

Counting Positives Accurately Despite Inaccurate Classification

George Forman
HP Laboratories Palo Alto
HPL-2005-96(R.1)
August 3, 2005*

supervised
machine learning,
estimation, mixture
models, shifting
class prior, non-
stationary class
distribution

Most supervised machine learning research assumes the training set is a
random sample from the target population, thus the class distribution is
invariant. In real world situations, however, the class distribution
changes, and is known to erode the effectiveness of classifiers and
calibrated probability estimators. This paper focuses on the problem of
accurately estimating the number of positives in the test set–
quantification–as opposed to classifying individual cases accurately. It
compares three methods: classify & count, an adjusted variant, and a
mixture model. An empirical evaluation on a text classification
benchmark reveals that the simple method is consistently biased, and that
the mixture model is surprisingly effective even when positives are very
scarce in the training set–a common case in information retrieval.

* Internal Accession Date Only
Published in and presented at the 16th European Conference on Machine Learning (ECML'05), 3-7 October 2005,
Porto, Portugal http://ecmlpkdd05.liacc.up.pt/

 Approved for External Publication
© Copyright 2005 Springer-Verlag

Counting Positives Accurately
 Despite Inaccurate Classification

George Forman

Hewlett-Packard Labs
Palo Alto, CA 94304 USA

ghforman@hpl.hp.com

Abstract. Most supervised machine learning research assumes the training set
is a random sample from the target population, thus the class distribution is
invariant. In real world situations, however, the class distribution changes, and
is known to erode the effectiveness of classifiers and calibrated probability
estimators. This paper focuses on the problem of accurately estimating the
number of positives in the test set—quantification—as opposed to classifying
individual cases accurately. It compares three methods: classify & count, an
adjusted variant, and a mixture model. An empirical evaluation on a text
classification benchmark reveals that the simple method is consistently biased,
and that the mixture model is surprisingly effective even when positives are
very scarce in the training set—a common case in information retrieval.

1 Motivation and Scope

We address the problem of estimating the number of positives in a target population,
given a training set from which to learn to distinguish positives from negatives. This
could be used, for example, to estimate the number of news articles about terrorism
each month, or the volume of advertising by a competitor over time. Unlike previous
literature in machine learning, our end goal is not to determine a classification for
each item, but only to estim ed to
classification. This is an class

Fig. 1. Counting posi
negatives yields a poor
even though the classifie
ate the number of positives—quantification as oppos
important problem in real-world situations where the

0

100

0 100

es
ti

m
at

ed
 %

 p
os

it
iv

es

actual % positives
tives via a classifier trained with 100 positives and 100
estimate of the count as we vary the test class distribution,
r achieves nearly 90% F-measure in cross-validation.

2 George Forman

d
d
e
m
n
m
t

T

P
N
p
B

L
S
N
N

i
m
c
f
a
d
i
a

i
f
t
a

b
c
a
c
d
p
r
w
i
c
s
r
w

able 1. Summary of parameters considered in the empirical comparison

 = 10...200 Positives in training set Counting Methods:
istribution may shift over time in the target population. It is then needed to track,
etect and report noteworthy shifts in the class distribution, to calibrate probability-
stimation classifiers, and to select a binary classification threshold to optimize F-
easure or misclassification costs on an ROC curve [Fawcett, Weiss]. It is also

eeded to calibrate classifiers that are used on different target populations, such as in
edical settings where the training set does not represent a random sample of each

arget population.

 = 100...1000 Negatives in training set
 = 5...95% Percent positives in test set
enchmark: 21 binary text classification tasks

earning Algorithms:
VM Support Vector Machine
B Naive Bayes
BM Multinomial Naive Bayes

CC Classify & Count
AC Adjusted CC
MM Mixture Model

Performance Metrics:
Err estimated p – actual p
AbsErr |Err|
CE Normalized Cross-Entropy

The obvious solution is to train a binary classifier from the training data, and count
ts positive predictions on the test set. For example, Fig. 1 shows the result of this
ethod as we vary the proportion of positives in a particular test set. The classifier

onsistently overestimates/underestimates the positives when the test set deviates
rom the balanced class distribution used in training, even though this classifier
chieves nearly 90% F-measure in cross-validation testing. Unfortunately, as we
emonstrate later, this method consistently leads to poor results—unless the classifier
s extremely accurate, which can require substantial cost to get enough training data
nd may never be feasible for some tasks.

