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Real Time Motion Analysis Toward Semantic
Understanding of Video Content

Yong Wang, Tong Zhang, Daniel Tretter

1. INTRODUCTION

The work presented in this technical report was initially inspired by the application scenario of video 
printing. Current printers are good at printing planar media content such as documents and images, 
but not for 3-D signals such as video, which contains much more information with a huge amount of 
redundancy. One intuitive way to print video is to select key frames from the clip. In previous work 
we proposed an intelligent method for extracting key frames by analyzing audio and video features1. 
In this report, we will focus on the video motion analysis part of this method. 

Video motion analysis can be divided into two aspects: global / camera motion estimation, and 
foreground / object motion analysis. Camera motion estimation involves optical flow analysis, 
camera motion estimation and semantic meaning extraction; object motion analysis involves object 
detection and tracking. Although these topics have been extensively discussed in the literature, a 
thorough system combining all of them without human interaction, especially under a real time 
application scenario, is still worthy of further investigation. We specify our approach toward such a 
destination and propose an integral architecture. Based on this architecture we also build up a real 
time video semantics analysis tool and demonstrate its usability and efficiency through experiments. 
The result of this project can be widely used in video / image understanding and management 
applications such as summarization, annotation and retrieval.

This report is organized as follows. Section 2 presents an overview of the proposed system
architecture for real time video motion analysis. Section 3 discusses issues in camera motion 
estimation. Section 4 describes the method for moving object detection and tracking. Experimental 
results are shown in section 5. Finally, we present our conclusions in section 6.

2. SYSTEM ARCHITECTURE

Figure 1 outlines the framework of the proposed system for real time video motion analysis. It can 
be divided into four modules: data preparation, camera motion understanding, object detection and 
object tracking. 

The proposed system is built upon pixel-domain processing. The data preparation module provides 
the necessary image sequence for the subsequent processing. Specifically, after the video bit stream 
is decoded, spatial down-sampling is applied to reduce the computational complexity to fulfill the 
real time requirement. The low-resolution image is used later in the object motion analysis module, 
and the luminance channel is used for the camera motion analysis module.  

The camera motion understanding module is comprised of camera motion estimation and subsequent 
semantic meaning parsing. The former is implemented through optical flow analysis and affine 
model estimation. The featured block selection component picks image blocks with significant detail 
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for camera motion estimation. The semantic meaning parsing component tries to understand the 
semantic intention behind the camera motion activities. We propose a simple but effective 
summarization method to achieve this purpose, which will be specified in Section 3. 
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Figure 1: Proposed system framework for real time video motion analysis.

The object detection module locates semantically meaningful objects through motion residual error 
analysis. First the residual error is estimated using affine model parameters, as well as the current 
and the previous (buffered) frames. The residual errors, however, cannot be directly used to locate 
the object due to interference such as signal noise, spatial texture complexity and affine model error. 
Therefore, region filtering is employed to exclude outliers. The basic philosophy of the filtering is to 
find the dominant object with remarkable motion, moderate size and semantically meaningful 
position. This procedure is implemented through a set of filters, as specified in Section 4. The region 
boundary of the detected moving object is then fed into the object tracking module. 

The object tracking module follows the trajectory of the detected moving object. RGB frames, 
instead of luminance images, are used during this procedure, allowing us to apply color information 
to facilitate the tracking. Candidate regions within the searching range around the detected object are 
checked through some similarity estimation; the optimal one is selected; and the trajectory is 
recorded accordingly.

3. CAMERA MOTION ESTIMATION

Camera (global) motion refers to the motion induced by camera operations such as zooming, 
panning and rotation. Its effect can be observed as frame-wide well-regulated optical flow changes
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following the affine transformation defined by the camera motion. In real video this ideal situation is 
somewhat impaired by the foreground motion and other signal noises. The task here is to discover
the camera motion’s affine model based on observed noisy optical flow activities. We also discuss 
the issue of high level semantic meaning extraction based on the estimated camera motion 
parameters. 

