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Abstract.  Most supervised machine learning research assumes the training set 
is a random sample from the target population, thus the class distribution is 
invariant.  In real world situations, however, the class distribution changes, and 
is known to erode the effectiveness of classifiers and calibrated probability 
estimators. This paper focuses on the problem of accurately estimating the 
number of positives in the test set—quantification—as opposed to classifying 
individual cases accurately.  It compares three methods: classify & count, an 
adjusted variant, and a mixture model. An empirical evaluation on a text 
classification benchmark reveals that the simple method is consistently biased, 
and that the mixture model is surprisingly effective even when positives are 
very scarce in the training set—a common case in information retrieval.   

1 Motivation and Scope 

We address the problem of estimating the number of positives in a target population, 
given a training set from which to learn to distinguish positives from negatives.  This 
could be used, for example, to estimate the number of news articles about terrorism 
each month, or the volume of advertising by a competitor over time.  Unlike previous 
literature in machine learning, our end goal is not to determine a classification for 
each item, but only to estim ed to 
classification.  This is an class 
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able 1.  Summary of parameters considered in the empirical comparison 

 = 10...200 Positives in training set Counting Methods: 
istribution may shift over time in the target population.  It is then needed to track, 
etect and report noteworthy shifts in the class distribution, to calibrate probability-
stimation classifiers, and to select a binary classification threshold to optimize F-
easure or misclassification costs on an ROC curve [Fawcett, Weiss].  It is also 

eeded to calibrate classifiers that are used on different target populations, such as in 
edical settings where the training set does not represent a random sample of each 

arget population. 

 = 100...1000 Negatives in training set 
  = 5...95% Percent positives in test set 
enchmark: 21 binary text classification tasks 

earning Algorithms: 
VM  Support Vector Machine 
B  Naive Bayes 
BM  Multinomial Naive Bayes 

CC Classify & Count 
AC Adjusted CC 
MM Mixture Model  
 
Performance Metrics: 
Err estimated p  –  actual p 
AbsErr |Err| 
CE Normalized Cross-Entropy 

 

The obvious solution is to train a binary classifier from the training data, and count 
ts positive predictions on the test set. For example, Fig. 1 shows the result of this 
ethod as we vary the proportion of positives in a particular test set.  The classifier 

onsistently overestimates/underestimates the positives when the test set deviates 
rom the balanced class distribution used in training, even though this classifier 
chieves nearly 90% F-measure in cross-validation testing.  Unfortunately, as we 
emonstrate later, this method consistently leads to poor results—unless the classifier 
s extremely accurate, which can require substantial cost to get enough training data 
nd may never be feasible for some tasks. 

Although accurate classification is sufficient for estimating the count accurately, it 
s not necessary.  Even with a mediocre classifier, the count can be accurate if the 
alse positives are canceled out by a balanced number of false negatives.  This raises 
he question of whether estimating the count alone can be accomplished more 
ccurately and/or with less training data. 

We describe and evaluate two such superior methods: one based on adjusting the 
inary classifier’s count, the other based on a mixture model of the distribution of 
lassifier scores, as described in section 3.  We empirically compare their ability to 
ccurately track varying test class distributions under a variety of training set 
ompositions.  In such a study it is important to vary the training and testing class 
istributions as independent parameters, in contrast with most classification research 
ractice, which assures the class distribution is the same in training and testing via 
andom sampling or cross-validation.  We are especially interested in the situation 
here there are a small number of positives to train from—a common case in 

nformation retrieval and bioinformatics where positives are rare and obtaining labels 
osts human effort.  Table 1 provides an overview of the range of parameters we 
tudied.  The experiment protocol and its results are described in sections 4 and 5, 
espectively.  Next, we complement this introduction with a discussion of related 
ork to help scope this work. 
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2 Related work 

The great majority of the machine learning literature assumes the class distribution 
is invariant between training and testing.  Some work focuses on improving 
classification accuracy when the target class distribution is imbalanced, usually by 
over-sampling the minority class or under-sampling the majority class to balance the 
training set, where induction algorithms are more effective.  The work of Weiss & 
Provost [Weiss], for example, carefully studies the effect of varying the training 
distribution to optimize classification accuracy for a given test set. 

