
                                              

       
A Framework for Structure, Layout and Function in Documents♦ 
 
John Lumley, Roger Gimson, Owen Rees  
Digital Media Systems Laboratory  
HP Laboratories Bristol 
HPL-2005-95(R.1) 
December 19, 2005 
 
  
 
 
XML, XSLT, 
SVG, document 
construction, 
functional 
programming 

The Document Description Framework (DDF) is a representation for
variable-data documents. It supports very high flexibility in the type and
extent of variation supported, considerably beyond the 'copy-hole' or 
flow-based mechanisms of existing formats and tools. DDF is based on
holding application data, logical data structure and presentation as well as 
constructional 'programs' together within a single document. DDF
documents can be merged with other documents, bound to variable
values incrementally, combine several types of layout and styling in the
same document and support final delivery to different devices and page-
ready formats. The framework uses XML syntax and fragments of XSLT 
to describe 'programmatic construction' of a bound document. DDF is
extensible, especially in the ability to add new types of layout and inter-
operability between components in different formats. In this paper we
describe the motivation for DDF, the major design choices and how we
evaluate a DDF document with specific data values. We show through
implemented examples how it can be used to construct high-complexity 
and variability presentations and how the framework complements and
can use many existing XML-based documents formats, such as SVG and 
XSL-FO. 

 

* Internal Accession Date Only 
♦ ACM Symposium on Document Engineering 2005, 2-5 November 2005, Bristol, U.K. 
                                                                              Approved for External Publication 
© Copyright 2005 ACM 



1

A Framework for Structure, Layout & Function in
Documents

John Lumley
Hewlett-Packard Laboratories

Filton Road, Stoke Gifford
BRISTOL BS34 8QZ, U.K.
john.lumley@hp.com

Roger Gimson
Hewlett-Packard Laboratories

Filton Road, Stoke Gifford
BRISTOL BS34 8QZ, U.K.
roger.gimson@hp.com

Owen Rees
Hewlett-Packard Laboratories

Filton Road, Stoke Gifford
BRISTOL BS34 8QZ, U.K.
owen.rees@hp.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DocEng’05,November 2–4, 2005, Bristol, United Kingdom.
Copyright 2005 ACM 1-59593-240-2/05/0011...$5.00.

ABSTRACT
The Document Description Framework (DDF) is a representation
for variable-data documents. It supports very high flexibility in the
type and extent of variation supported, considerably beyond the
'copy-hole' or flow-based mechanisms of existing formats and
tools. DDF is based on holding application data, logical data struc-
ture and presentation as well as constructional 'programs' together
within a single document. DDF documents can be merged with
other documents, bound to variable values incrementally, combine
several types of layout and styling in the same document and sup-
port final delivery to different devices and page-ready formats.
The framework uses XML syntax and fragments of XSLT to
describe 'programmatic construction' of a bound document. DDF
is extensible, especially in the ability to add new types of layout
and inter-operability between components in different formats. In
this paper we describe the motivation for DDF, the major design
choices and how we evaluate a DDF document with specific data
values. We show through implemented examples how it can be
used to construct high-complexity and variability presentations
and how the framework complements and can use many existing
XML-based documents formats, such as SVG and XSL-FO.

Categories and Subject Descriptors
I.7.2 [Computing Methodologies]: Document Preparation —
desktop publishing, format and notation, languages and systems,
markup languages, scripting languages

General Terms:Languages

Keywords:XML, XSLT, SVG, Document construction, Func-
tional programming

1. INTRODUCTION & MOTIVATION
This paper describes the motivation and design of the Document
Description Framework(DDF), an experimental high-level frame-
work for the construction of variable data documents. We'll out-

line some of the issues that appear with high-variability docu-
ments and discuss advantages and shortcomings of some of the
current 'standards' in supporting such publications. We then
review our research goals and posit our major decisions. The cur-
rent design of DDF is described in three sections corresponding to
documents as 'structures', 'functions' and 'layouts'. Examples of
documents and their interpretation and processing are presented.
The motivation for this research is a desire to make the construc-
tion and processing of variable data documentssignificantly more
robust and flexible. An ability to tailor a published document to a
particular consumer is seen as a potentially valuable feature in
many publication relationships, such as marketing collateral, per-
sonalized communications and advertising material in many fields
from finance to retail, politics to internal business messages.
(PODi [12] has many example cases in printing.) The extent to
which customisation can be performed is to a great deal dependent
upon three factors:

an ability to decide what is the appropriate variation in the
'message' for the specific audience,

the ability of the delivery device to support that customisation
efficiently, and

the means whereby the appearance of the effect of the cus-
tomisation is defined and determined.

Our interest is in the third of these factors, especially for print
situations. Developments in Customer Relationship Management
systems (CRMs) and marketing tactics are beginning to show pos-
sible individually customised messages (e.g. Amazon.com.) Web-
based systems, based on 'instantly' computable delivery platforms
and extensible presentation spaces have pushed the ability to
deliver such customisations very far, leading to standards for vari-
ous forms of presentation, and extensive workflows.

In high-quality print the delivery devices are much more rigid and
potentially either expensive to use, have high inertia or are incap-
able of high throughput. Recently intermediatedigital presses have
appeared which promise to provide some reasonable compromise
and support the goal of 'every page different' at reasonable cost.
However in all these cases the 'page' is still a significant boundary.
In many cases customisation is limited to overprinting with low
quality/high throughput devices, for cases such as name-
and-address interpolation.

Constructing high-quality documents in paginated situations has
historically been the province of the graphic artist supported with
tools such as Quark XPress. These tools have been adapted to
handle workflows with modest degrees of customisation, mostly
based on the copy-hole , and with a very strong desire to preserve



2

the artist's control over almost-exact final appearance. This can be
effective when the variation in 'size' of the substitutional elements
is small - text pieces are reasonably the same length or whitespace
tolerant, images have substantially similar aspect ratio and the
number and type of the elements substituted is constant. Standards
such as PPML [13] have emerged to support efficient description
of large customised runs of such documents.
However, when the message must be tailored much more flexibly,
such as varying thenumberof products advertised to a particular
customer on a given page, such systems are unable to adjust
appropriately. Often a series of separate templates has to be con-
structed or adjusted (by hand) to accomodate the variation, and the
workflow modified to select an appropriate template for the given
message instance.