Although accurate classification is sufficient for estimating the count accurately, it
s not necessary. Even with a mediocre classifier, the count can be accurate if the
alse positives are canceled out by a balanced number of false negatives. This raises
he question of whether estimating the count alone can be accomplished more
ccurately and/or with less training data.

We describe and evaluate two such superior methods: one based on adjusting the
inary classifier’s count, the other based on a mixture model of the distribution of
lassifier scores, as described in section 3. We empirically compare their ability to
ccurately track varying test class distributions under a variety of training set
ompositions. In such a study it is important to vary the training and testing class
istributions as independent parameters, in contrast with most classification research
ractice, which assures the class distribution is the same in training and testing via
andom sampling or cross-validation. We are especially interested in the situation
here there are a small number of positives to train from—a common case in

nformation retrieval and bioinformatics where positives are rare and obtaining labels
osts human effort. Table 1 provides an overview of the range of parameters we
tudied. The experiment protocol and its results are described in sections 4 and 5,
espectively. Next, we complement this introduction with a discussion of related
ork to help scope this work.

Counting Positives Accurately Despite Inaccurate Classification 3

2 Related work

The great majority of the machine learning literature assumes the class distribution
is invariant between training and testing. Some work focuses on improving
classification accuracy when the target class distribution is imbalanced, usually by
over-sampling the minority class or under-sampling the majority class to balance the
training set, where induction algorithms are more effective. The work of Weiss &
Provost [Weiss], for example, carefully studies the effect of varying the training
distribution to optimize classification accuracy for a given test set.

Many works mention the need to adjust the class priors to match the test
distribution. This is usually assumed to be done via foreknowledge or a manual
inspection of a random sample. Even in such papers, their performance goal is only
to improve binary classification accuracy or probability estimation [Bennet], and not
to accurately count positives in test sets as here. Some works specifically seek to
factor out the effect of class distribution by, for example, evaluating classification
performance via balanced accuracy or the area under the ROC curve (AUC).

Finally, some work attempts to detect class drift—when the character of a class
with respect to its feature space changes over time, suddenly or gradually. Class drift
falls outside the scope of this paper. We only consider shifts in the relative
populations of positives and negatives.

3 Theoretical Framework of Counting Methods

In this section, we describe the theoretical framework of three methods for estimating
the count of positives. We also list two intuitive methods that do not work.

3.1 CC: Classify & Count

This is the obvious method. First, we learn a binary classifier from the training data,
such as a Support Vector Machine (SVM) or Naïve Bayes model. We then apply it to
each item of the test set, and count the number of times it predicts positive. If the
predictions are nearly perfect, then the count will be nearly accurate, no matter what
the test class distribution. This should be successful where the two classes are very
well separated, e.g. distinguishing news articles written in German vs. English.

If the classes are not well separated, then there will be some number of false
positives and false negatives, and it is unlikely that these would be closely balanced.
Moreover, any induction algorithm that is designed to maximize its accuracy on the
training set will prefer the negative class if positives are the minority, a common case.
It leads to systematically underestimating the count. (This suggests artificially
balancing the training set to achieve a balance between false positives and false
negatives. This is ineffective and even ill-conceived, as discussed in section 3.4.)

4 George Forman

3.2 AC: Adjusted Count

This method is an extension to the straightforward classify & count method.
Although the class labels are not available on the test set, consider the counts that
would appear in the 2x2 confusion matrix below:

 Prediction:
Actual Class: Positive Negative

Positive TP FN
 Negative FP TN

The observed count is the sum of true positives TP and false positives FP. We can
model each of these counts separately as:

observed_count = TP + FP
TP = TPR * actual_positives
FP = FPR * actual_negatives = FPR * (total – actual_positives)

(1)

where TPR is the true positive rate of the classifier, P(predict +|actual +), and FPR is
its false positive rate, P(predict -|actual -). These are estimated from the training set,
as discussed below. Solving this system of equations, we obtain:

actual_positives = (observed_count – FPR * total) / (TPR – FPR) (2)

This adjustment to the count is the essence of this method, but there are a few
additional points. First, observe that the denominator could go to zero. This would
only happen with a worthless classifier that is equally likely to predict positive for
either class. Normally TPR >> FPR, so the denominator is positive and somewhat
less than 1.0. But if TPR < FPR, then the classifier is more likely to predict positive
for negative items than for positive items. In this situation, one could reverse the
outputs of the classifier. Re-deriving for this case ends up with the exact same
equation, so it may be used without special casing for a negative denominator. In
these situations, FPR*total is likely to exceed the observed count of positives, so the
numerator will also be negative. Finally, the adjusted count may under some
situations predict a negative number of positives or more positives than the total test
cases. Thus, we limit its output to the range [0, total].

