

Supporting Application QoS in Shared Resource Pools

Jerry Rolia, Ludmila Cherkasova, Martin Arlitt, Vijay Machiraju
HP Laboratories Palo Alto
HPL-2006-1
December 22, 2005*

automation,
enterprise
applications,
shared resource
pools, QoS,
measurements,
capacity
management,
performance
models

Many enterprises are beginning to exploit large shared resource pools in
data center environments to lower their infrastructure and management
costs. These environments may have tens, hundreds, or even thousands of
server resources. Capacity management for resource pools decides how
many resources are needed to support a given set of application
workloads, which applications must be assigned to each resource, and
per-application scheduling parameters to ensure appropriate sharing and
isolation for the applications. Capacity management is a challenging task
for shared environments that currently requires significant manual effort
and tends to over-provision resources. This paper describes our approach
to automate the steps of a capacity self-management system that exploits
application quality of service requirements to best match resource supply
with demand.

* Internal Accession Date Only
A version of this paper will appear in the Communications of the ACM, March, 2006.
 Approved for External Publication
© Copyright 2006 Hewlett-Packard Development Company, L.P.

Supporting Application QoS in Shared Resource Pools

Jerry Rolia, Ludmila Cherkasova, Martin Arlitt, and Vijay Machiraju
{Jerry.Rolia,Lucy.Cherkasova,Martin.Arlitt,Vijay.Machiraju}@hp.com

Abstract

Many enterprises are beginning to exploit large shared resource pools in data center environments
to lower their infrastructure and management costs. These environments may have tens, hundreds,
or even thousands of server resources. Capacity management for resource pools decides how many
resources are needed to support a given set of application workloads, which applications must be
assigned to each resource, and per-application scheduling parameters to ensure appropriate sharing
and isolation for the applications. Capacity management is a challenging task for shared
environments that currently requires significant manual effort and tends to over-provision
resources. This paper describes our approach to automate the steps of a capacity self-management
system that exploits application quality of service requirements to best match resource supply with
demand.

Introduction

Resource pools are collections of resources, such as clusters of servers or racks of blade servers,
which offer shared access to computing capacity. Virtualization and automation technologies
support the lifecycle management (e.g., creation, relocation, termination) of resource containers
(e.g., virtual machines, virtual disks [1][4][5][10]). Workload managers for resources [2][3][11]
provide containers with access to shares of resource capacity. Application workloads are associated
with the containers; the containers are then assigned to resources in the pool.

Applications can make complex demands on such pools. For example, many enterprise applications
operate continuously, have unique, time-varying demands, and have performance-oriented Quality
of Service (QoS) objectives. Objectives express per-application requirements for responsiveness.
Resource pool operators must decide which workloads share specific resources and how workload
managers should be configured to support each application. This is a challenge because (i) the
capacity of resource pools are generally overbooked (i.e., the sum of per-application peak demands
are greater than the capacity of the pool), and (ii) because different applications can have different
QoS requirements that are affected by the applications' ability to obtain capacity when needed.

To address these challenging issues, we propose to replace the standard capacity management
process with a self-managing system that governs access to capacity for resource pools. This paper
describes the system with a focus on a method for ensuring application QoS objectives. The method
exploits workload manager allocation priorities to achieve an application’s QoS objectives.
Allocations are time varying shares of resource capacity that become dedicated to each application.

Sub-

Schedule
according to
allocations

Capacity
planning

Workload
placement

Adjust
workload
allocations

Timescale

Activity
Service
level
evaluation

second
Seconds
to 10’s of
seconds

Days to
weeks

Weeks to
months

Months

Figure 1: Capacity Management Activities and Time Scales

When demand exceeds supply higher priority allocation requests are dedicated capacity first. The
method takes as input a characterization of the application's workload demands, its QoS
requirement, and a measure of resource access QoS for resources that governs overbooking (i.e.,
statistical multiplexing) within the pool. As output, the method automatically specifies how to
divide an application’s workload demands across two workload manager allocation priorities in a
manner expected to realize the application's QoS requirement.

Capacity Management Activities

Figure 1 illustrates capacity management activities for resource pools at different timescales. Long
term management corresponds to capacity planning; the goal here is to decide when additional
capacity is needed for a pool so that a procurement process can be initiated. Over a medium
timescale (e.g., weeks to months), groups of resource containers are chosen that are expected to
share resources well. Each group is then assigned to corresponding resources. Assignments may be
adjusted periodically as service levels are evaluated. Capacity management tools can be used to
automate such a process. For example, our capacity management tool [8] takes into account
detailed workload interactions and the overbooking of resources via statistical multiplexing to
automatically decide which containers should share resources. Once resource containers are
assigned to a resource, a workload manager for the resource [2][3] adjusts workload capacity
allocations over short timescales based on time-varying workload demand. Finally, resource
schedulers operate at the time-slice (sub-second) granularity according to these allocations.
Adjustments to allocations in response to changing workloads can greatly increase the efficiency of
the resource pool while providing a degree of performance isolation for the containers.