Our motivation was to design a document representation that
would be a suitable basis for the complete automation of the con-
struction of such publications when the levels of flexibility and
variation get very high and the styles of 'layout' can be extremely
variable. Other longer-term requirements were that:

i) the representation should be extensible,

ii) it enables several types of document 'manipulation' including
merging for reuse, partial binding of variable instance values
and documents as 'data input' vehicles, and

iii) it should support using and combining many existing docu-
ment formats describing partial document components.

Given recent developments in XML technologies for both repres-
entation and manipulation of documents, we focused on encapsu-
lated representations of documents as 'computable functions'.

2. EXISTING DOCUMENT FORMATS
Several current document formats that support some degree of
variability are intimately tied into a (WYSIWYG) editing environ-
ment, MSWord being a typical example. Without significant
development of 'plug-ins' these tend to fail our requirement for
extensibility, as well as the programmability being 'hidden' within
the format.

PDF has concentrated on the page-description of high-quality
print, and doesn't handle internalvariability, relying instead on
external generators and modifiers to create new PDF files. Its pre-
cursor, Postscript is a general programming language with in-built
renderer but has lately been avoided as too uncontrollable for gen-
eral use, and replaced by PDF for precision documents.

The Scribe-influenced formats (Scribe, Troff, TeX [8]) all pion-
eered the notion of explicit document layout markup with limited
extension mechanisms such as macros, traps and diversions.
Indeed the successful LaTeX [9] was principally a sizeable set of
macros built atop TeX. In several of these cases some extension to
supporting 'variable data' documents was possible, but mostly it
was anticipated that external programs would generate document
instances for given data bindings. These mechanisms also encour-
aged the separation of document structure from presentation style
which we'll return to in a subsequent section.

Of the modern 'print-compatible' formats, XSL approaches the
issue of variability by providing two separate entities: XSL-FO
[16] describing a vocabulary for generic 'flow' style of layout
(very suitable for paginated reports), and XSLT [17] being an
'XML-oriented' construction/transformation language. (The usual

operation is for an XSLT program to generate a grounded set of
XSL-FO instructions which is then interpreted during rendering.)
PPML [13] is a framework for the construction of pre-paginated
documents by the geometric combination of 'pictures', coupled
with a specific mechanism for the declaration of reusability from
levels within a page up to multiple print jobs. The set of supported
pictures (image formats such as JPEG, general mechanisms such
as Postscript) can be extended. PPML/T [14] adds a binding of an
XSLT program to support 'copy-hole' variability, or other com-
puted layouts that do not depend upon the results of rendering.
These both have demonstrated the possible benefits to be gained
through a suitably-chosen level of 'framework'.

3. RESEARCH GOALS AND CHOICES
Earlier we listed our main requirements from documents and
framework (complete automation, extensibility, multi-use and
multi-format). We expanded these to seeking a framework for
describing wide classes of variable data documents with the fol-
lowing requirements on the document:

It should as far as possible be aself-containedobject. That is
all the information necessary for the construction of the final
result when variable data is bound should be able to be held
within the document itself. Whilst documents and document
components could exist in well-managed repositories, it
should still be able to treat a complete document as an
'object'. (PPML has a similar complete encapsulation of all
the resources within a PPML 'job' and PPML/T extends this
to variable content.)

It should be mergeable with other documents in similar 'famil-
ies' to encourage reuse. Such merging can occur both in terms
of 'data' and 'construction program'.

It can contain pieces in possiblydifferent formatting lan-
guages . This is in the same spirit as being able to embed
MathML within XHTML, or SVG within XSL-FO.

A document may be bound topartial variable datayielding a
result which is capable of processing further bindings of data.

The document should, as much as possible be declarative
internally, rather than contain imperative (and order-sens-
itive) algorithms.

A typical 'workflow' for a DDF document looks something like:

DDF
   
document
   

(XML)
   
application
   

data
   

DDF
   
document
   

DDF
   
document
   

DDF
   
document
   

DDF
   
document
   

merge
   

observe
   bind
   

device
   
format
   

Figure 1. Typical workflow for a DDF document

where some main DDF document may be merged with others
(acting as modular templates for example). The result is a valid
DDF document. This can be bound to variable data, which may
make new internal structures. DDF documents can be reprocessed



3

(merged, bound...) or 'observed' by extracting or generating some
device format form (SVG, PDF, HTML etc.) from presentations
buried in the document.
With these stated aims and experience of other formats, the main
choices we made were:

The format syntax would be XML-based

A document could contain information in three partitioned
spaces: (application) data, (logical) document structure and
(graphical) presentation instructions.

The document was to be considered a function of (possibly
null) variable data - evaluation of this 'function' on an
instance of the data would produce a grounded document

Construction of new document parts as a result of variable
data would be declared in embedded XSLT programs.

Document 'layout' would be declared through extensible
functions in the document's presentational space.

Internal document functionality shall beside-effect-free .

Our research examines what a framework like this would look
like, is it evaluable, is it extensible and can it support a wide vari-
ety of documents on the single framework. Like other representa-
tions it is not intended per se to be created/edited directly by the
end-user, but support authoring, editing and conversion tools and
the formation of libraries. Its usefulness will come from providing
the base representation that other document tools may use.

4. BASIC DDF FORM
Our need to merge documents flexibly and reuse styles and pro-
grammatic generators, suggests that having an explicit description
of the logical structure of the document, separate from possible
application data or presentational form would help support desired
flexibility. Hence we chose to represent a DDF document in the
following XML form:

<ddf:doc>
<ddf:data>
application data
</ddf:data>
<ddf:struct>
logical structure + programs
</ddf:struct>
<ddf:pres>
presentation + programs
</ddf:pres>
</ddf:doc>

Figure 2. Basic structure of a DDF document

where:

<ddf:data/> holds pure application data

<ddf:struct/>describes logical structures in resulting
documents

<ddf:pres/> contains presentational instructions to create
final visible forms, and

'program' components describe generating new content as a
result of variable bindings.