To estimate TPR and FPR for a given classifier, standard techniques may be used,
such as stratified 10-fold cross-validation on the training set (divide the training set
into 10 subsets, testing each one with a classifier trained on the other 9; stratification
ensures that the minority class is evenly distributed among the folds). It yields a 2x2
confusion matrix, and we compute TPR = TP/(TP+FN), and FPR = FP/(FP+TN).

3.3 MM: Mixture Model

Many binary classifier models consist of a scoring mechanism and a threshold on the
score to choose between predicting positive or negative. The induction algorithm has
to learn both how to score positives higher than negatives and how to pick the
threshold well. In the MM method, we eliminate this second step, and only use the
scoring portion. We then consider the distribution of scores generated by the
classifier. After training the classifier, we determine the empirical probability

Counting Positives Accurately Despite Inaccurate Classification 5

d
s
o

F

a
t
1

2

3

4

5

100%
istribution D+ of scores that it generates on the positive training examples, and
eparately D- for the negative training examples. Then, during testing, we model the
bserved distribution DU of scores on the unlabeled data as the mixture (see Fig. 2):

 0 0.5 1

co
un

t

classifier score s

D+
D-

DU

ig. 2. Histograms of classifier scores

Fig. 3. P-P plot comparing two CDFs

0%
0% 100%

M
ix

tu
re

 C
D

F
(s

)

Test CDF(s)

 area

total * DU = actual_positives * D+ + actual_negatives * D- (3)

Finally, to estimate the positive count, we determine which mixture of positives
nd negatives would yield the closest fit to DU. This is the essence of the method, but
here remain several design choices:
. How to obtain the distributions D+ and D- from the training set: If we train on all

the training data, and then observe the classifier scores on the training data, the
separation between positive and negative scores will be overly optimistic compared
with the actual test distribution. Instead we use stratified f-fold cross-validation,
and gather the scores from each fold into one distribution. Strictly speaking, these
scores were generated from f different classifiers, but if f is large, then these
classifiers share most of their training data in common.

. Whether the empirical distributions found during training should be reduced to a
parametric model of a distribution: Based on the range of variation, we decided
not to try to fit the distributions to parametric models, which also avoids adding
parameters to the algorithm that may need to be optimized.

. Whether to characterize the distributions by their empirical probability density
function (PDF) or their cumulative distribution function (CDF): Using the PDF
requires discretizing the counts into artificial bins. If the bin size is too small, then
the estimates in each bin become noisy. This would create additional parameters
for tuning. We selected CDF.

. Whether to give special treatment to test scores that fall outside the range of scores
observed during training: Optionally, test items that score higher than any score
observed during training could be treated separately, i.e. surely included in the
final positive count, and excluded from the mixture model fitting. Likewise scores
smaller than any observed score in training could be treated separately as a
negative. We include this refinement.

. How to measure the goodness of fit between DU and the mixture model: Given two
CDFs, the standard way to measure their difference is the Kolmogorov-Smirnov
statistic, which measures the maximum difference between the two for all scores.
While common, this coarse metric does not consider finer differences in the shape
of the fit. For this reason, we developed another difference metric we call PP-Area,

6 George Forman

described below. Another choice would be the standard Anderson-Darling statistic,
but it is known to emphasize the tails of the distribution, which is not what we need
for this application. (The well-known Chi-Squared statistic is appropriate only for
discrete PDFs.)

6. How to determine the mixture that optimizes the fit: For research purposes, we
compute the goodness of fit for each value from 0% to 100% positives stepping by
0.5% returning the best, but in practice one could use hill-climbing methods.

We name this particular collection of design choices the “Countess” method.