Many works mention the need to adjust the class priors to match the test 
distribution.  This is usually assumed to be done via foreknowledge or a manual 
inspection of a random sample.  Even in such papers, their performance goal is only 
to improve binary classification accuracy or probability estimation [Bennet], and not 
to accurately count positives in test sets as here.  Some works specifically seek to 
factor out the effect of class distribution by, for example, evaluating classification 
performance via balanced accuracy or the area under the ROC curve (AUC). 

Finally, some work attempts to detect class drift—when the character of a class 
with respect to its feature space changes over time, suddenly or gradually.  Class drift 
falls outside the scope of this paper. We only consider shifts in the relative 
populations of positives and negatives. 

3 Theoretical Framework of Counting Methods 

In this section, we describe the theoretical framework of three methods for estimating 
the count of positives.  We also list two intuitive methods that do not work. 

3.1 CC:  Classify & Count 

This is the obvious method.  First, we learn a binary classifier from the training data, 
such as a Support Vector Machine (SVM) or Naïve Bayes model.  We then apply it to 
each item of the test set, and count the number of times it predicts positive.  If the 
predictions are nearly perfect, then the count will be nearly accurate, no matter what 
the test class distribution.  This should be successful where the two classes are very 
well separated, e.g. distinguishing news articles written in German vs. English.   

If the classes are not well separated, then there will be some number of false 
positives and false negatives, and it is unlikely that these would be closely balanced.  
Moreover, any induction algorithm that is designed to maximize its accuracy on the 
training set will prefer the negative class if positives are the minority, a common case.  
It leads to systematically underestimating the count.  (This suggests artificially 
balancing the training set to achieve a balance between false positives and false 
negatives.  This is ineffective and even ill-conceived, as discussed in section 3.4.) 
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3.2 AC:  Adjusted Count 

This method is an extension to the straightforward classify & count method.  
Although the class labels are not available on the test set, consider the counts that 
would appear in the 2x2 confusion matrix below: 

 Prediction: 
Actual Class: Positive Negative 

Positive TP FN 
 Negative FP TN 

The observed count is the sum of true positives TP and false positives FP.  We can 
model each of these counts separately as: 

observed_count  =  TP + FP 
TP  =  TPR * actual_positives 
FP  =  FPR * actual_negatives  =  FPR * (total – actual_positives) 

(1) 

where TPR is the true positive rate of the classifier, P(predict +|actual +), and FPR is 
its false positive rate, P(predict -|actual -).  These are estimated from the training set, 
as discussed below.  Solving this system of equations, we obtain: 

actual_positives  =  (observed_count – FPR * total) / (TPR – FPR) (2) 

This adjustment to the count is the essence of this method, but there are a few 
additional points.  First, observe that the denominator could go to zero.  This would 
only happen with a worthless classifier that is equally likely to predict positive for 
either class.  Normally TPR >> FPR, so the denominator is positive and somewhat 
less than 1.0.  But if TPR < FPR, then the classifier is more likely to predict positive 
for negative items than for positive items. In this situation, one could reverse the 
outputs of the classifier. Re-deriving for this case ends up with the exact same 
equation, so it may be used without special casing for a negative denominator.  In 
these situations, FPR*total is likely to exceed the observed count of positives, so the 
numerator will also be negative. Finally, the adjusted count may under some 
situations predict a negative number of positives or more positives than the total test 
cases.  Thus, we limit its output to the range [0, total]. 

To estimate TPR and FPR for a given classifier, standard techniques may be used, 
such as stratified 10-fold cross-validation on the training set (divide the training set 
into 10 subsets, testing each one with a classifier trained on the other 9; stratification 
ensures that the minority class is evenly distributed among the folds). It yields a 2x2 
confusion matrix, and we compute TPR = TP/(TP+FN), and FPR = FP/(FP+TN). 