3.1. Optical Flow Analysis
The basic method for motion estimation is the block matching algorithm (BMA). The matching 
criterion calculates the intensity difference between a block at position (m, n) with dimension (W, H) 
in the kth frame and a block shifted by the motion vector (i, j) in the (k-1)th frame, as:

1 2
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where I is the luminance intensity of the pixel, and e(i, j) is the error metric, usually sum of the 
squared error or sum of the absolute error. The motion vector is the one yielding minimum distortion 
within a defined search range (M, N), i.e.:
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,
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i j

V k m n E i j i M j N= ≤ ≤ ≤ ≤    (2)

This minimum distortion measurement, however, doesn’t always deliver the right information, as 
illustrated in Figure 2(a). At the moment of this frame, the camera was undergoing a panning 
operation with a direction indicated by the lines from the center of the blocks, except for the one 
with a cross mark, which has a quite different motion vector compared with the others. The reason 
for this discrepancy is that the distortion distribution among the search range (in this case M=N=8)
has a very small variance and the final result is affected by random noise. 

3.1.1. Outlier analysis
In this paper, we define outliers as blocks with motion vectors different from the consensus obtained 
from all blocks in the frame. Generally most outliers fall into two categories:
1) Object motion: these outliers carry useful information about object motion, as indicated in Figure 

2(b), where in the video sequence, the boat has its own motion different from the camera motion. 
We will discuss utilizing outliers to detect the object motion in Section 4.

2) Mismatched block: this happens for several reasons. In Figure 2(c), blocks located on the 
building’s wall have very simple region textures, and consequently yield too small distortion 
distribution variance in the search range. Other reasons include sudden luminance change and 
limited search range compared with the camera motion magnitude.

3.1.2. Featured block selection
Featured block selection is used to choose specific blocks with trackable content. It is important in 
two senses: first, it can efficiently reduce the amount of outliers as mentioned above; second, it can 
reduce the BMA calculation significantly, which is required for a real time application scenario. 
There are several feature selection approaches in the literature, such as KLT transform, temporal 
texture analysis, DCT energy statistic, Moravec operator, etc. In this work, we use edge based block 
selection considering its potential advantage in object detection. After edge detection, only blocks 
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containing a certain amount of edge pixels are selected and used for motion compensation. The 
decision threshold is dynamically adjusted according to the statistical distribution of the image’s 
gradient magnitude. As illustrated in Figure 3, through feature selection, the amount of outliers due 
to mismatched blocks is effectively reduced.

 (a)          (b)       (c) 

Figure 2: Motion estimation outliers due to object motion and noise.

(a) Original frame     (b) Edge map   (c) Selected featured blocks

Figure 3: Edge based feature selection.

3.1.3. Fast motion estimation
In order to find the motion vector defined by Equation (1), an exhaustive search within the search 
range is the simplest way and guarantees a globally optimal solution. However, its computational 
cost is too high for real time applications. Therefore fast searching approaches2 in the literature are 
considered to speed up the procedure. In addition, the following measures are also taken to further 
reduce the computation:
1) Image resolution down sampling. The motion compensation is executed at a low-resolution 

image level. Our experiments showed that compensation at a low-resolution level can achieve 
satisfatory results in terms of semantic meaning extraction and object detection, while saving 
computational cost. 

2) Block skipping. If one block is selected, all of its neighboring blocks are skipped under the 
assumption that adjacent blocks share very similar motion behavior. This block sampling can be 
seen in Figure 2. 

3) Halfway termination. In calculating the compensation residual error of a certain block, once the 
accumulated distortion during summing up the pixel differences is bigger than the current 
minimum of block distortion, the calculation is terminated and this block is skipped. This 
measure helps to avoid unnecessary calculation..
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3.2. Affine Model Estimation
The affine model is widely used in estimating camera motion3. In this work we consider rotation, 
panning and zooming of a camera. That is, an arbitrary point P(x, y, z) in the space is projected into 
the camera’s view plane as the point Q(u, v) following the transform: 
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 (3)

where zoom, rotation, panx and pany are four parameters determined by the camera motion. Since
there is no depth mapping information for non-stereoscopic video signal, we assume a constant
depth for all points, i.e. z=1. This model satisfies our requirement of semantic meaning analysis for a 
wide range of videos. The affine model is estimated by using the least squared error (LSE)
regression4.