More or 'fewer' layers could be employed but for our current
design these three seem adequate. We'll explain how these work
together in constructing a business card looking like this:

Roger Gimson PhD
Hewlett-Packard Laboratories

Hewlett-Packard Laboratories, Bristol
Filton Road
Stoke Gifford
Bristol
BS34 8QZ
U.K.

Tel
Fax

 +44 (0) 117 3128167
 +44 (0) 117 3128925

 roger.gimson@hp.com

Figure 3. A variable-data business card

We start by making a DDF document that acts as a template and
takes some application data as input (we'll describe these as func-
tion and argument later). The DDF document contains an applica-
tion data space to hold instances of bound data.

This space can contain any data that the application sees fit - DDF
makes no restrictions and assumes no responsibility for processing
this, beyond evaluating programs contained within DDF docu-
ments that will typically generate logical document structures as a
result. Variable data , that is values of the 'arguments' to the entire
DDF 'document as function', will appear in this space. At present
DDF documents contain no schemas describing valid application
data, but such mechanisms could be added.

So to start our process we take the DDF document and bind it to
an instance of its variable data:

application
   
data
   

bind
   

DDF document
   

data
   

struct
   

pres
   

DDF document
   

data
   

struct
   

pres
   

Figure 4. Binding to data

Now the document contains a copy of its binding which will be
transported around with it. This stage is not very exciting. To pro-
ceed further we need to detemine if new document structure will
be generated as a result of this data. To do this we evaluate appro-
priate program (data -> structure) which is embedded in the DDF
document or has been merged in from another document. This
program sits within the structural space (Figure 5).

DDF document
   

data
   

struct
   

pres
   

DDF document
   

data
   

struct
   

pres
   

eval
   struct
   

program
   

Figure 5. Generating new structure

Now we have a document with structure but no specific presenta-
tion. If however we merge this document withanotherDDF docu-



4

ment which contains program to make presentation from generic
structure, we can then evaluate the new mappings and generate the
appropriate presentation:

DDF document
   

data
   

struct
   

pres
   

+
   

merge
   

observe
   

DDF document
   

data
   

struct
   

pres
   
DDF document
   

data
   

struct
   

pres
   
eval
   pres
   

program
   

DDF document
   

data
   

struct
   

pres
   

Figure 6. Generating new presentation

The result is still a legitimate DDF document, but one for which it
is now meaningful to 'observe' the presentational part. A suitable
observer function can extract this portion, possibly converting to a
'display format' (such as PDF) or directly rendering, to produce
the resulting publication, shown at the start. Clearly different
types of presentation can be generated from the same structure by
merging a DDF document containing a different presentational
mapping. Thus we can support an older style of HP business card:

Hewlett-Packard Laboratories, Bristol
Filton Road, Stoke Gifford
Bristol BS34 8QZ U.K.
Direct Dial:  +44 (0) 117 3128743
Fax:  +44 (0) 117 3127081
Email:  john.lumley@hp.com

John Lumley CEng FIEE
Hewlett-Packard Laboratories

Figure 7. An alternative presentation of the business card

4.1. Why an Encapsulated Form?
The DDF outlined is an encapsulation of data, structure, presenta-
tion and program as 'document'. Manycontent management sys-
tems (CMS) provide mechanisms where these are separated and
controlled workflows apply necessary programs or services to
generate resultant documents and components. These services can
vary from arbitrary programs to XSLT transformations, which
may even be buried within data files. These systems are often
arranged as web-based service architectures, with a view to distri-
bution and direct attachment to communications and consumers.

Whilst in these simple examples the differences in workflow and
capability between DDF and simple use of XLST seem minor, as
we'll discuss later, keeping program and data together will permit
us to support advanced features such as incremental binding and
merging. We particularly wanted to show that a documentcould be
described and processed as a function, even with partial binding of
data and evaluation of program. It still can be a component of a
CMS, but it can also act as a standalone document.

5. DOCUMENT AS STRUCTURE
Developments in the late 1980s, especially on the Open Document
Architecture (ODA) [7], emphasised benefits to be gained in flex-

ibility and repurposing by separating the logical structureof a doc-
ument and its presentational style.André et al.[1] give an excellent
discussion on methods and benefits of such separation. (X)HTML
and CSS have furthered this for Web-based use.
The logical structure is intended as the focus for most merging of
documents and is constructed and modified from application data
(which will of course include bindings of variable data). DDF
does not fix what the syntax or semantics for this logical layer
should be - we anticipate document engineers will choose a suit-
able 'standard' such as XHTML for principally report-type docu-
ments, or an application-slanted suitable format, like DocBook
[18] for book material or GML [11] for documents with high geo-
graphical content, or of course a mix. The requirement is that for
that type of application simple generic merging at this layer is
practical and useful.

Structure acts as a buffer between application data and presenta-
tion, providing a canonical representation of the major groupings
and sequences of the eventual message. By choosing to merge dif-
ferent documents providing mappings to and from the same struc-
ture, we gain flexibility. With an intermediate structure like this:

<doc>
<h>Introduction</h>
<p>An introductory paragraph which outlines the
notion that structure can be used for different
presentations</p>
<h>Document as Structure</h>
<p>Structure can act as the buffer between applica-
tion data and presentation. Several different
presentations can be created from the same struc-
ture by use of an appropriate set of programs.</p>

</doc>

Figure 8. A fragment of document structure

we can merge different mappings to show either of the following
presentation forms: a simple report or a high-level overview.

Introduction
An introductory paragraph which outlines the
notion that structure can be used for different
presentations

Document as Structure
Structure can act as the buffer between
application data and presentation. Several
different presentations can be created from
the same structure by use of an appropriate
set of programs.