Workload Managers

We assume that each resource in the pool has a workload manager. The manager monitors its
workload demands and dynamically adjusts the allocation of capacity (e.g., CPU) to the workloads,
aiming to provide each with access only to the capacity it needs. When a workload demand
increases, its allocation increases; similarly, when a workload demand decreases, its allocation
decreases. Such managers can control the relationship between demand and allocation using a burst
factor; a workload resource allocation is determined periodically by the product of some real value
(the burst factor) and its recent demand. The burst factor addresses the issue that allocations are
adjusted using utilization measurements. Utilization measurements over any interval are mean
values that hide the bursts of demand within the interval. The product of mean demand for an
interval and this burst factor estimates the true demand of the application at short time scales and is
used for the purpose of allocation. In general, the greater the workload variation and client
population, the greater the potential for bursts in demand, the greater the need for a larger allocation
relative to mean demand (i.e., utilization), and hence the greater the need for a larger burst factor.

For the sake of clarity, let us assume that the workload manager implements two allocation
priorities. Demands associated with the higher priority are allocated capacity first; they correspond
to the higher class of service. Any remaining capacity is then allocated to satisfy lower priority
demands; this is the lower class of service.

Application QoS-aware Capacity Management

Our process for supporting application QoS in resource pools is illustrated in Figure 2. A resource
pool operator decides on resource access QoS objectives for two classes of service for resources in
the resource pool [8]; these are described further below. For each application workload, the
application owner specifies its application’s workload QoS requirement as a range for the burst
factor. The range spans from ideal to simply adequate application QoS. This range and the resource
access QoS objectives are used to map the application's workload demands onto the two classes of
service. Finally, over the medium term, the capacity manager [8][9] assigns application workload
resource containers to resources in the pool in a manner expected to satisfy the resource access QoS
objectives for the pool. Application workload monitoring maintains up-to-date views on application
resource usage as feedback for this self-managing approach.

The resource access QoS objectives specified by the resource pool operator govern the degree of
overbooking in the resource pool. We assume that the first class of service offers guaranteed
service. For each resource, the capacity manager ensures that the sum of per-application peak
allocation requirements associated with this higher class of service does not exceed the capacity of
the resource. The second class of service offers a lower QoS. It is associated with a resource access
probability, •, that expresses the probability that resources will be available for allocation when
needed. The capacity manager finds workload placements such that both constraints are satisfied.
Thus it manages overbooking for each resource (i.e., statistical multiplexing). Deciding on resource

Representative
application

workload demand
traces

Application
QoS requirements

Resource pool
QoS objectives

for two workload
scheduling priorities

Partition
application
demands

across two
classes of service

Workload
allocation traces for

two scheduling
priorities

Capacity manager service
for workload placement

Application to resource
assignments

Application
workload
monitoring

Figure 2: Application QoS-aware Capacity Management Process for Resource Pools

access QoS objectives is a long-term capacity planning task that takes into account the economics
of providing resource pool capacity as a service and the resource access risk that application
owners are willing to incur.

Partitioning an Application’s Demands Across Two Classes of
Service

We now describe our technique for mapping an application's workload demands across two classes
of service (CoS) to realize its application QoS objectives. The proposed method is motivated by
portfolio theory [6] which aims to construct a portfolio of investments, each having its own level of
risk, to offer maximum expected returns for a given level of risk tolerance for the portfolio as a
whole. The analogy is as follows. The resource access QoS commitments quantify expected risks of
resource sharing for the two CoS. These CoS correspond to potential investments with the lower
CoS having a greater return because the resource pool operator can provide a lower cost service
when permitted to increase overbooking. The application demands represent investment amounts.
They are partitioned across the CoS so that application QoS remains in the tolerated range, which
corresponds to the risk tolerance for the portfolio as a whole. By making greatest use of the lower
CoS we offer the resource pool operator the greatest opportunity to share resources and hence
lower the cost to the application owner.

Our method takes as input a characterization of an application's workload demands on the resource,
the resource access QoS objectives for resources in the resource pool, and the application-level
QoS requirements (expressed using a range for the burst factor). As output, it describes how the
application's workload demands should be partitioned across the pool's two classes of service.