PP-Area: a difference metric for two CDFs.
Given two CDFs, a well-known method for visually comparing them is to plot one vs.
the other while varying their input threshold, yielding a Probability-Probability plot,
or P-P plot (see Fig. 3.). If the two CDFs yield the same probability at each input, then
they generate a perfect 45° line. By sighting down this line, one can get an intuitive
feel for the level of agreement between two CDFs, commonly to decide whether an
empirical distribution matches a parametric distribution. To reduce this linearity test
to computation, it would be natural to measure the mean-squared-error (MSE) of the
points on the PP curve to the 45° line. But MSE is highly sensitive to the maximal
difference, as is Kolmogorov-Smirnov.

Our solution is to measure the difference between two CDFs as the area where the
PP curve deviates from the 45° line. This has well defined behavior partly because
the curve always begins at (0,0), ends at (1.0,1.0), and is monotonic in both x and y.
It also has the intuitive property of being commutative, unlike MSE or mean-error.

3.4 Non-Solutions

If the classes are not well separated by a classifier, then a tradeoff must be made
between precision vs. recall (false negatives vs. false positives). This tradeoff is
manifested in the threshold used by a binary classifier. During training it is optimized
for accuracy in risk minimization methods, such as SVM. One ill-conceived idea is to
try to adjust this threshold at training time so as to balance false positives and false
negatives. This is not possible because balancing these two depends explicitly on the
class distribution, which may vary in testing.

Another ill-conceived idea is the following: Rather than have the classifier output
a hard binary decision despite its uncertainty, use a classifier that outputs a probability
estimate for each item. Then, estimate the positive count as the sum of probabilities
over the test set. Again, this cannot work because the probability estimates depend
explicitly on the class distribution; the calibrated probabilities would become
uncalibrated whenever the test class distribution varies.

4 Experiment Protocol

To compare these methods, we conducted an empirical evaluation. The standard
methodology of cross-validation to obtain training and testing sets is not appropriate.

Counting Positives Accurately Despite Inaccurate Classification 7

T

Ins
test
var
pos
max
num
we
dist
5%

D
vs.
cov
con

L
Sup
clas
Naï
resu
Sep

E
of p
per
has
it w
uns
the
is 5
ave
that
is d

whe
entr
pos
eva
the
wil
able 2. Benchmark data sets, the specific classes used as positive, and their sizes

Dataset Source Cases Classes # Positives in Each Class
fbis TREC 2463 3,7,10 387,506,358
la1 LA Times 3204 0,1,3,5 354, 555, 943, 738
la2 LA Times 3075 0,1,3,5 375, 487, 905, 759
ohscal OHSUMED 11162 0…9 1159,709,764,1001,864,

1621,1037,1297,1450,1260
tead, we must independently vary the class distribution in the training set and the
 set to determine how well various methods can track the test distribution, despite
iations in the training set they are given. To this end, we randomly drew 200
itives and 1000 negatives from each benchmark classification task as the
imum training set. We then trained with various subsets of this data, reducing the
ber of positives and negatives independently. Likewise, from the remaining data,

randomly removed positives or negatives to achieve various desired testing class
ributions. We varied the test distribution from 5% positive to 95%, stepping by
 increments.

atasets: We used publicly available text classification datasets and used 21 “one
all other classes” classification tasks that had sufficient positives and negatives to
er the variety of experimental conditions (see Table 2) [Forman]. These datasets
tain from 2000 to 31,000 binary word features.
earning algorithms: The bulk of our experiments were conducted with linear
port Vector Machines (SVM), which is considered state of the art for text
sification. We later replicated the experiments for Naïve Bayes and Multinomial
ve Bayes [McCallum]. Given that feature selection has shown to improve SVM
lts, we also replicated the experiments with feature selection via Bi-Normal
aration [Forman].
rror metrics: In order to be able to average across tasks with different numbers
ositives, a natural error metric is the estimated percent positive minus the actual

cent positive. By averaging across conditions, we can determine whether a method
 a positive or negative bias. But suppose a method guesses 0% or 100% randomly;
ould also have a zero bias on average. Thus, it is also important to consider an

igned measure of error. Absolute error is one candidate, but estimating 41% when
ground truth is 45% is not nearly as ‘bad’ as estimating 1% when the ground truth
%. For this reason, cross-entropy is often used as an error measure. To be able to
rage across different test class distributions, however, it needs to be normalized so
 a perfect estimate always yields zero error. Hence, the normalized cross-entropy
efined as follows:

normCE(p,x) = CE(p,x) – CE(p,p)
CE(p,x) = -p log2(x) – (1-p) log2(1-x)