3.3 MM:  Mixture Model 

Many binary classifier models consist of a scoring mechanism and a threshold on the 
score to choose between predicting positive or negative.  The induction algorithm has 
to learn both how to score positives higher than negatives and how to pick the 
threshold well.  In the MM method, we eliminate this second step, and only use the 
scoring portion. We then consider the distribution of scores generated by the 
classifier. After training the classifier, we determine the empirical probability 
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total * DU  =  actual_positives * D+  +  actual_negatives * D- (3) 

Finally, to estimate the positive count, we determine which mixture of positives 
nd negatives would yield the closest fit to DU.  This is the essence of the method, but 
here remain several design choices:   
. How to obtain the distributions D+ and D- from the training set:  If we train on all 

the training data, and then observe the classifier scores on the training data, the 
separation between positive and negative scores will be overly optimistic compared 
with the actual test distribution.  Instead we use stratified f-fold cross-validation, 
and gather the scores from each fold into one distribution. Strictly speaking, these 
scores were generated from f different classifiers, but if f is large, then these 
classifiers share most of their training data in common. 

. Whether the empirical distributions found during training should be reduced to a 
parametric model of a distribution:  Based on the range of variation, we decided 
not to try to fit the distributions to parametric models, which also avoids adding 
parameters to the algorithm that may need to be optimized. 

. Whether to characterize the distributions by their empirical probability density 
function (PDF) or their cumulative distribution function (CDF):   Using the PDF 
requires discretizing the counts into artificial bins.  If the bin size is too small, then 
the estimates in each bin become noisy.  This would create additional parameters 
for tuning.  We selected CDF. 

. Whether to give special treatment to test scores that fall outside the range of scores 
observed during training:  Optionally, test items that score higher than any score 
observed during training could be treated separately, i.e. surely included in the 
final positive count, and excluded from the mixture model fitting.  Likewise scores 
smaller than any observed score in training could be treated separately as a 
negative.  We include this refinement. 

. How to measure the goodness of fit between DU and the mixture model:  Given two 
CDFs, the standard way to measure their difference is the Kolmogorov-Smirnov 
statistic, which measures the maximum difference between the two for all scores.  
While common, this coarse metric does not consider finer differences in the shape 
of the fit. For this reason, we developed another difference metric we call PP-Area, 
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described below. Another choice would be the standard Anderson-Darling statistic, 
but it is known to emphasize the tails of the distribution, which is not what we need 
for this application.  (The well-known Chi-Squared statistic is appropriate only for 
discrete PDFs.) 

6. How to determine the mixture that optimizes the fit:  For research purposes, we 
compute the goodness of fit for each value from 0% to 100% positives stepping by 
0.5% returning the best, but in practice one could use hill-climbing methods. 

We name this particular collection of design choices the “Countess” method. 

PP-Area:  a difference metric for two CDFs.    
Given two CDFs, a well-known method for visually comparing them is to plot one vs. 
the other while varying their input threshold, yielding a Probability-Probability plot, 
or P-P plot (see Fig. 3.). If the two CDFs yield the same probability at each input, then 
they generate a perfect 45° line.  By sighting down this line, one can get an intuitive 
feel for the level of agreement between two CDFs, commonly to decide whether an 
empirical distribution matches a parametric distribution.  To reduce this linearity test 
to computation, it would be natural to measure the mean-squared-error (MSE) of the 
points on the PP curve to the 45° line.  But MSE is highly sensitive to the maximal 
difference, as is Kolmogorov-Smirnov.  

Our solution is to measure the difference between two CDFs as the area where the 
PP curve deviates from the 45° line.  This has well defined behavior partly because 
the curve always begins at (0,0), ends at (1.0,1.0), and is monotonic in both x and y.   
It also has the intuitive property of being commutative, unlike MSE or mean-error. 

3.4 Non-Solutions 

If the classes are not well separated by a classifier, then a tradeoff must be made 
between precision vs. recall (false negatives vs. false positives). This tradeoff is 
manifested in the threshold used by a binary classifier.  During training it is optimized 
for accuracy in risk minimization methods, such as SVM. One ill-conceived idea is to 
try to adjust this threshold at training time so as to balance false positives and false 
negatives.  This is not possible because balancing these two depends explicitly on the 
class distribution, which may vary in testing. 

Another ill-conceived idea is the following:  Rather than have the classifier output 
a hard binary decision despite its uncertainty, use a classifier that outputs a probability 
estimate for each item.  Then, estimate the positive count as the sum of probabilities 
over the test set.  Again, this cannot work because the probability estimates depend 
explicitly on the class distribution; the calibrated probabilities would become 
uncalibrated whenever the test class distribution varies.  