The basic idea of affine model iteration is to exclude the outliers whose residual errors are more than 
a pre-defined threshold. The threshold is usually predetermined based on the standard deviation of 
the residual error. After the outliers are excluded, the affine model is re-estimated. The iteration is 
terminated when the affine parameter set becomes stable. To avoid potential divergence, a maximum 
iteration amount is defined. Our experiments indicated that the estimation is done within three
iterations for most frames.

3.3. Semantic Meaning Extraction
After affine model estimation, a set of parameters is obtained for each frame denoting the camera
motion at that moment. However, to retrieve motion semantics, it is necessary to have a 
summarization based on these models over moderate time spans. Figure 4 shows a series of affine 
model parameters, denoted as (Zoom, Rotation, Panx Pany), in their frame order. This data, while 
complete, is not in a human-friendly format. A more suitable way to summarize the results is to 
generate semantic level descriptions such as “from time 0.7s, the camera is focusing without 
motion”. In this paper, we propose the following technique for abstracting camera motion.

From time  0.70s, 
camera motion is:           
focus

Figure 4: Semantic meaning abstraction from affine model parameters.

1) Camera motion quantization. The camera motion is quantized into several high level 
conceptions. Figure 5 is the schema employed to quantize the camera pan parameters. Other 
parameters can be processed similarly. In this schema, the pan magnitude along X-, Y- axes are 
classified into four regions: focus, slow, medium and fast. Accordingly, the direction is also
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quantized into discrete values as indicated in Figure 5(b). In order to avoid interference due to 
camera vibration and noise, hysteresis thresholding is employed to decide the transitions.

2) Sentence generation. Small time spans are naturally clustered together based on their affine 
model similarity, yielding a reasonable number of semantic meaning regions. That is, any 
adjacent frames sharing the same quantized camera motion behavior are merged together as one 
region, which we call a sentence. This step segments the video into a number of sentences, and 
within each sentence the camera motion is consistent. The average affine model is calculated for 
each sentence. 

3) Paragraph generation. Next, the histogram of sentence duration is calculated. A further merging 
operation is executed. That is, consecutive sentences can be merged into one paragraph
according to a similarity comparison. The similarity is measured according to some distance 
metrics between affine models. The semantic meaning of each paragraph is re-evaluated using a
weighted affine model. This procedure is illustrated in 

4) Figure 6.
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Suppose there are Nf frames in the entire video clip. For each frame i, i=1, 2, …, Nf , there is the
duration tfi, affine model Afi, and quantized camera motion Sfi. After sentence generation, Ns
sentences are produced, each with average affine model Asj and duration tsj, where
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Then, the histogram statistics are calculated for the distribution of duration tsj. A pre-defined 
duration tolerance threshold Td is used to merge sentences into paragraphs. The sentences with 
duration larger than Td will act as anchors Sa, and the other sentences are merged into these anchors 
based on distance measurement. The semantic meaning of each paragraph is re-evaluated as: 
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where Q(A) is the quantization mapping from affine model to semantic meaning, and D is the 
selected distance measurement. In this process, Td embodies the sensitivity degree in terms of 
semantic meaning change detection. How to select Td to achieve the appropriate tradeoff between 
particularity and generality is worthy of further investigation.

