
which is carried out in its own tree. To do this we must both
schedule the computational order accordingly (evaluate the flow
before positioning the marker) and work out how to transfer
necessary information from source to target.
Often in document layout there will be 'constructed' components
that are repeated in several locations within the document. For
efficiency we would like a mechanism to 'render' the component
once and reuse the result many times. PPML has 'reusable objects'
specifically to support this, primarily for 'bitmap rendering'. It
would help if any such mechanism used tree-scoping, in line with
the whole philosophy of layout within DDF.

2. PRESENTATIONAL VARIABLES
What we sought was a basic mechanism to declare such interde-
pendencies in the layout 'programs', regardless of what the layout
instructions actually were. This should follow tree-based scoping
(i.e. we needed some locality of action to avoid having to give
unique 'ids' and permit local temporary computations). Supporting
cyclic interdependency (i.e. two pieces depending mutually on the
other for evaluation) would require knowledge of the layout func-
tionality of these pieces, but for acyclic relations, which are very
common indeed, such was not required. Consequently our design
ony resolves acyclic interdependency.

We wanted this mechanism to be robust, 'universal' with respect to
all the other operations involved within layout and implemented
relatively easily with reasonable performance. Specific description
of interdependency and reuse could be written directly in instruc-
tions for this mechanism or created from higher-level declarations
and analysis.

Our design was influenced very heavily by the implementation
environment of the layout processor, viz. XSLT2.0, its functional
semantics and the Saxon processor[3] used. XSLT programs are
described within templates or functions as trees, using tree scop-
ing for control of naming. The means of communicating between
these trees is via the use of the <xsl:variable/> construct,
which defines a single assignment (i.e. non-modifiable) binding of
a value to a name. These variables may be interpolated via XPath
expressions involving both the variables accessed via names and
target trees ('context'). The scope of names of these variables fol-
lows the XLST program tree. This mechanism is extremely
powerful if handled correctly, and with appropriate use of recur-
sion gives much more robust program semantics.

This suggested to us that if we could use a similar mechanism
threaded within the layout processor, we should gain some consid-
erable power. Where in the layout processor we had presentational
instructions typically of the form <ddfl:layout func-
tion="X"/> could we introduce variable-assignment instruc-
tions of the form: <ddfl:variable name="NAME"/>?
Unsuprisingly - yes we could, and moreover support this with an
implementation that itself was written exclusively within XSLT
and a single Saxon extension. The following is a very simple
example and its result, where we reuse a pair of components:

<ddfl:layout function="flow">
 <ddfl:variable name="rectC">
 <svg:rect stroke="red" fill="none" width="40"
 height="15"
 stroke-width="2"/>
 <svg:circle fill="red" cx="3" cy="3" r="3"/>
 </ddfl:variable>
 <svg:ellipse cx="25" cy="10" rx="25" ry="5"
stroke="black"
 fill="yellow"/>
 <ddfl:copy-of select="$rectC"/>
 <svg:ellipse cx="25" cy="10" rx="25" ry="5"
stroke="green"
 fill="none"/>
 <ddfl:copy-of select="$rectC"/>
</ddfl:layout>

Figure 3. Simple variable binding and interpolation

Figure 4. The layout corresponding to Figure 3

This is of course pretty simple and if this fragment was generated
by XSLT, using the XSLT equivalents ('variable' and 'copy-of')
would give exactly the same result. And since the result is SVG,
leaving use and defs constructs in the result achieves the
same 'reuse'. (Both still rely on the layout instruction for 'flow' to
determine positions. If the rectC piece was replaced by an image
of defined width but height determined by aspect ratio, then this
would have to be carried out 'post-rendering' of the image. Or
rectC could be a computed layout of its children, such as a center-
ing, that would only need be computed once.)

But the variable system is capable of more than just simple inter-
polation, because the primary selection mechanism, like that of
XSLT, is through XPath expressions, usually buried in select
attributes of instructions. This then allows us to 'fish' around
inside generated constructions to transfer information into other
renderings. Here is a simple example where we set the width of
some text to be the same as an image defined only by height:

 <ddfl:layout function="flow">
 <ddfl:variable name="image" as="element()">
 <svg:image xlink:href="myimage.jpg"
 height="65"/>
 </ddfl:variable>
 <ddfl:copy-of select="$image"/>
 <fo:block font-family="Helvetica"
 font-size="4" text-align="justify">
 <ddfl:attribute name="width"
 select="$image/@width"/>
 This text block should.....
 <ddfl:value-of select="$image/@width"/>
 units wide.</fo:block>
 </ddfl:layout>

Figure 5. Variable binding and post-rendering information
dependency

3

This text block should be the same width as
the image above, but as the image has only its
height defined, then its width depends on the
aspect ratio. We transmit that discovered
width into the text block for its line wrapping.
We find that the image was 82.73 units wide.