4 Experiment Protocol 

To compare these methods, we conducted an empirical evaluation.  The standard 
methodology of cross-validation to obtain training and testing sets is not appropriate.  
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able 2. Benchmark data sets, the specific classes used as positive, and their sizes 

Dataset Source  Cases Classes # Positives in Each Class 
fbis TREC  2463  3,7,10 387,506,358 
la1 LA Times 3204 0,1,3,5 354, 555, 943, 738 
la2 LA Times 3075 0,1,3,5 375, 487, 905, 759 
ohscal OHSUMED  11162 0…9 1159,709,764,1001,864, 

1621,1037,1297,1450,1260
tead, we must independently vary the class distribution in the training set and the 
 set to determine how well various methods can track the test distribution, despite 
iations in the training set they are given. To this end, we randomly drew 200 
itives and 1000 negatives from each benchmark classification task as the 
imum training set.  We then trained with various subsets of this data, reducing the 
ber of positives and negatives independently.  Likewise, from the remaining data, 

randomly removed positives or negatives to achieve various desired testing class 
ributions.  We varied the test distribution from 5% positive to 95%, stepping by 
 increments.   

atasets: We used publicly available text classification datasets and used 21 “one 
all other classes” classification tasks that had sufficient positives and negatives to 
er the variety of experimental conditions (see Table 2) [Forman].  These datasets 
tain from 2000 to 31,000 binary word features. 
earning algorithms: The bulk of our experiments were conducted with linear 
port Vector Machines (SVM), which is considered state of the art for text 
sification.  We later replicated the experiments for Naïve Bayes and Multinomial 
ve Bayes [McCallum].  Given that feature selection has shown to improve SVM 
lts, we also replicated the experiments with feature selection via Bi-Normal 
aration [Forman]. 
rror metrics:  In order to be able to average across tasks with different numbers 
ositives, a natural error metric is the estimated percent positive minus the actual 

cent positive. By averaging across conditions, we can determine whether a method 
 a positive or negative bias.  But suppose a method guesses 0% or 100% randomly; 
ould also have a zero bias on average. Thus, it is also important to consider an 

igned measure of error.  Absolute error is one candidate, but estimating 41% when 
ground truth is 45% is not nearly as ‘bad’ as estimating 1% when the ground truth 
%.  For this reason, cross-entropy is often used as an error measure.  To be able to 
rage across different test class distributions, however, it needs to be normalized so 
 a perfect estimate always yields zero error.  Hence, the normalized cross-entropy 
efined as follows: 

normCE(p,x)  =  CE(p,x) – CE(p,p) 
CE(p,x)  =  -p log2(x)  –  (1-p) log2(1-x) 

(4) 

re x is the estimate of the actual percent positives p in testing.  Since cross-
opy goes to infinity as x goes to 0% or 100%, if a method estimates zero 
itives, we adjust its estimate to half a count out of the entire test set for purposes of 
luating its normalize cross-entropy error.  Likewise, if a method estimates that all 
test items are positive, we back it off by half a count.  (Note that this error metric 
l increasingly penalize a method for estimating zero positives as the test set size 
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for each of 21 benchmark tasks—distinguishing positive class c in dataset d: 
| set aside 200 positives and 1000 negatives for training, the rest for testing 
| for P = 10,20,50,100,200 training positives: 
|  for N = 100,200,500,1000 training negatives: 
|  | for each classifier C: SVM, NB, NBM; with and without feature selection 
|  |  train C on training set (size P+N) 
|  |  perform 50-fold cross-validation to estimate TPR, FPR, D+ and D- 
|  |  for p = 5% to 95% by 5%: 
|  |  | select maximal test set such that p% are positive 
|  |  | apply C to test set 
|  |  | for each of the methods: 
|_  |_  |_  estimate x% positives, and record result & error.  

Fig. 4. Overall experiment procedure in pseudo-code 

grows.  Intuitively it is worse to estimate zero positives among thousands of test cases 
than among ten.) 