D
o

cu
m

en
t

O
u

tlin
e

Introduction

Document as Structure

Figure 9. Two differing presentations from a single structure

Equally well, different types of application data can of course be
mapped into the same structure. We could map portions of an
XSLT source into this intermediate form to make documentation:

ddfl:proc-vars(items,vars)
Process a set of children creating and using
embedded variables as required - this is
intended to produce the same semantics as ,
by using a recursive form where new defini-
tions are added to existing ones for use later
in the sequence.

ddfl:find-var(name,vars,guarded)
This is a service function to return a ddfl:
variable keyed by name from the current set
of variable bindings. It currently returns a
variable sequence - such that you could
query XPaths on it . If you want the entire
contents, then (*|text()) should be taken from
its result. Eventually we'll add more selection
on the sequence to result the last binding,
error reporting if we haven't got a binding,
and perhaps use keys for efficient lookup.

Figure 10. Reuse of the structure for documentation



5

Here we've selected<xsl:function/>elements, collected
their names and the names of the embedded<xsl:param/>
children and formed up a <h> structure with a function 'call' as its
text value. A preceding documentation block is raided to make the
description paragraph.
This use of structure increases flexibility dramatically: for
example much of the DDF documentation takes XSLT or DDF
source documents as application data and generates equivalent
XHTML. The code examples in this paper are extracted automat-
ically from various stages of processing the DDF documents,
pretty-printed and converted to XHTML sections - the resulting
SVG components are extracted similarly from the DDF results.

6. DOCUMENT AS FUNCTION
The crucial design choice with DDF was to consider a document
as a function of some (possibly null) variable application data. The
result of evaluating this function on a given instance of
(application) data will itself be another DDF document, with
modifications to various sections as a result of evaluation of
appropriate program fragments.

The key is that 'program' sections for the creation of new content
(logical structure or presentation) are embedded in the target
spaces. We anticipate that such program is XSLT, though other
languages might be possible (though there are very strong
advantages to such languages being functional or at least
side-effect-free ).

Once we have some binding of the variable data for a document,
we can evaluate it as a function. This might be performed by some
interpreter, or via a compiler, but the end result should be the
same. After the evaluation of ddf:doc(variable-data)the
document will have internally copies of bound data, new pieces of
structure and new presentation instructions arising from the data.
With XSLT as the exmple programming language the next section
will give examples.

6.1. XSLT Construction
We use XSLT to describe the functional construction of the docu-
ment as a result of variability. Each of the structure and presenta-
tion spaces is considered a separate space as far as XSLT scope is
concerned, with a default 'source' context, (data for structure and
structure for presentation.) A very simplistic example might be:

<ddf:doc>
<ddf:data/>
<ddf:struct>

<xsl:template match="name">
<p>

<xsl:value-of
select="(first,last,qualification)"/>

</p>
</xsl:template>

</ddf:struct>
<ddf:pres>

<xsl:template match="p">
<fo:block width="45" font-family="Helvetica"
font-size="4">

<xsl:value-of select="."/>
</fo:block>

</xsl:template>
</ddf:pres>

</ddf:doc>

Figure 11. A simple DDF document

which uses a simple <p> element as structure and maps a person's
name and qualifications into it. If we bind a simple data record
then evaluate both the data to structure and structure to presenta-
tion programs, the result is Figure 12, where a copy of the data
record (for Owen Rees) has appeared in the data space, a para-
graph has appeared in structure and a simple formatting instruc-
tion in the presentation.

<ddf:doc>
<ddf:data>

<name>
<first>Owen</first>
<last>Rees</last>
<qualification>MA (Cantab)</qualification>

</name>
</ddf:data>
<ddf:struct>

<p>Owen Rees MA (Cantab)</p>
</ddf:struct>
<ddf:pres>

<fo:block width="45" font-family="Helvetica"
font-size="4">Owen Rees MA (Cantab)</fo:block>

</ddf:pres>
</ddf:doc>

Figure 12. Bound DDF document

The final result is effectively an instruction for creating a text
block, in this case using XSL-FO semantics. Further resolution of
the document requires somelayout processorwhich has appropri-
ate knowledge of the semantics. We'll describe such a processor in
the next section, but for the curious this is what the result looks
like:

Owen Rees MA (Cantab)

Figure 13. The presentation from instructions of Figure 12

Currently DDF supports most of the more common XSLT 2.0
functional instructions, specifically those within templates and
functions and global parameters and variables. There is some
refinement needed on scoping of the program fragment: templates
and applications in the default (unnamed) mode are local to the
DDF space they exist within (i.e. ddf:struct ,ddf:pres ) -
named modes and all functions are currently global. (This avoids
extensive re-writing or analysis of embedded XPaths for
example.) Note that as the document is a function, then the 'cor-
rect' result will be produced regardless of the evaluation being car-
ried out lazily or eagerly - which will be appropriate may depend
upon circumstances - documents with significant conditionality
may benefit from lazy evaluation, whereas ones used over a very
large set of variable instances merit eager computation of invari-
ant pieces.

6.2. Merging Documents
One of the original goals was to make it possible to merge DDF
documents relatively easily and robustly to support both libraries
and complex document workflows. The structural level is inten-
ded to be the main area for mergingwhat the document is trying to
say - as such schema-based checking could be used to avoid a
'report' being combined with a 'brochure' at this level. By choosing
the 'programs' in DDF to be free of side-effects (i.e. evaluation of
program components does not alter system state nor do they have
internal state), we can begin to check the effect of combining two
DDF documents in terms of function . This could be by comparing



6

function and template signatures (what they match, type of argu-
ments and results)
At present, DDF documents have flat merging semantics for pro-
grams, exploiting order insensitivity of a set of XSL templates and
functions - name clashes could occur and there is no defined pre-
cedence mechanism other than that inherent in any final pro-
cessing engine. Simplistic 'include' directives can be embedded
within a DDF document to indicate a required merge and there is
rudimentary detection of possible clashes. With current examples
these systems are adequate to support simple (well-controlled) lib-
raries, such as those used for making this document. Future work
will need to define fuller merging semantics, such as those of
XSLT which define importation precedence.