4.  MOVING OBJECT DETECTION AND TRACKING

4.1. Moving Object Detection
Object detection attempts to find and track a single dominant object region with considerable motion 
and semantic meaning. In general, object detection is a difficult problem and approaches in the 
literature usually involve some degree of simplification. Some examples of such simplification
include limiting the application to specific object category such as face5, and using pre-known 
models6. In this paper, we detect moving object only based on motion information, with the 
assumption that the foreground motion behavior is different from the background and its region is 
exposed as outliers when estimating motion compensation residual errors as in Equation (1). In 
reality, this assumption is not always true due to noisy background motion estimation. Also in a real 
time system, computing simplifications make the situation worse. Therefore, one important task for 
motion based object detection is to distinguish the actual object from the background noise among 
the outliers. In order to achieve this, we make some simplification assumptions: 
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1) Moderate object size assumption: the object should be of moderate size in terms of exposing 
enough residual errors and delivering considerable semantic meaning. Too small an object is 
difficult to detect due to its limited residual information and the interference from noise, while 
too large an object will make the performance of camera motion estimation very poor and 
consequently the judgment of object is also unreliable. 

2) Center-biased assumption: the interest in an object wanes as its location moves away from the 
center of the frame. This assumption is reasonable because it matches the subjective experience 
well. Imagine a sequence with a car driving through the screen, the frames with the car close to
the middle of the scene are likely to be of more interest than the frames with the car entering or 
leaving the scene. 

While there are tradeoffs in making such simplifications, our experiments indicate that these 
assumptions match the semantic meaning criteria well and are reasonable and efficient 
simplifications. 

With the above assumptions, instead of using the directly calculated residual error for detecting 
moving objects, we apply a set of weighting parameters to filter the residual errors. Figure 7 shows
the diagram of this filtering. The residual error of each incoming video frame is estimated after the 
camera affine model is obtained. Then the error undergoes a set of filters and the object region is 
detected after the filtering. These filters are detailed below. 

Filtered
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& Magnitude
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Figure 7: Moving object detection based on filtered residual error.

1) Spatial position filtering: this filter assigns higher weight to blocks located near the central 
region of the frame. One possible filter function is an exponential function:
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where P is the block under estimation. P is the distance between this block and the center of 
the frame. M is the predefined value where the weight is zero. ε is a parameter used to 
normalize the function.

2) Motion magnitude filtering: this filter comes from the empirical observation that the bigger the 
camera motion’s magnitude is, the more outliers are prone to be generated by background noises. 
Currently the panning magnitude is considered. One possible filter function is Gaussian based: 

2

22

2 2
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M x y

f P e

P pan pan

σ

−

=

= +
 (7)

where MP is the panning magnitude, and the deviation is set to be on the boundary of the 
searching range. The difference between this and the previous filter is their behavior on the 
boundary: the spatial position filter assigns zero weight on the frame boundary while the motion 
magnitude filter has non-zero weight on the search boundary.

3) Block region size and magnitude filtering: in order to realize this filter, all outlier blocks are 
firstly clustered into regions based on their connectivity. This is achieved by using a fast 
flooding algorithm. Once all of the outlier blocks are clustered into specific regions, each region 
is then denoted by a bounding rectangle box and a representative residual magnitude, which is 
selected to be the maximum residual error among all of the blocks in the region. Next, the size 
and the representative residual magnitude are estimated. The region with a size below some 
threshold, or magnitude under some threshold, will be ignored. If there is at least one region with 
a size larger than a third threshold, this frame is skipped and will not be used to detect object 
because we assume the affine model in this frame is not reliable. All of the thresholds used here 
are set in advance. 

4) Temporal frame filtering: this filter is necessary because not every frame is suitable for detecting 
moving object. Figure 8 shows one frame and its residual error map. Since the residual error of 
the moving object (the player) is overwhelmed by the background noise, it is very hard to locate 
the object. The residual error from the audience is so large due to its complex texture and the 
very fast motion of the camera. Thus, after all the above filtering, only those frames with one 
dominant residual block region and moderate size will be kept. All other frames are skipped. 

Figure 8: Not every frame is suitable for detecting moving object.
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Once a moving object is detected, its position and size (denoted by a bounding rectangle box) is 
forwarded to the moving object tracking module.

