

A Simultaneous Maximum Flow Algorithm for the Selection Model

Bin Zhang, Julie Ward, Annabelle Feng
Intelligent Enterprise Technologies Laboratory
HP Laboratories Palo Alto
HPL-2005-91
May 13, 2005*

Maximum Flow,
parametric flow
networks, graphs,
optimization,
selection,
sequencing

A new algorithm, SPMFsimple, for finding the complete chain of solutions
of the product selection model is presented in this report. λ-directed
simple residual path is identified to the only kind of residual path
necessary for the new algorithm. By augmenting the right amount of
flows along λ-directed simple residual paths, the new algorithm is
monotone convergent.

* Internal Accession Date Only Approved for External Publication
© Copyright 2005 Hewlett-Packard Development Company, L.P.

A Simultaneous Maximum Flow Algorithm for the Selection Model
Bin Zhang, Julie Ward, Annabelle Feng

IETL/HPL

Abstract. A new algorithm, SPMFsimple, for finding the complete chain of solutions of the product selection model is
presented in this report. λ-directed simple residual path is identified to the only kind of residual path necessary for the new
algorithm. By augmenting the right amount of flows along λ-directed simple residual paths, the new algorithm is monotone
convergent.

(Note: This work was first presented at the INFORMS Annual Meeting in Denver, October 2004.)

1. Introduction

The Selection Problem is stated as follows: There are two sets of entities 1
1{ }n

i iP p == and 2
1{ }n

j jO o == . Each

o O∈ depends on a subset of p’s, denoted by oP P⊂ . Let ix and jy be the indicator variables, taking values in

{0,1}, associated with ip and jo respectively. A value 0oR ≥ is associated with each o O∈ . The selection
problem is defined by the following integer programming model:

IP(n): max o oo
R y∑ s.t. pp

x S≤∑ , o py x≤ for all op P∈ and , {0,1}p ox y ∈

Solving this integer program directly can be very difficult and costly. Replacing first constraint with a

penalty term in the objective and relaxing the integrality requirement give us a linear program, the Langrangian
Relaxation LR(λ), which depends on the penalty λ:

LR(λ): max o o po p

R y xλ−∑ ∑ s.t. o py x≤ for all op P∈ and 0 , 1p ox y≤ ≤

The problem LR(λ) for fixed λ is an example of a selection problem introduced independently by Balinski [1970]
and Rhys [1970]. Balinski (1970) showed that a selection problem is equivalent to the problem of finding a
minimum cut in a particular bipartite network, illustrated in Figure 1. There is a source node s at the far left and a
sink node t at the far right. Adjacent to the source node is a set of p-nodes. Adjacent to the sink node is a set of
o-nodes. The capacity of the arcs adjacent to s is λ. The capacity of the arc from o to t is oR . The capacity of
arcs between a p-node and a o-node is infinite.

A st-cut is a partition of the nodes into two subsets – the s-partition containing s and the t-partition containing
t. The capacity of a st-cut is the sum of the capacities of arcs going from nodes in the s-partition to nodes in t-
partition. A minimum cut is a st-cut with minimum capacity.

The equivalence is established by observing that min (1)o o po p
R y xλ− +∑ ∑ is the same as

max o o p
o p

R y xλ−∑ ∑ .

It is a well-known result of Ford and Fulkerson that the value of a maximal flow equals the value of a
minimum cut. Moreover, the minimum cut can be obtained by finding a maximal flow.

Figure 1. A bipartite minimum-cut/maximum flow problem

corresponding to the Lagrangian relaxation LR(λ).

As we allow λ to vary, the problem LR(λ) becomes a parametric maximum flow problem, since the arc
capacities depend on a parameter. There are several known algorithms for parametric maximum flow problems,
including that of Gallo, Grigoriadis and Tarjan [1986]. In most of these algorithms, a series of maximum flow
problems is solved, and the algorithm makes use of the previous problem’s solution to speed up the solution at the
next parameter value. By comparison, the algorithm presented in the next section finds the maximum flow in the
network for all breakpoints of the parameter values simultaneously.

2. A Parametric Bipartite Maximum Flow Algorithm
A simple version of the simultaneous parametric maximum flow (SPMFsimple) algorithm is presented in this
section. A more general version of this algorithm that applies to more general capacity constraints and more
general parametric functions of parameter-dependent capacities can be found in (Zhang at el 2004).

SPMFsimple works with a non-parametric network derived from the original parametric network. For the
special case, the derivation is simply removing all the λ dependent capacities on the arcs incident to the source
by positive infinity, which is the first step of the algorithm.

The second step initializes the flows in the derived network. The initial flows in the derived network are set
to fill up all arcs incident to the target. Since all other arcs not incident to the target has +infinity capacity, this
step is straightforward and does not require any special algorithm. After initialization, the total flow through the
network remains fixed forever, which is always equal to the total flow to the target right after the initialization.
Different initializations may have an impact on the amount of time the algorithm will take but it will not have any
impact on the correctness of the algorithm.

The third step is the main body of the SPMFsimple algorithm. It redistributes the flows through the arcs
incident to the source in a regulated way which in the end will result in a special state of the flows in the derived
network, from which all minimum cuts and their associated maximum flows at all breakpoints of the parameter
λ , in the original network, can be found from one linear scan of the vertices and the arcs in the derived network..
Figure 2 shows the derived network.

In the derived network, we define , .
ii s pfλ A residual path is called a λ-directed simple residual path if it

starts from the source, containing a simple loop as s pi o pj s with , ,i ji s p j s pf fλ λ= < = and

, 0
jp of > .

The rules for redistributing the flows are

a) flows are augmented to only λ-directed simple residual paths

P O

s

.