(4)

re x is the estimate of the actual percent positives p in testing. Since cross-
opy goes to infinity as x goes to 0% or 100%, if a method estimates zero
itives, we adjust its estimate to half a count out of the entire test set for purposes of
luating its normalize cross-entropy error. Likewise, if a method estimates that all
test items are positive, we back it off by half a count. (Note that this error metric
l increasingly penalize a method for estimating zero positives as the test set size

8 George Forman

for each of 21 benchmark tasks—distinguishing positive class c in dataset d:
| set aside 200 positives and 1000 negatives for training, the rest for testing
| for P = 10,20,50,100,200 training positives:
| for N = 100,200,500,1000 training negatives:
| | for each classifier C: SVM, NB, NBM; with and without feature selection
| | train C on training set (size P+N)
| | perform 50-fold cross-validation to estimate TPR, FPR, D+ and D-
| | for p = 5% to 95% by 5%:
| | | select maximal test set such that p% are positive
| | | apply C to test set
| | | for each of the methods:
|_ |_ |_ estimate x% positives, and record result & error.

Fig. 4. Overall experiment procedure in pseudo-code

grows. Intuitively it is worse to estimate zero positives among thousands of test cases
than among ten.)

Cross-validation folds for calibration: The adjustment method and the mixture
model both require cross-validation to generate calibrated values during training. We
chose f=50 folds for this study. (Note that if there are fewer than f positives in the
training set, some of the test folds will contain no positives. We experimented with
using only min(f,P,N) folds, but generally found no improvement.)

Experiment Procedure: The overall experiment procedure is shown in Fig. 4. In
total there were over 20,000 experiment jobs consuming over a hundred CPU days.
These ran in parallel on the HP Utility Data Center in a few days. We used the
WEKA software in Java to provide the base classifiers [Witten].

5 Experiment Results

We begin by evaluating how the estimates of each method are biased by the
composition of the training set, holding the test set fixed. Fig. 5 shows each method’s
estimate, averaged over all benchmark tasks, as we vary the training set. The test set
for each task is fixed with p=20% positives. (Except where stated otherwise, hereafter
the classifier is a linear SVM with all features, calibrated via 50-fold cross-validation
on the training set.) Though MM tends to overestimate by a small amount, it is
 0

 10

 20

 30

 1000 500 200 100

N negatives, P=10

es
ti

m
at

ed
 %

 p
os

it
iv

es

 0

 10

 20

 30

 1000 500 200 100

N negatives, P=50

 0

 10

 20

 30

 1000 500 200 100

N negatives, P=200

CC
AC

MM

Fig. 5. Sensitivity to training set composition, with actual test positives p=20%

Counting Positives Accurately Despite Inaccurate Classification 9
Fig. 6. Absolute error averaged over all test conditions p=5–95% and all tasks

Fig. 7. Ability to track % testing positives, training with N=100 negatives

 0

 10

 20

 30

 40

 1000 500 200 100

N negatives, P=10

ab
so

lu
te

 e
rr

or
 (

%
)

 0

 10

 20

 30

 40

 1000 500 200 100

N negatives, P=50

 0

 10

 20

 30

 40

 1000 500 200 100

N negatives, P=200

CC
AC

MM

 0

 25

 50

 75

 100

 0 25 50 75 100

% test positives, P=10

es
ti

m
at

ed
 %

 p
os

it
iv

es

 0

 25

 50

 75

 100

 0 25 50 75 100

% test positives, P=50

es
ti

m
at

ed
 %

 p
os

it
iv

es

 0

 25

 50

 75

 100

 0 25 50 75 100

% test positives, P=200

es
ti

m
at

ed
 %

 p
os

it
iv

es

CC
AC

MM
striking that it is so close to the target p=20% when there are only P=10 training
positives. CC and AC are not competitive with P=10, and they underestimate more
strongly as the imbalance of training negatives N increases. In contrast, additional
training negatives help MM converge for each value of P.