4.2. Moving Object Tracking
In this work, moving object tracking is based on the algorithm of kernel based tracking (KBT)7, 8. 

4.2.1. Feature space representation
The quantized color histogram is used to represent the detected object during object tracking. We 
directly use RGB color space with NNN ×× bins, where N is the number of bins for each color 
channel. The advantage of color histogram is its robustness when the object is undergoing complex 
motion such as rotation, scaling, and even non-rigid warping. However, the drawback of color 
histogram is its lack of spatial or texture information. In this work, to compensate this problem, we 
propose a spatially enhanced color histogram. In one implementation, the object region is divided 
into the marginal part and the central part, as shown in Figure 9. Each part has its own histogram 
statistics, and the overall histogram is the concatenation of the two regional histograms. Please note 
that other ways of partitioning the color histogram with spatial information could be used as well. 

Figure 9: Spatial information enhanced color histogram.

The color histogram is normalized to a probability shape: 
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where δ is the Kronecker delta function, u is the histogram entrance index, and q is the color 
histogram probability. )( ixb is the function mapping a pixel ix , located in the object region, into 
one entrance of the histogram bins. n is the number of pixels in the object region. 

The direct usage of color histogram has a drawback: for the peripheral pixels, they are prone to be
affected by occlusions (clutter) or interference from the background. The improvement to this 
situation is to apply a kernel function and assign smaller weights to pixels farther away from the 
center. Using these weights can effectively increase the robustness of the density estimation.

4.2.2. Kernel based object tracking
The principle of kernel selection is to select one with a convex and monotonic decreasing profile. 
The recommended kernel function is the Epanechnikov kernel:
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where cd is the volume of the unit d-dimensional sphere and x is the normalized position of the 
pixels in the object region. The origin of the normalized coordinates is located at the center of the 
object. The Epanechnikov kernel has a constant derivative, which yields significant computing 
simplification. Correspondingly the target model is defined as:
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where C is a normalization constant. So the target model is a weighted color histogram probability 
distribution function. Similarly the target candidate is defined as: 
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where Ch is the normalization constant, h is the bandwidth parameter to handle the object scaling, 
and y is the central coordination of the target candidate. 

Given the target model and the target candidate, the similarity metric is measured by using the 
Bhattacharyya coefficient, which is defined as: 
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u u
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where m is the bin number of the histogram. Further, the distance between the target model and the 
candidate is defined based on the Bhattacharyya coefficient:

( ) ( )ˆ ˆ1 ,d y p y qρ  = −    (13)
Thus, the object-tracking task finds the target candidate that minimizes this distance.

5.  EXPERIMENTAL RESULTS

The proposed system has been validated through extensive simulation experiments. In the 
simulation, we adopted the Sobel operator to extract feature blocks, the three-step searching 
algorithm to run the optical flow analysis, the LSE regression iteration to work out the affine model, 
and the Bhattacharyya coefficient to estimate the object region similarity. Two major aspects of the 
system are evaluated: computational complexity for real time processing and motion analysis 
performance. The simulation was run on a laptop with configuration of PIII 1.0GHz CPU and 256M 
memory. 

5.1. Computational Complexity
Table 1 summarizes the result for the video clip Stefen. The video format is detailed in the table. 
From it we can see that the real time performance of our proposed method is very promising: the 
total time of motion analysis is comparable to the decoding cost and the whole processing including 
decoding, camera motion analysis and object motion analysis (detection and tracking) can be 
finished several times faster than real time. A zoomed observation in Figure 10 gives us some more 
information. Figure 10(a) shows the time spent on decoding, camera motion and object motion 
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analysis. If we analyze the image sequence instead of the encoded video clip, the decoding cost can 
be saved and the procedure can be sped up by about two times. Figure 10(b) details the cost of 
camera motion analysis and is helpful for us to further improve the performance by optimizing 
dominant components. For example, if we directly work on the luminance image, the cost of color 
space transform can be saved. Also, the featured block selection part (mainly edge detection) 
consumes about one third of the cost in camera motion estimation. A faster featured block selection 
method may yield better performance. 