.

t

λ

λ

∞
∞

∞ ∞

∞

∞
∞

λ

r1
r2

rn

b) the amount of flow to augment to a λ-directed simple residual path is the minimum of the residue capacity
of the path and , ,() / 2

j is p s pf f− .

The redistribution of the flow continues as long as there are λ-directed simple residual paths in the network. From
the rules, it is obvious that the order of the two λ-values involved in the residual path of the current operation is
never reversed after augmenting the flow.

Three results are proven: 1. The algorithm is monotone convergent. 2. The converged flows gives a special
state of the flows in the derive network which allows us to read all minimum cuts and their associated maximum
flows in the original network under any breakpoint λ -value in a linear scan of the vertices and arcs.

Figure 2. The derived non-parametric network.

3. Proof of Correctness
First we prove the monotone convergence property.

Theorem 1: The value 1 2
1

n
ii

λ
=∑ decreases after each redistribution operation.

Proof: Each redistribution operation changes only two λ-values involved with the λ-directed simple residual
path, , ii s pfλ = and , .

jj s pfλ = All other λ-values remain unchanged. The sum of all λ-values, which is equal to

the total flow through the network, also remains unchanged. Therefore the sum i jλ λ+ remains unchanged but

their difference j iλ λ− becomes strictly smaller or zero after the redistribution operation (following rule b).
2 2 2 2[() ()] / 2i j i j j iλ λ λ λ λ λ+ = + + − becomes strictly smaller. •

Theorem 2: For any ,, { | } { | () } { }t s pP p f O o p o p P tλ λ λλ λ→= ≥ = → ⇒ ∈∪ ∪ gives the t-partition of the

minimum cut of the original network λΩ .

Proof: Putting all the capacity bounds λ back to the arcs incident to the source in the derived network and
reduce the flows that violate the bound and rebalance the flows at all the vertices where the conservation of the
flows are broken by this reduction. The rebalancing cascades through the network from p-vertices to o-vertices.

1R

.

.

.
.
.
.

s t

2nR

∞

STEP 2: Initialization --
saturating all arcs
incident to the target.

∞

STEP 1: Replace all λ by

∞

∞

When the rebalancing is done, the original network is recovered with a maximum flow and minimum cut.

All the arcs from the o-vertices in the t-partition to the p-vertices in the s-partition have zero flow guaranteed
by the SPMF algorithm (otherwise SPMF would not have stopped). Figure 3 shows the recovered original
network, which clearly shows that no augmenting path from the source to the target is left, therefore the flow is a
maximum flow. •

(Note: The flow reduction and rebalancing in the last proof is only for the proof. Such steps are not needed in the
implementation of SPMFsimple.)

By definition, t-partitions, under all breakpoint values of λ, for a monotone sequence of sets. A single scan of
the p-vertices in either increasing or decreasing order of their associated λ-values will give all the minimum cuts.
The associated maximum flows are calculated from the capacity of the minimum cuts shown in Figure 3, which is
done by incremental computing along with the single scan of the p-vertices.

Figure 3. Recovering the original network with a maximum flow and a minimum cut from the derived network.

4. Implementation Details
After initialization, all p-vertices are queued in a FIFO queue. A procedure named process_one_p() is called on
the p at the head of the queue. If any redistribution of the flows happened in the call, p is put back to the end of
the queue, otherwise the p is deactivated. This process goes on until there is no more p’s in the queue. A
deactivated p is reactivated when it is visited by process_one_p() in a redistribution operation.

process_one_p(p):

for each arcs a incident to p, get the o at the other end of a,

for each arc b incident to o, if b is not the same as a, get the p1 at the other end of b,

 if s p o p1 s is a λ-directed simple residual path, call redistribute(p,p1).

Return.

s pf λ→ <

λ
.
.
.

.

.

.

∞
1R

2nR
s t

Full from
initialization

Full from
reduction

0
λ

Vertices involved in the cascade.
t-partition

5. Conclusions
The SPMF algorithm was implemented in C++. Its performance is significantly better than the improved
algorithms for bipartite network maximum flow by Ahuja at el (implemented in C++ by the third author of this
report). The amount of time SPMFsimple takes to find all the minimum cuts was shown to be less than the average
amount of time Ahuja’s algorithm finds a single minimum cut. However, without access to an implementation of
the parametric maximum flow algorithm by Gallo at el, experimental comparison with their algorithm is still
missing.

Another advantage of SPMF is its simplicity which made its implementation very easy as shown in Section 4.

A generalized version of SPMF algorithm has been documented in a HP Technical report HPL-2004-189.

References
R. Ahuja, J. Orlin, C. Stein and R. Tarjan 1994. Improved algorithms for bipartite network flow. SIAM Journal

on Computing, 23, pp. 903-933

Balinksi, M. L. 1970. On a selection problem. Management Science, 17:3, 230-231.

Ford & Fulkerson 1956. Maximum Flow Through a Network, Canadian Journal of Mathematics 8, 339-404.

Ford, L.R. & Fulkerson, D.R., Flows in Networks, Princeton University Press, Princeton, NJ, 1962.
G. Gallo, M. D. Grigoriadis and R. E. Tarjan 1989. A fast parametric maximum flow algorithm and applications,

SIAM Journal on Computing, 18, pp. 30-55.

Goldberg, A.V. & Tarjan, R.E., 1986 and 1988. A New Approach to the Maximum Flow Problem, Proc. 18th
Annual ACM Symposium on Theory of Computing, (1986), pp. 136-146; J. Assoc. Comput. Mach., 35
(1988).

Rhys, J. M. W. 1970. A selection problem of shared fixed costs and network flows. Management Science, 17:3,
200-207.

Zhang, B., Ward, J. and Feng, Q., A Simultaneous Maximum Flow Algorithm, Hewlett-Packard Research
Laboratories Technical Report – HPL-2004-189.