With more positives, we see AC also converge to 20%. But more training data do
not make CC converge—it is always tuned for a specific percentage of positives.
Popular wisdom suggests the best classification performance for this test set should be
when the training distribution matches 20%; however, CC performed best with ~30%
training positives (P:N = 50:100, 200:500, and, not shown, 100:200). Hence, were it
magically possible to always match the training class distribution to that of testing, it
would still not make CC an effective method of counting positives.

The results presented so far were for a single fixed percentage of test positives.
Next we average over all tasks and all testing situations: p=5%–95% positives.
Instead of averaging the error, which reveals positive or negative bias, we average the
absolute error to determine how far the estimate lies from the true answer on average.
Fig. 6. shows this as we vary the training set as before. Again, MM performs
surprisingly well given only P=10 training positives, achieving ~6% absolute error on
average, regardless of the number of training negatives N. With P=50 or 200 training
positives, MM achieves ~2% absolute error on average. With P=200 training
positives, AC is competitive. Recall the ideal method should be as insensitive as
possible to the training set size and class distribution: strongly recommending MM.

Next we hold the training set fixed and measure the ability of each method to track
various percentages of positives in the test set. Fig. 7 shows for each method the
estimate, averaged across all benchmark tasks, as we vary the percentage of positives

10 George Forman
Fig. 8. Absolute error averaged over all tasks, comparing AC and MM at P=50

0.01 0.1 1

MM
10fold MM

-clip MM
NBM+fxsel

KS MM
-clip KS MM

NB+fxsel MM
NB MM

fxsel MM
NBM+fxsel AC
NBM+fxsel CC

AC
NB+fxsel AC
NB+fxsel CC

CC

Average Normalized Cross-Entropy Error

Fig. 9. Lesion study results, averaged over tasks, training, and testing situations

 0

 2

 4

 6

 8

 10

 0 25 50 75 100

% test positives, N=100

ab
so

lu
te

 e
rr

or
 (

%
)

 0

 2

 4

 6

 8

 10

 0 25 50 75 100

% test positives, N=500

ab
so

lu
te

 e
rr

or
 (

%
)

 0

 2

 4

 6

 8

 10

 0 25 50 75 100

% test positives, N=1000

ab
so

lu
te

 e
rr

or
 (

%
)

AC
MM
in the test set p=5% to 95%. We use N=100, which was least favorable to MM in
Fig. 5. For P=10 we see that MM is alone effective and AC becomes competitive
with enough positives. MM shows a slight positive bias.

While the view in Fig. 7 gives a good overview of the biases, next we zoom in to
examine the differences in absolute error between MM and AC. We show this only
for P=50, as the results are uninteresting at P=10 and undifferentiated at P=200. We
see a consistent picture in Fig. 8. When the testing set contains a high percentage of
positives, MM estimates better than AC, especially as the number of negative training
examples grows for a fixed number of training positives. However, when testing with
a small percentage of positives, the MM estimates worse than AC, especially with few
training negatives. Recall that MM exhibits a small but consistent positive bias; this
systematically hurts its estimate when there is a small percentage of testing positives.

Lesion Study: The MM method includes a number of design choices. We performed
a lesion study to evaluate other choices. Fig. 9 summarizes the effect of each of these
independent changes by showing the normalized cross-entropy averaged over all
benchmark tasks, all training set compositions, and all test situations. In every case,

Counting Positives Accurately Despite Inaccurate Classification 11

the changes resulted in worse estimation (our choices were made prior to the study,
with the exception of range clipping, which was suggested by preliminary results).
We describe these lesions in ranked order: 10fold MM uses 10-fold cross-validation,
rather than 50-fold—a small loss in performance for one fifth the training time, if that
one-time computational cost is significant in one’s application. -clip MM does not
use range clipping—clipping benefits substantially when there are few training
positives. NBM+fxsel MM uses the Multinomial Naïve Bayes model with feature
selection, in place of SVM; without feature selection NBM failed sometimes. KS
MM uses the standard Kolmogorov-Smirnov statistic in place of our PP-Area metric;
-clip KS MM is similar, but without clipping as well. NB+fxsel MM uses Naïve
Bayes with feature selection, instead of SVM; NB MM uses Naïve Bayes with all
features. fxsel MM adds feature selection to SVM. (Whenever feature selection was
applied, the 200 best features were selected via Bi-Normal Separation.)