Cross-validation folds for calibration: The adjustment method and the mixture 
model both require cross-validation to generate calibrated values during training.  We 
chose f=50 folds for this study.  (Note that if there are fewer than f positives in the 
training set, some of the test folds will contain no positives. We experimented with 
using only min(f,P,N) folds, but generally found no improvement.) 

Experiment Procedure: The overall experiment procedure is shown in Fig. 4. In 
total there were over 20,000 experiment jobs consuming over a hundred CPU days.  
These ran in parallel on the HP Utility Data Center in a few days.  We used the 
WEKA software in Java to provide the base classifiers [Witten]. 

5 Experiment Results 

We begin by evaluating how the estimates of each method are biased by the 
composition of the training set, holding the test set fixed.  Fig. 5 shows each method’s 
estimate, averaged over all benchmark tasks, as we vary the training set. The test set 
for each task is fixed with p=20% positives. (Except where stated otherwise, hereafter 
the classifier is a linear SVM with all features, calibrated via 50-fold cross-validation 
on the training set.)  Though MM tends to overestimate by a small amount, it is 
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Fig. 5.  Sensitivity to training set composition, with actual test positives p=20% 
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Fig. 6. Absolute error averaged over all test conditions p=5–95% and all tasks 
 

Fig. 7.  Ability to track % testing positives, training with N=100 negatives 
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striking that it is so close to the target p=20% when there are only P=10 training 
positives.  CC and AC are not competitive with P=10, and they underestimate more 
strongly as the imbalance of training negatives N increases.  In contrast, additional 
training negatives help MM converge for each value of P. 

 

With more positives, we see AC also converge to 20%.  But more training data do 
not make CC converge—it is always tuned for a specific percentage of positives.  
Popular wisdom suggests the best classification performance for this test set should be 
when the training distribution matches 20%; however, CC performed best with ~30% 
training positives (P:N = 50:100, 200:500, and, not shown, 100:200).  Hence, were it 
magically possible to always match the training class distribution to that of testing, it 
would still not make CC an effective method of counting positives. 

The results presented so far were for a single fixed percentage of test positives.  
Next we average over all tasks and all testing situations: p=5%–95% positives.  
Instead of averaging the error, which reveals positive or negative bias, we average the 
absolute error to determine how far the estimate lies from the true answer on average.  
Fig. 6. shows this as we vary the training set as before.  Again, MM performs 
surprisingly well given only P=10 training positives, achieving ~6% absolute error on 
average, regardless of the number of training negatives N.  With P=50 or 200 training 
positives, MM achieves ~2% absolute error on average.  With P=200 training 
positives, AC is competitive.  Recall the ideal method should be as insensitive as 
possible to the training set size and class distribution:  strongly recommending MM.  

Next we hold the training set fixed and measure the ability of each method to track 
various percentages of positives in the test set.  Fig. 7 shows for each method the 
estimate, averaged across all benchmark tasks, as we vary the percentage of positives 
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Fig. 8. Absolute error averaged over all tasks, comparing AC and MM at P=50 
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Fig. 9. Lesion study results, averaged over tasks, training, and testing situations 
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in the test set p=5% to 95%.  We use N=100, which was least favorable to MM in 
Fig. 5.  For P=10 we see that MM is alone effective and AC becomes competitive 
with enough positives. MM shows a slight positive bias.   

While the view in Fig. 7 gives a good overview of the biases, next we zoom in to 
examine the differences in absolute error between MM and AC.  We show this only 
for P=50, as the results are uninteresting at P=10 and undifferentiated at P=200.  We 
see a consistent picture in Fig. 8.  When the testing set contains a high percentage of 
positives, MM estimates better than AC, especially as the number of negative training 
examples grows for a fixed number of training positives.  However, when testing with 
a small percentage of positives, the MM estimates worse than AC, especially with few 
training negatives.  Recall that MM exhibits a small but consistent positive bias; this 
systematically hurts its estimate when there is a small percentage of testing positives.  