7. DOCUMENT AS LAYOUT
The presentational layer is where final published forms (SVG,
XSL-FO, PDF etc.) are built and stored from fragments, instruc-
tions and functions. 'Observers' extract from this layer.

As we've already shown, XSLT syntax and semantics are used as
the principal description of the constructionof the document with
respect to data variability, in much the same way that an XSLT
phase may be used to generate XSL-FO 'instructions'. But to make
meaningful and useful documents we must describe what atomic
pieces and compound structures will appear in final presentation,
when the type and number of such components may be highly
variable.

A major goal of DDF is to support an extensible set of types of
layout with minimal disturbance to the rest of the processing
machinery. Most of our experimentation has been with geometric
styles of layout (catalogues, flyers, posters etc.) so we've chosen
SVG as the canonical representation of grounded graphical pieces
and assemblies.

PPML has shown the benefit in decoupling the definition of the
graphical 'atom' from the compound assembly. We take a similar
approach using a mainly top-down approach, describing layout as
a nested series of functions until 'leaf nodes' are reached, with an
extensible agent to interpret these functions. For example:

<ddfl:layout function="flow" direction="x">
<svg:circle cx="3" cy="3" r="3" fill="red"/>
<fo:block max-width="45" font-family="Helvetica"
font-size="4">A little piece of text</fo:block>

</ddfl:layout>

Figure 14. A call for simple flow layout

is an instruction for a simple function that will flow its children in
sequence in a given direction. The children in this case are a
grounded SVG primitive (the circle) and an<fo:block/>with
appropriate styling and the addition of a maximum width attribute.
The default layout processor starts evaluating this 'function' by
evaluating the children arguments into the space of SVG. The
circle obviously stands for itself, but the processor has an exten-
sion (a mixture of XSLT and Java-based extensions) that can per-
form text-wrap roughly to the semantics of XSL-FO and return an
SVG fragment, sized to the actual width and depth of the text.

With these children in a canonical SVG form, each with a determ-
ined width and height, the flow function can be evaluated to shift
the text block right and then encapsulate the modified children to
produce the compound SVG element of Figure 15, show in Figure

16 (the line boundary marks the edge of the compound result.)

<svg:svg x="0" y="0" width="40.0" height="6.0">
<svg:circle cx="3" cy="3" r="3" fill="red"
aspect="1" width="6" height="6" x="0"/>
<svg:svg max-width="45" font-family="Helvetica"
font-size="4" width="34" height="4.8" x="6.0">

<svg:text x="0" y="3.97" width="34" height="4.8"
line-offset="3.972">A little piece of
text</svg:text>

</svg:svg>
</svg:svg>

Figure 15. Resulting SVG source after layout resolution

A little piece of text
Figure 16. Compound graphic component of Figure 15

This principle operates hierarchically, exploiting SVG as the
canonical form with principally rectangular 'molecules' and laying
out based on these rectangular boundaries. Non-rectangular shapes
may be supportable for denser packing, but in this case orthogon-
ality of 'x' and 'y' disappears and in some cases layout becomes
non-monotonic. As an example of hierarchical composition:

<ddfl:layout function="flow" direction="y" spa-
cing="1">

<ddfl:layout function="flow" direction="x">
<svg:circle cx="3" cy="3" r="3" fill="red"/>
<fo:block max-width="45" font-family="Helvetica"
font-size="4">A little piece of text</fo:block>

</ddfl:layout>
<fo:block width="45" font-family="Helvetica" font-
style="italic" font-size="2" hyphenate="yes">A very
much longer piece of text that should be expected
to wrap around showing that text blocks and columns
are supported</fo:block>

</ddfl:layout>

Figure 17. Nested layout instructions

A little piece of text
A very much longer piece of text that should be
expected to wrap around showing that text blocks
and columns are supported

Figure 18. Nested compound layout

The tree of instructions and the resulting SVG tree show what's
happening - usually a layout instruction makes an SVG encapsula-
tion of its children, and a leaf node expands into an SVG child:

Figure 19. Composite layout tree and resulting SVG

This principal of nested functions connected through a canonical
form (rectangular SVG molecules) can support a wide variety of



7

simple linear and non-linear layout forms, such as distribution and
pagination. For example:

<xsl:variable name="colours"
select="('red','blue','yellow','green','magenta')"/>
<ddfl:layout function="flow" direction="x" spa-
cing="3">

<ddfl:layout function="paginate" height="18" encap-
sulate="line">

<xsl:for-each select="1 to 15">
<ddfl:layout function="flow" direction="x" spa-
cing="1">

<fo:block font-family="Helvetica" font-
size="2">

<xsl:value-of select="."/>
</fo:block>
<svg:rect width="9" height="4" rx="1"
fill="{$colours[((current() - 1) mod 5) +
1]}"/>

</ddfl:layout>
</xsl:for-each>

</ddfl:layout>
</ddfl:layout>

Figure 20. Pagination instruction over other instructions

surrounds a set of numbered rounded rectangles with a pagination
function, assumed to flow vertically into a series of containers 18
units high - this function produces a set of 'pages' which can then
be manipulated separately - in this case flowing them horizontally.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 21. The non-linear paginated flow from Figure 20

7.1. Benefits & Limitations
This approach works well to build up compound graphical objects,
using the tree's scoping to support naming of parts, scope of effect
and so forth. By using a canonical form (SVG in this case) we can
combine many different types of layout together simply, such as
text-blocks inside pie-charts, without having to program these
combinations especially. As this paper itself shows, a wide variety
of layouts can be combined in a tree to produce complex results.

However using a tree and functional evaluation does have poten-
tial limitations that may require special features to ameliorate their
effects. Reuse of components and linkage between components
('this text-block should be the same width as that image on the
preceding page') requires relationships that cut across the tree -
we've added an explicit variable and reference scheme to assist
(see section 7.3). Layout functions that can 'overflow' such as
flows and paginations may need 'fallback' options. So far this has
been limited to processing based on explicit indicators of priority
(e.g. in the case of overflow a paginator may remove pieces
marked with 'low' prorities), but more general solutions are
needed.