Figure 6. The layout corresponding to Figure 5

In this case we extract the discovered width of the image with the
XPath expression $image/@width and add it to the text-block
through the <ddfl:attribute/> instruction, which is ana-
logous to that in XSLT. Another expression interpolates this width
into the text string presented in this block.

The XPath expressions employed can be anything that XPath2.0
expressions in XSLT2.0 code can be, with presentational variables
substituting for those of XSLT. We can use several similar con-
structs from XSLT within our system of presentation variables:
ddfl:variable, ddfl:copy-of, ddfl:value-of,
ddfl:attribute, ddfl:if and ddfl:choose. The last
two can support post-rendering choice, for example allowing a
piece to be placed in a position conditional on its size.

3. IMPLEMENTATION
As described in [2] the layout processor involved is implemented
as a push-driven XSLT program, using a 'modal template' recog-
nising the presentational instruction nodes. By this means the pro-
cessor itself is extensible. So our preference was to disturb this
arrangement as little as possible, whilst adding the variable refer-
ence mechanism. The design has four parts: i) a 'stack frame' of
variable bindings, ii) high priority templates that recognise trees
with variable-defining children, evaluate those bindings and inter-
polate into the other children, iii) templates to support the inter-
polation and choice instructions and iv) an XPath evaluator which
can reference named variables on the stack frame.

The variable-binding stack frame is implemented through an
XSLT 'tunnelled' dynamic parameter, which grows and shrinks
through the calling tree. Variable 'overriding' through scope is
supported by choosing the last binding to a given name in the
stack frame. This can be acheived easily by an XPath expression
of the form: $frame[@name=$ref][last()] where $ref
is the name of the variable being sought.

Discovering cases which contain embedded variables is merely a
case of a suitable pattern, such as node()[ddfl:variable].
Processing one of these involves evaluating the children in turn
via a recursive iteration function which adds new variable bind-
ings to the stack frame, interpolates variable values and evaluates
any 'normal' children. After this, the children contain no further
variable processing, so the resulting set can be placed under the
original parent instruction, and the parent re-evaluated.

Interpolation and choice is performed by templates that match the
instructions, interpret embedded XPath expressions (in select
and test attributes) and generate suitable result fragments.

The last key ingredient is the evaluator of XPath expressions,
against a local context and a set of variable bindings. This is car-
ried out in two parts, firstly determining all the variables refer-
enced in the expression. For example in the sequence expression:

$page//svg:rect[@name='blank']@width,
 $containers[@name=$template]/@height

which is presumably trying to establish some size for a part, we
have three variables: page, containers and template.
The evaluator finds these on the stack frame, returning the last
value bound for each. (Thus local values can override remote) The
expression is transformed to replace the variable names with
reserved names ($p1..$pn). This expression with the 'values' of
$p1.. is then evaluated using Saxon's dynamic XPath evaluator -
the only extension to XSLT2.0 used in the implementation.
Finally the result type is deduced from context, any necessary
coercion performed and the result returned for further processing.

4. RELATED WORK
As mentioned earlier, PPML and SVG both have implicit refer-
ence mechanisms for reuse but not information extraction, but
neither has specific features for a layout resolution system, being
confined to component substitution. SVG's mechanism only sup-
ports a global scope of reference names (it uses 'id' which is
defined to have such scope) so it clashes with our fully-scoped
approach to definition and reference. CSVG[4] does provide a
uniform computational machinery that can be used to modify lay-
out, by altering dimensional attributes as a result of constraint res-
olution, but this does not provide a high-level mechanism of rela-
tionships between constructed components. Unlike the system
proposed here, CSVG's system produces a set of simultaneous
(linear) equations that may have cyclic interdependency - a case
that our approach cannot handle. However our variable system
can operate within discontinuous layouts, such as pagination. In
XSL-FO interdependency between components is completely
related to its principal model of a paginated flow.

5. STATUS AND FUTURE DEVELOPMENT
This system is used successfully within the layout processor for
DDF and is instrumental in laying out this document - variables
were used to transfer a column width from a generated page tem-
plate to line-wrapped text blocks which are then paginated into
that template. A next step will be to explore the addition of auto-
mated dependency analysis for 'cousin' type relationships, where
two elements relate through a common grandparent node, and
convert into appropriately scheduled evaluations.

6. REFERENCES
[1] Lumley, J., Gimson, R. and Rees, O. A Framework for Struc-

ture, Layout & Function in Documents . In Proceedings of
the 2005 ACM symposium on Document engineering . 2005.

[2] Lumley, J., Gimson, R. and Rees, O. Extensible Layout in
Functional Documents . In Digital Publishing, Proc. of SPIE-
IS&T Electronic Imaging, Vol 6076 . 2006.

[3] Kay, M. Saxonica: XSLT and XQuery Processing .
http://www.saxonica.com/. 2005.

[4] McCormack, C., Marriott, K. and Meyer, B. Adaptive layout
using one-way constraints in SVG .
http://www.svgopen.org/2004/papers/ConstraintSVG/. 2004.