Table 1: Real-time performance of the system when applying to the Stefan video

Table 2 shows the result for another video clip San Francisco, which is a panorama view of a wharf 
in San Francisco. We can get similar conclusion on this sequence, which means our method has a 
very good practicability for typical types of video. Figure 10(c) and (d) detail the time spent by each 
component. Since the image resolution is relatively high, the cost of decoding, color space transform
and down sampling dominate the total time spent.  

Decoding
Camera Motion
Object Motion

RGBToYUV
Down Sampling
Featured BlockSelection
Motion Compensation
Affine Model Regression

Decoding
Camera Motion
Object Motion

RGBToYUV
Down Sampling
Featured Block Selection
Motion Compensation
Affine Model Regression

 (a) Stefan    (b) Stefan     (c) San Francisco    (d) San Francisco

Figure 10: Computational cost details for two video clips: Stefan and San Francisco.

Table 2: Real-time performance of the system when applying to the San Francisco video

Sequence Coding 
Format

Image 
Format FPS Length (s) Decoding

Time (ms)

Decoding + 
Camera 

Motion (ms)

Decoding + 
Camera Motion + 

Object Motion (ms)

San Francisco MJPEG (640X480) 15 26.0 9263 11636 12959

5.2. Camera Motion Estimation
Figure 11(a) shows the user interface of camera motion estimation. The visual output includes the 
edge map, selected feature blocks with motion vector, detected outliers and a simulated 3D camera 
motion. In general, the selected feature blocks can provide sufficient information for optical flow 
analysis, and the LSE regression can detect outliers effectively. Subjective tests indicate that the 
simulated camera motion, which is based on the estimated affine model, coincided with human 
perceptual observation. More results are shown in Figure 11 (b)-(d). Figure 11(b) and (c) are 

Sequence Coding 
Format

Image
Format FPS Length (s) Decoding 

Time (ms)

Decoding + 
Camera 

Motion (ms)

Decoding + 
Camera Motion + 

Object Motion (ms)

Stefan MPEG-1 SIF (352 X 240) 30 10.0 2016 3105 4256
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examples where the camera motion analysis worked well. While Figure 11(d) shows a case where 
the estimation failed due to two reasons: firstly the video was taken by a bicycle rider therefore the 
camera was undergoing a rapid translation operation, which is not modeled by our current four-
parameter affine model; secondly the scene is dominated by the foreground objects (two riders) with 
ample non-rigid motion. As mentioned earlier, for such a sequence there is not enough statistical
data about the background motion and the estimated affine model is unreliable. 

 (a) User interface   (b) San Francisco  (c) Coast guard  (d) Bicycle
Figure 11: Results of camera motion estimation.

5.3. Object Motion Analysis
Object motion analysis includes moving object detection and tracking. Figure 12 shows the user 
interface, including the simulated camera motion, the residual error map, the detected / tracked
moving object, and the Bhattacharyya coefficient value for the tracked object region. Figure 13
illustrates more moving object detection results, together with the frame index where the object was 
detected. 

Figure 12: User interface of moving object detection / tracking.



14

 (a) Akiyo Frame# 80 (b) Foreman Frame# 7 (c) Seaside Frame# 18 (d) Stefan Frame# 3

Figure 13: Example results of object motion detection.

6.  CONCLUSION

In this work, we explored the research topic of real time video motion analysis. We discussed two 
aspects of our system: camera motion estimation and object motion analysis, with the latter 
including moving object detection and tracking. We proposed an integral architecture and built up a 
real time video motion analysis system. The usability and efficiency of the proposed system were 
demonstrated through experiments. It was shown that the computational complexity and the analysis 
performance are well balanced in the system. Valuable benchmark data were provided for further 
improvements. The result of this project can be widely used in video understanding and management 
applications such as browsing, indexing, printing and summarization of video. 
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