For comparison, we also include the other major methods AC and CC. These are
also shown with alternate learning methods that generated a somewhat better balance
between false positives and false negatives. Although they improve the estimates,
they are not competitive with MM or any of its variants.

6 Discussion

In most machine learning research, where the objective is accurate classifications,
each item in the test set provides an additional test result, which may contribute to an
average. In contrast, a single test item by itself is not sufficient for evaluating a
method for quantification. This must be done on an entire batch of test items at a
time, and yields only a single scalar estimate. For this reason, evaluation requires
concocting many different test situations over many benchmark tasks. In this way,
research on counting requires more experimental design. We hope that the test
conditions we designed provide useful guidance for others. In our framework, we
varied the percentage of test positives from p=5%–95% as a reasonable experimental
gamut. However, we recognize that in many situations the estimator will not be
called on to span this entire gamut well. For the common situation of rare positives, it
may be that other methods will excel. But obtaining statistical significance in this
realm may prove difficult, as it requires a much larger benchmark to evaluate the tails
properly.

Stepping outside the box of machine learning, another way to estimate the
positives in a population is to have a person—an expensive, slow, but presumably
perfect classifier—manually count in a random sample. Let us sketch the labor
required for comparison. Supposing you wish to have the width of the 95%
confidence interval be half of the estimate. For example, if the estimate were 40%,
then the person would need to classify 100 items to get the confidence interval down
to 40%±10%. Alternately, for a confidence interval of 4%±1% one would need to
examine 1500 items—the labor increases greatly and non-linearly for rarer classes of
positives. For obtaining a single count, certainly the labor may be dwarfed by the
effort to set up a machine learning solution. But if a count or many such counts must
be performed every day, the complexity of a computerized solution may be quickly

12 George Forman

amortized. Likewise, if hundreds or thousands of different classes need to be counted
just once, again the machine learning solution can greatly reduce the effort spent by
the person to classify items. Indeed, the manual classification can serve both as a
rough estimate, and as a training set for a machine learning quantifier that can
examine the complete dataset or can be applied to next month’s dataset.

7 Conclusion

This paper highlights the problem of assessing the number of positives in a population
via machine learning—quantification. It is a valuable real-world task, but is
commonly overlooked for the natural goal of improving classification accuracy. The
issue is made invisible by common machine learning research methodology, which
selects the training set and testing set so the class distribution is the same. We laid
out an evaluation framework, which varies the training and testing distributions
independently to determine which method minimizes error measured as normalized
cross-entropy. We described and evaluated three methods. The straightforward and
probably most common method of classifying and counting positives should only be
used when an extremely accurate classifier can be learned with available training data.

Opportunities for future work include: evaluating non-text benchmark domains,
extending to multi-class classification tasks, and inventing superior methods. We
identified two avenues for future work which are ill-conceived and cannot succeed:
calibrating the threshold at training time and calibrated probability estimation.
Finally, the most successful methods can be folded back in to calibrate classifiers at
testing time to improve their accuracy or probability estimation.

References

1. Bennett, P.: Using Asymmetric Distributions to Improve Text Classifier Probability
Estimates. Proc. ACM SIGIR Conference on Research and Development in Information
Retrieval, July-August (2003)

2. Fawcett, T.: ROC graphs: Notes and practical considerations for data mining researchers.
Tech report HPL-2003-4. Hewlett-Packard Laboratories, Palo Alto, CA, USA (2003)

3. Forman, G.: An Extensive Empirical Study of Feature Selection Metrics for Text
Classification. Journal of Machine Learning Research 3 (2003) 1289-1305

4. McCallum, A., Nigam, K.: A Comparison of Event Models for Naive Bayes Text
Classification. AAAI/ICML Workshop on Learning for Text Categorization (1998) 41-48

5. Weiss, G., Provost, F.: Learning when Training Data are Costly: The Effect of Class
Distribution on Tree Induction. J. of Artificial Intelligence Research 19 (2003) 315-354

6. Witten, I.H., Eibe Frank, E.: Data Mining: Practical machine learning tools with Java
implementations. Morgan Kaufmann, San Francisco (2000)

	Motivation and Scope
	Related work
	Theoretical Framework of Counting Methods
	CC: Classify & Count
	AC: Adjusted Count
	MM: Mixture Model
	Non-Solutions

	Experiment Protocol
	Experiment Results
	Discussion
	Conclusion
	References