7.2. Constrained Layouts
For many situations, particularly in brochures and catalogues with
high graphic content, layout can often be declared in terms of con-
straints between pieces. For conjunctive linear inequality con-
straints ('aligned left', 'above' etc.) we have several very powerful

solvers available to process large sets of constraints relatively
quickly. Such a system fits easily into the architecture of nested
layout functions, with suitable means of defining the constraints
and the pieces to which they attach.
In Figure 22 we define constraints on layout between six 'named'
pieces (the five colours and 'title') by containing special form chil-
dren that describe the edges of the constraint graph:

'red' is set above 'blue' and 'blue' above 'green' and all are
aligned by their right edges.

'magenta' is placed above 'yellow' with right edges aligned.

'red' is set just left of 'magenta' and both have their tops
aligned.

The title is placed above and centred on 'magenta' ('magenta'
is both the box and the text to its left)

The outcome is shown in Figure 23. (The children themselves are
compounds which could of course be constrained layouts.)

<ddfl:layout function="linear-constrained">
<fo:block name="title" font-family="Helvetica"
font-size="3">A selection of COLOURS</fo:block>
<xsl:for-each
select="('red','blue','yellow','green','magenta')">

<ddfl:layout name="{.}" function="flow" direc-
tion="x">

<fo:block font-family="Helvetica" font-
size="2">

<xsl:value-of select="."/>
</fo:block>
<svg:rect width="9" height="4" rx="1"
fill="{.}"/>

</ddfl:layout>
</xsl:for-each>
<ddfl:constraints layout="align(right) abut(above)"
parts="red blue green"/>
<ddfl:constraints layout="align(right) abut(below)"
parts="yellow magenta"/>
<ddfl:constraints layout="align(centre)
abut(above)" parts="title magenta"/>
<ddfl:constraints layout="align(top) abut(left)"
parts="red magenta"/>

</ddfl:layout>

Figure 22. Instructions for layout of a set of components based
on linear constraints

A selection of COLOURS
red

blue yellow

green

magenta

Figure 23. Resolution of the positional constraints between
components of Figure 22

This approach has proved very powerful, combining scoped lay-
out with flexibility of constraint solution. Pieces can be used as
construction lines and discarded (circles for example can relate
vertical and horizontal constraints.) It's possible to evaluate some
constant constraint between successive members of a sequence by
creating a constraint graph dynamically such as shown in Figure
24 and Figure 25.



8

<ddfl:layout function="linear-constrained" lay-
out="align(left,offset=off) align(top,offset=3)">

<fo:block name="caption" font-family="Helvetica"
font-size="4">A selection of COLOURS</fo:block>
<xsl:for-each
select="('red','blue','yellow','green','magenta')">

<ddfl:layout name="{.}" func-
tion="linear-constrained" layout="align(center)
align(middle)">

<svg:rect width="9" height="4" rx="1"
fill="{.}"/>
<fo:block font-family="Helvetica" font-size="2"
fill="white" font-weight="bold">

<xsl:value-of select="."/>
</fo:block>

</ddfl:layout>
</xsl:for-each>
<ddfl:constraints layout="align(right)"
parts="caption magenta"/>

</ddfl:layout>

Figure 24. Automatically generated constraints and additional
unknown values

A selection of COLOURS
red

blue

yellow

green

magenta

Figure 25. Constant constraints between successive members
of a sequence - the result of Figure 24.

where an unknown constant offset (off ) has been added between
alignments of all the pieces (the title and all the colours) to create
a cascade, and the last element ('magenta') has been constrained to
align with the right of the caption, whose width of course depends
upon the text and the font. ('red' is offset from the title by exactly
the same distance as each pair of colours is separated.) Simple
extensions generating constraint graphs automatically can be used
to generate grids and tabular forms.

Similarly components such as rectangles, circles and images can
be defined to be of indeterminate size and the size determined at
layout time. (Images of course benefit from having a known
aspect ratio and in most practical situations upper and lower limits
on size based on pixellation.) Here is an example where without
knowing the specific size of pictures we can still use a set of sol-
uble constraints to complete layout:

These are the authors of
this paper (John, Roger,
Owen). By resolving a suit-
able set of constraints
we've arranged for the
images to be resized so
that the three of them are
the same height and just
extend to cover the depth of
this text block, which we
could not compute before-
hand.

Figure 26. Variable-sized pictures in constrained layout.

7.3. Computed Graphical Components
The layout functions we've shown so far are of typegraphicsX
graphics->graphics. But we can add 'leaf processors' for other
types of computed graphics, constructing suitable instruction trees
and making components like Figure 27.

Utilities

Resources

Services

Consumer goods

Figure 27. A computed chart as a graphical component.

7.4. Presentational Interdependency and
Reuse: Variables.
Whilst many problems can be solved completely top-down, some-
times the result of layout of one part is required before another can
be processed. A typical case is where a text-column has a width
that is dependent upon how large some other pieces turn out to be
- we need some informationpost-renderingof one component to
control rendering of another. Such interdependency might be ana-
lysable and evaluation order determined, but we forsee circum-
stances where more explicit control is needed.

In many practical documents there are common substructures that
are reused often, such as page backgrounds. We should be able to
construct these only once and then copy as required.

To support both these needs (reuse and interdependency), the lay-
out processor has a simple model forpresentational variables,
roughly akin to the XLST scoped variable model. (SVG has 'def'
and 'use' which can perform similar function, but we wanted
something that was generally applicable within our layout space,
as well as being able to be processed through XPath expressions).