Trace-based Characterization of Workload Demand

We employ a trace-based approach to model the sharing of resource capacity for resource pools [8].
Each application workload is characterized using several weeks to several months of demand
observations (e.g., with one observation every five minutes). The general idea behind trace-based
methods is that traces capture past demands and that future demands will be roughly similar.
Though we expect demands to change, for most applications they are likely to change slowly (e.g.,
over several months). By working with recent data, we can adapt to such a slow change. Significant
changes in demand, due for instance to changes in business processes, sales for e-commerce
systems, or modified application functionality, are best forecast by business units; they need to be
communicated to the operators of the resource pool so that their impact can be reflected in the
corresponding traces. New applications, those without historical traces, need estimates for capacity.
They may be placed in over-provisioned sand-box environments and observed until their workloads
and demands are reflected in demand traces. We have found the trace based techniques to be
sufficiently accurate for on-going capacity management in an enterprise environment [8].

Resource Access QoS Constraints and Application QoS

The resource access probability for a capacity attribute is defined in [12]. For each class of service
of the resource pool, an operator specifies a threshold for the resource access probability.
Application workloads that use a given class of service can thus assume that they will receive
resources with a given probability. Furthermore, we define a QoS constraint as the combination of
a threshold value for the resource access probability and a deadline such that those demands that
are not satisfied immediately are satisfied within the deadline.

Supporting application QoS by managing resource provisioning requires an understanding of how
application QoS requirements relate to resource usage. The relationship is complex because it
requires detailed knowledge of numerous application requests and transactions that is rarely known
to people involved in capacity management. Furthermore, system measurements are typically
collected at a coarse timescale, e.g., five minutes. These hide bursts in application activity that
happen within measurement intervals. We employ empirical approaches to discover the relationship
and express the relationship as a range for burst factors that relate demands to allocations.

We suggest two empirical approaches. As a first approach, a stress testing exercise may be used to
submit a representative workload to the application in a controlled environment [7]. Within the
controlled environment, we vary the burst factor that governs the relationship between application
demand and allocation. We then search for the value of the burst factor that gives the
responsiveness required by application users (i.e., good but not better than necessary). Next, we
search for the value of a second burst factor that offers adequate responsiveness (i.e., a worse
responsiveness would not be acceptable to the application users). These define an acceptable range
of operation for the application on the resource. The utilization of the allocation for a given
workload must remain within this range. An alternative approach is to adjust the burst factors in an
operational environment to find those values that support required and adequate responsiveness.

Portfolio Approach

We aim to partition an application's workload demands across two classes of service, CoS1 and
CoS2, to ensure that the application's burst factor remains within its acceptable range. CoS1 offers
guaranteed access to capacity. By associating part of the demands with CoS1, we limit the resource
access risk to the demands associated with CoS2. The resource access probability of CoS2 is chosen
by the resource pool operator. Consider three operating scenarios for a resource: (i) it has sufficient
capacity to meet its current demands; (ii) demand exceeds supply but the resource is satisfying its
resource access constraint; and (iii) demand exceeds supply and the resource is not satisfying its
resource access constraint. We consider the first two scenarios here; workload placement
techniques can be used to avoid and react to the third scenario [8].

When the system has sufficient capacity, each application workload gets access to all the capacity it
needs. In this case, the application's resource needs will all be satisfied and the application's
utilization of allocation will be ideal. In the case where demands exceed supply, the allocations
associated with CoS1 are all guaranteed to be satisfied. However, the allocations associated with
CoS2 are not guaranteed and will be offered with at worst the operator-specified resource access
probability. We aim to divide workload demands across these two classes of services while
ensuring that the utilization of allocation remains in the acceptable range defined above to satisfy
the application's QoS requirements.

Let p be a fraction of peak demand D for the CPU attribute for the application workload that is
associated with CoS1. The product p *D gives a breakpoint for the application workload such that
all demand less than or equal to this value is placed in CoS1 and the remaining demand is placed in
CoS2. We solve for p such that in the second scenario the burst factor offered to the application is
bounded by the value deemed to give adequate application QoS [12].

Case Study

Next, we present some results regarding the portfolio approach and the implications of these results
on 26 application workloads from a large enterprise order entry system [8]. Figure 3 shows the
relationship between resource access probability, denoted as •, for CoS2 and the fraction of an
application's peak demand that is associated with CoS2. Four curves are shown. Each corresponds
to a particular utilization of allocation range with a lower bound of 50% and upper bounds of 60%
through 90%, respectively. The range [0.5, 0.6] corresponds to the highest application QoS,
whereas [0.5, 0.9] corresponds to the lowest application QoS. The figure shows that even a low
resource access probability of •=0.6 permits between 40% and 100% of application demands to be
associated with CoS2 for the highest and lowest application QoS scenarios, respectively, thereby
increasing opportunities for sharing.