Lesion Study: The MM method includes a number of design choices. We performed 
a lesion study to evaluate other choices.  Fig. 9 summarizes the effect of each of these 
independent changes by showing the normalized cross-entropy averaged over all 
benchmark tasks, all training set compositions, and all test situations.  In every case, 
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the changes resulted in worse estimation (our choices were made prior to the study, 
with the exception of range clipping, which was suggested by preliminary results).  
We describe these lesions in ranked order:  10fold MM uses 10-fold cross-validation, 
rather than 50-fold—a small loss in performance for one fifth the training time, if that 
one-time computational cost is significant in one’s application.  -clip MM does not 
use range clipping—clipping benefits substantially when there are few training 
positives.  NBM+fxsel MM uses the Multinomial Naïve Bayes model with feature 
selection, in place of SVM; without feature selection NBM failed sometimes. KS 
MM uses the standard Kolmogorov-Smirnov statistic in place of our PP-Area metric; 
-clip KS MM is similar, but without clipping as well.  NB+fxsel MM uses Naïve 
Bayes with feature selection, instead of SVM; NB MM uses Naïve Bayes with all 
features.  fxsel MM adds feature selection to SVM.  (Whenever feature selection was 
applied, the 200 best features were selected via Bi-Normal Separation.) 

For comparison, we also include the other major methods AC and CC.  These are 
also shown with alternate learning methods that generated a somewhat better balance 
between false positives and false negatives.  Although they improve the estimates, 
they are not competitive with MM or any of its variants. 

6 Discussion 

In most machine learning research, where the objective is accurate classifications, 
each item in the test set provides an additional test result, which may contribute to an 
average.  In contrast, a single test item by itself is not sufficient for evaluating a 
method for quantification.  This must be done on an entire batch of test items at a 
time, and yields only a single scalar estimate.  For this reason, evaluation requires 
concocting many different test situations over many benchmark tasks.  In this way, 
research on counting requires more experimental design.  We hope that the test 
conditions we designed provide useful guidance for others.   In our framework, we 
varied the percentage of test positives from p=5%–95% as a reasonable experimental 
gamut.  However, we recognize that in many situations the estimator will not be 
called on to span this entire gamut well.  For the common situation of rare positives, it 
may be that other methods will excel.  But obtaining statistical significance in this 
realm may prove difficult, as it requires a much larger benchmark to evaluate the tails 
properly. 

Stepping outside the box of machine learning, another way to estimate the 
positives in a population is to have a person—an expensive, slow, but presumably 
perfect classifier—manually count in a random sample.  Let us sketch the labor 
required for comparison.  Supposing you wish to have the width of the 95% 
confidence interval be half of the estimate.  For example, if the estimate were 40%, 
then the person would need to classify 100 items to get the confidence interval down 
to 40%±10%.  Alternately, for a confidence interval of 4%±1% one would need to 
examine 1500 items—the labor increases greatly and non-linearly for rarer classes of 
positives.   For obtaining a single count, certainly the labor may be dwarfed by the 
effort to set up a machine learning solution.  But if a count or many such counts must 
be performed every day, the complexity of a computerized solution may be quickly 
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amortized.  Likewise, if hundreds or thousands of different classes need to be counted 
just once, again the machine learning solution can greatly reduce the effort spent by 
the person to classify items.  Indeed, the manual classification can serve both as a 
rough estimate, and as a training set for a machine learning quantifier that can 
examine the complete dataset or can be applied to next month’s dataset. 

7 Conclusion 

This paper highlights the problem of assessing the number of positives in a population 
via machine learning—quantification. It is a valuable real-world task, but is 
commonly overlooked for the natural goal of improving classification accuracy.  The 
issue is made invisible by common machine learning research methodology, which 
selects the training set and testing set so the class distribution is the same.  We laid 
out an evaluation framework, which varies the training and testing distributions 
independently to determine which method minimizes error measured as normalized 
cross-entropy.  We described and evaluated three methods. The straightforward and 
probably most common method of classifying and counting positives should only be 
used when an extremely accurate classifier can be learned with available training data. 

Opportunities for future work include: evaluating non-text benchmark domains, 
extending to multi-class classification tasks, and inventing superior methods.  We 
identified two avenues for future work which are ill-conceived and cannot succeed: 
calibrating the threshold at training time and calibrated probability estimation.  
Finally, the most successful methods can be folded back in to calibrate classifiers at 
testing time to improve their accuracy or probability estimation. 
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