<ddfl:variable name="magenta">
<ddfl:layout function="linear-constrained" lay-
out="align(centre) align(middle) same(width)
same(height)">

<svg:rect rx="1" fill="magenta"/>
<fo:block font-family="Helvetica" font-size="3"
fill="white">a magenta block whose size depends
on font and text</fo:block>

</ddfl:layout>
</ddfl:variable>
<ddfl:layout function="linear-constrained" lay-
out="align(centre) abut(below)">

<ddfl:copy-of select="$magenta"/>
<fo:block font-family="Helvetica" font-size="2"
text-align="justify">

<ddfl:attribute name="width"
select="$magenta/svg:svg/@width div 2"/>A portion
of text that has been flowed into a block whose
width should be half that of the 'magenta'
object. This can only be determined after that
object has been constructed</fo:block>

<ddfl:copy-of select="$magenta"/>
</ddfl:layout>

Figure 28. Declaration and use of a presentational variable.



9

In Figure 28 we generate the item 'magenta' and assign it to a vari-
able of the same name. We can extract its width to be applied to
the text block (via an XPath expression which also performs some
arithmetic), and then interpolate two copies of 'magenta' into the
final result, laying out the three parts as a compound object:

a magenta block whose size depends on font and text

A portion of text that has been flowed
into a block whose width should be half
that of the 'magenta' object. This can
only be determined after that object has
been constructed

a magenta block whose size depends on font and text

Figure 29. The result of evaluating Figure 28.

Use of such a mechanism both allows finer control by designers
and also can be generated dynamically for higher-order forms of
layout. In practice we've used it often to determine a width of text-
blocks, such as in this article.

By bringing all these techniques together we can produce quite
complex output. In the following multi-page retail flyer document
(Figure 30), mappings for individual products are held in one
DDF file, flyer background in another and the composition co-
ordinated by a third. Two levels of customisation have been
imposed: to the particular store and to a specific mix of products:

Bargains only 19th May - 1st June 2004

Bombon Donuts 4
Pack

£1.49
WAS £2.99

Half price

Schweppes Tonic
20cl x 6 Pack

£2.19

Buy any 1 get 1

free
saver best deal!

Carbonell Extra
Virgin Olive Oil
75cl

£5.99

Buy any 1 get 1

free
Special purchase while stocks last

Barbie Eau de
Cologne
75ml

£3.99 kg
WAS £7.99per kg

Half price

Stoke Gifford - Bristol

Everyone a
winner when

you're LOCAL!

Filton Road, Stoke Gifford, Bristol BS34 8QZ
Phone: (0117) 9799910

Opening Hours to
suit Everyone!

Monday 8am - 7pm
Tuesday 8am - 7pm

Wednesday 8am - 9pm
Thursday 8am - 9pm

Friday 8am - 9pm
Saturday 8am - 6pm
Sunday 10am - 4pm

More great offers coming 2nd June

Dixan Detergent
1530g

£2.15

Buy any 2 for

£3.00
saver best deal!

Oreo Biscuits 4
Pack

£1.99
WAS £2.62

Save

63p
saver best deal!

Johnson's Baby
Shampoo
750ml

£1.49

Buy any 1 get 1

free
saver best deal!

Colgate Total
Toothpaste
75g

£2.77

Buy 2 for

£4.00
saver best deal!

Figure 30. A complex customised document

8. COMPARABLE TECHNOLOGIES
There are a number of relevant and comparable recent technolo-
gies arising from developments in XML and its processing, XML-
based presentation formats and extensive documentworkflows .

Aßmann [2] outlines an architectural style for active documents
that accomodates merging, (invasive) composition, dynamic
updating (transconsistency) and staged processing, though specific
examples and implementations aren't apparent.

Villard and Layaïda [15] present an approach ( incXSLT ) to eval-
uating XSLT programs in an incremental fashion, specifically to
carry out minimal rework on dynamic change in source data. It
involves internal dependency analysis of the program to determine
sets of re-evaluation rules, rather than trace logging of execution
in some other schemes. Such analysis may be helpful in support-
ing incremental binding of variables in DDF.

Bes et al.[5][6] have explored coupling formatting systems
together through sets of presentation operators allowing closer
control of preferences between alternatives, fallback in case of
failure and declaration of global policies. These are described in a

control document which defines extraction, translation and com-
bination of components between different formatters. In contrast,
current DDF layout works with a canonical SVG form and strict
hierarchical instruction scoping and explicit variable declarations,
relying on naming discipline to avoid clashes.
Constrained SVG [4] is an extended form of SVG where various
numerical attributes (positions, sizes etc.) on SVG components
and assemblies can be declared as named variables and a series of
linear constraints added relating these variables. An SVG renderer
solves the network of constraints dynamically to determine the
actual bindings for rendering the components. This can also occur
repeatedly within animations for example. Later work [10] has
added a library of common 'lookup functions' within the renderer
to attach to component properties such as position and size, mak-
ing building constraint equations easier and supporting depend-
ency analysis. DDF's constrained layout concentrates on how to
declare these relationships between components without having to
construct the equations explicitly, though we use the same under-
lying constraint solver. We think that DDF layout could in some
casesgenerateconstrained SVG as output.

9. CURRENT STATUS; FUTURE PLANS
An early form of DDF and an associated set of layout semantics
exists and is supported by an experimental implementation which
is adequate to generate all the examples shown in this paper and
this paper itself. [The paper 'source' is ~XHTML - the DDF docu-
ment acts as a template mapping to modified XHTML as structure
(references and figures interpolated, XML fragments pretty-prin-
ted) and thence to ACM style for layout and pagination.]

Construction semantics based on XSLT are reasonably stable.
Layout is based principally on SVG as the canonical form of a set
of hierarchical geometric components. Primitive components can
be direct SVG fragments or wrapped text blocks based on slightly
extended semantics of the XSL-FO<fo:block/>(which is con-
verted to equivalent SVG.) A layout library (instructions in the
XSLT sense, i.e. attributed nodes with children acting as argu-
ments) exists covering simple functions such as distribution,
encapsulation, simple flows and pagination. The processor also
attaches to a linear constraint solver (Cassowary [3]) providing a
richer set of possible layouts, and there is a simple Java connec-
tion to support other more esoteric forms of layout such as re-
ordering packers. Output formats include subsets of SVG (1.2),
HTML and PDF, generated from an SVG intermediate.