Figure 4 illustrates the impact of this approach on the number of CoS1 CPUs needed by the 26
applications for an application utilization of allocation range of [0.5, 0.6]. The figure has three
curves. The top curve shows the peak number of CPUs needed by each application. The bottom two
curves show the number of CPUs needed for the scenarios with the resource pool resource access
probability of •=0.7 and •=0.8, respectively. As expected, a higher value for • means a lower
breakpoint so that less demand is associated with CoS1 and more with CoS2. For greater values of

Figure 3: Sensitivity: Resource Access Probability, Range for Utilization of Allocation, and

Percentage of Demand for CoS2.

Figure 4: Application Workload Usage of CoS1.

•, the use of the shared portion of each resource increases, which may increase the utilization of
resources in the pool. From more detailed results [12], we found that a value of •=0.9 puts virtually
all application workload demands in CoS2.

Finally, we expect that through the automation of capacity management practices, planned
application demands will rarely exceed the capacity of a resource. Most often a resource pool will
provide a resource access probability that is greater than the value specified by the resource pool

operator. As a result most applications will operate towards their ideal application QoS, i.e., lower
utilization of allocation, much of the time.

Conclusions

In this paper we have presented a method for dividing an application’s workload demands across
two workload manager allocation priorities. This can be used to satisfy application QoS objectives
in shared resource environments. Application owners specify application QoS requirements using a
range for a workload manager burst factor for the CPU demand attribute. This range, along with
resource pool resource access QoS, determines how much of the application's demands must be
associated with a guaranteed allocation class of service and how much with a second class of
service that offers resources with a given probability defined by a resource pool operator. The more
workload that is associated with the second class of service, the greater the opportunity for the
resource pool to overbook resources.

Experimental results validate our technique. This approach can support the configuration of a self-
managing system for managing the capacity of resource pools. In the future, we plan to complete
the characterization of application risks of sharing, based on aggregate application demands on a
resource, and to use this information to further improve the management of the resource pool.

References

[1] VMware VirtualCenter 1.2, http://www.vmware.com/products/vmanage/vc_features.html
[2] HP-UX Workload Manager, http://www.hp.com/products1/unix/operating/wlm/
[3] IBM Enterprise Workload Manager, http://www.ibm.com/developerworks/autonomic/ewlm/
[4] G. Banga, P. Druschel, J. Mogul, “Resource containers: a new facility for resource
management in server systems”, in Proc. of the 3rd Symposium on Operating System Design and
Implementation (OSDI '99), New Orleans, LA, 1999.
[5] B. Dragovic, K. Fraser, S. Hand, et al., “Xen and the Art of Virtualization”, in Proc. of 19th
ACM Symposium on Operating Systems Principles (SOSP 2003), Bolton Landing, NY, October
2003.
[6] E. J. Elton and M. J. Gruber, Modern Portfolio Theory and Investment Analysis, Wiley, 1995.
[7] D. Krishnamurthy, Synthetic Workload Generation for Stress Testing Session-Based Systems,
Ph.D. Thesis, Carleton University, January 2004.
[8] J. Rolia, L. Cherkasova, M. Arlitt, and A. Andrzejak, “A Capacity Management Service for
Resource Pools”, in Proc. of the 5th International Workshop on Software and Performance (WOSP
2005), Palma, Spain, July 2005, pp. 229–237.
[9] S. Singhal, S. Graupner, A. Sahai et al., “A Resource Utility System”, In Proc. of the 9th
International Symposium on Integrated Network Management (IM 2005), Nice, France, May 2005.
[10] A. Whitaker, M. Shaw, and S.Gribble, “Scale and Performance in the Denali Isolation
Kernel”, in Proc. of the 5th Symposium on Operating System Design and Implementation (OSDI
2002), Boston, MA, December 2002.

[11] K. Duda and D. Cheriton, “Borrowed-virtual-time (BVT) scheduling: Supporting latency-
sensitive threads in a general purpose scheduler”, in Proc. of the 17th ACM Symposium on
Operating Systems Principles (SOSP 1999), Kiawah Island Resort, SC, December 1999.
[12] J. Rolia, L. Cherkasova, M. Arlitt, and V. Machiraju, “An Automated Approach for
Supporting Application QoS in Shared Resource Pools”, in Proc. of the 1st International Workshop
on Self-Managed Systems & Services (SelfMan 2005), Nice, France, May 2005.