Apart from refinement of the DDF design and its implementa-
tions, there are other areas for development, including managing
external references and supporting incremental binding. We will
discuss these subjects briefly to show the possibilities within
DDF.

9.1. Incremental Binding
Our examples shown in this paper have used fully bound data: the
arguments to the document-as-function have been fully instanti-
ated. In some cases however the data may be onlypartly bound.
For example a sequence of daily records might end in a continu-
ation (Mon, Tues,...). In this case it would be attractive to be able
to consume and process this section of the data, making a new
DDF document, whilst still able to consume more data
(Wed,Thurs) at a subsequent stage using that result document. In
such cases we want the evaluation of 'document-as-function' to



10

yield something of similar type - a function that can be reapplied
on some other variable data. The workflow of our earlier diagram
now should look like Figure 31:

application
   
data
   
1 ...
   

bind
   
eval
   

DDF document
   

data
   

struct
   

pres
   

DDF document
   

data
   

struct
   

pres
   

1
   

1
   

1
   

application
   
data
   

2
   DDF document
   

data
   

struct
   

pres
   

1
   

1
   

1
   

2
   

2
   

2
   bind
   
eval
   

Figure 31. Generating new presentation

where the indication of a continuation ('...') on the original data is
detected and results in program elementsbeing generated in the
resulting DDF document as well as structure and presentation
derived from the presented data. What has been evaluated is

ddf:doc(variable-data...)

whose type may still be a function.

Then at a subsequent point the DDF document (which contains all
necessary program) can be subjected to additional binding and re-
evaluation, effectively determining:

(ddf:doc(variable-data...))(more-data)

Similarly a set of alternatives within a document may be depend-
ent upon a data value or other control parameter (page sizing,
internationalisation etc.) which is known not to be yet defined.
Program constructions can be passed through into the results such
that correct choice may be made at a later choice point.

The advantage of exploring such partial binding and 'eager' evalu-
ation, rather than using a lazy evaluation scheme when results are
needed in final printed form, is that with suitable implementations
re-use can be optimised. For example a partial binding of a pro-
motional flyer with products to be promoted can be processed
once to produce a templatethat could be further customised, by
addition of simple customer details (name, address ..) over many
thousands of customers but with the the template construction
only performed once. Of course it is a research issue on what
operations in construction, and especially layout, can be per-
formed partially and incrementally re-performed. We have started
some very preliminary experimentation in supporting these types
of partial binding, though we expect considerable use of designer-
specified 'hints' for early examples.

9.2. External References
One issue that appeared in early prototypes was pieces of applica-
tion data acting as references to external objects, most notably
images. Final documents and intermediates may be in different
places from sections of the original application data, making relat-
ive references exceptionally fragile. We needed to add some
mechanism that would track such references effectively through
arbitrary XSLT program (especially forming temporary trees
where ancestry paths back to source routes are normally broken).
An early attempt used XML's namespace system to achieve this,
but a more robust and explict system of context maps has been
developed for future implementations.

10. ACKNOWLEDGEMENTS
We're grateful to our colleagues Fabio Giannetti, Royston Sellman
and Tony Wiley for robust discussion on the purpose and direction

of DDF, to Xiaofan Lin and Brian Atkins for exercising the
extensibility of layout and to Peter Woods for help in developing
the DDF build environment. The reviewers of this paper made
helpful suggestions which have been incorporated in this version.

11. REFERENCES
[1] André, J., Furuta, R. and Quint, V. Structured Documents .

Cambridge University Press. 1989.

[2] Aßmann, U. Architectural styles for active documents .
Science of Computer Programming . Vol56, 79-98. Elsevier.
2005.

[3] Badros, G., Borning, A. and Stuckey, P. The Cassowary lin-
ear arithmetic constraint solving algorithm .ACM Transac-
tions on Computer-Human Interaction (TOCHI) . Vol8 (4),
267-306. 2001.

[4] Badros, G. et al. A constraint extension to scalable vector
graphics . InProc. 10th World Wide Web Conference, Hong
Kong . 2001.

[5] Bes, F. and Roisin, C. A Presentation Language for Con-
trolling the Formatting Process in Multimedia Documents . In
Proceedings of the 2002 ACM symposium on Document
engineering . 2002.

[6] Boulmaiz, F., Roisin, C. and Bes, F. Improved Formatting
Documents by Coupling Formatting Systems . In Proceedings
of the 2003 ACM symposium on Document engineering .
2003.

[7] ISO, International Standards OrganisationOpen Document
Architecture .http://www.iso.org/. 1994.

[8] Knuth, D.TEX the program . Addison-Wesley Pub. Co.,
Reading, Mass. 1986.

[9] Lamport, L. LaTeX User's Guide and Document Reference
Manual .Addison-Wesley, Reading, MA. 1986.

[10] McCormack, C., Marriott, K. and Meyer, B. Adaptive layout
using one-way constraints in SVG .
http://www.svgopen.org/2004/papers/ConstraintSVG/. 2004.

[11] Open Geospatial Consortium Geography Markup Language
(GML 3.0) . http://www.opengeospatial.org/. 2001.

[12] PODi, Print On Demand InitiativePrint On Demand Initiative
.http://www.podi.org. 2005.

[13] PODi, Print On Demand InitiativePersonalized Print Markup
Language (PPML) Version 2.0 . http://www.podi.org. 2002.

[14] PODi, Print On Demand InitiativePersonalized Print Markup
Language - Templates (PPML/T) . http://www.podi.org.
2002.

[15] Villard, L. and Layaïda, N. An Incremental XSLT Trans-
formation Processor for XML Document Manipulation . In
Proc. 11th World Wide Web Conference, Honolulu . 2002.

[16] W3C, World Wide Web ConsortiumExtensible Stylesheet
Language (XSL) . http://www.w3.org/TR/xsl/. 2001.

[17] W3C, World Wide Web ConsortiumXSL Transformations
(XSLT) Version 2.0 . http://www.w3.org/TR/xslt20/. 2005.

[18] Walsh, N. and Muellner, L. DocBook: The Definitive Guide .
O'Reilly & Associates. 1999.


