

Rethinking the Java SOAP Stack♦

Steve Loughran, Edmund Smith1
Internet Systems and Storage Laboratory
HP Laboratories Bristol
HPL-2005-83
May 17, 2005*

SOAP, java,
JAXRPC, apache
axis, XML,
distributed
computing

This paper examines the current SOAP APIs in Java, and in particular the
Java API for XML-based RPC, commonly known as JAX-RPC, which is
effectively the standard API for SOAP on the Java platform. We claim
that JAX-RPC, and indeed any SOAP API that relies upon a perfect two-
way mapping between XML data and native language objects is
fundamentally flawed. Furthermore, we claim that the attempt JAX-RPC
makes to extend the remote method invocation metaphor to SOAP
services is counterproductive.

We base our argument both upon experience with JAX-RPC and SOAP,
and upon experience of previous distributed computing technologies. We
argue that JAX-RPC is not capable of delivering on the SOAP design
goals, but conclude by suggesting an alternate system, Alpine, which is
free from many known flaws of existing systems, and should prove better
able to deliver upon the promise of SOAP.

* Internal Accession Date Only
♦IEEE International Conference on Web Services (ICWS) 2005, 12-15 July 2005, Orlando, Florida, USA
1School of Informatics, University of Edinburgh, UK
 Approved for External Publication
© Copyright 2005 IEEE

Rethinking the Java SOAP Stack
Steve Loughran
HP Laboratories

Bristol, UK
Email: steveloughran@hpl.hp.com

Edmund Smith
School of Informatics

University of Edinburgh, UK
Email: esmith4@inf.ed.ac.uk

Abstract— This paper examines the current SOAP APIs in
Java, and in particular the Java API for XML-based RPC,
commonly known as JAX-RPC, which is effectively the standard
API for SOAP on the Java platform. We claim that JAX-
RPC, and indeed any SOAP API that relies upon a perfect
two-way mapping between XML data and native language
objects is fundamentally flawed. Furthermore, we claim that the
attempt JAX-RPC makes to extend the remote method invocation
metaphor to SOAP services is counterproductive.

We base our argument both upon experience with JAX-RPC
and SOAP, and upon experience of previous distributed com-
puting technologies. We argue that JAX-RPC is not capable of
delivering on the SOAP design goals, but conclude by suggesting
an alternate system,Alpine, which is free from many known flaws
of existing systems, and should prove better able to deliver upon
the promise of SOAP.

I. I NTRODUCTION

In beginning any discussion of SOAP-based technologies,
it is valuable to review the core features which made adopting
SOAP attractive initially. We briefly characterise these as
follows:

1) Simplicity: It is intended to be easy to work with.
2) Interoperability: It is more interoperable than binary

predecessors.
3) Extensibility: The envelope/header/body structure allows

extra data to be attached to a request, potentially without
breaking existing systems.

4) Self-describing: Messages can contain type definitions
alongside data, and provide human readable names.

5) Flexibility: Participants can handle variable amounts of
incoming data.

6) Long-haul: It is designed to work through firewalls,
building upon HTTP and other established protocols.

7) Loosely-coupled: Participants are not expected to share
implementation code.

8) XML-centric: Built on XML and intended to integrate
with XML-based technologies.

We will refer to these criteria throughout our discussion, as
the desiderata against which any SOAP technology should be
judged.

A. SOAP in Java

Communication with SOAP can be viewed either as XML-
based remote procedure calls, or as a way of submitting
XML documents to remote endpoints (optionally eliciting
responses in the form of XML documents.) These two different

perspectives represent the RPC-centric and message-centric
viewpoints. In Java, the RPC-centric model has become the
primary model for SOAP APIs.

The Java APIs representing the two different underlying
perspectives are JAXM1 [1] and JAX-RPC2 [2]. We review
each of these in turn.

1) JAXM: JAXM was written to support both basic SOAP,
and more complex scenarios like asynchronous ebXML mes-
sage exchange over SOAP. This flexibility introduces signifi-
cant extra complexity into the design. Over time, the ebXML
focus of JAXM has declined, while the API itself has been
renamed SAAJ3 [3].

In JAXM/SAAJ, the developer works with the SOAP mes-
sage through Java interfaces derived from DOM4 [4]. These
are bound to a class that represents the body of the message,
which provides various operations to manipulate the pieces.
These include accessors and manipulators for the envelope,
headers, body and any binary attachments.

JAXM does not provide significant transport support: the
primary method of receiving JAXM messages is to implement
and deploy a HTTP servlet. The sole method of sending
a message is to ask aSOAPConnectionFactory for a
SOAPConnection instance, and then make a blocking call
of the endpoint.

JAXM has become an orphan specification. Had ebXML
been more successful, it is conceivable that JAXM might
have proven more popular, and made message-centric SOAP
development in Java commonplace. As it is, JAX-RPC is
touted as the recommended way to work with SOAP in Java.

2) JAX-RPC: In JAX-RPC5 the XML representation of a
message’s encoding is hidden and developers work with Java
objects created automatically from the XML data using a semi-
standardised mapping process. Java classes can be automati-
cally turned into SOAP endpoints, with each public method in
the class exported as an operation with both a request message
and a response message. The message structure is described
in a WSDL descriptor and an associated XML Schema, both
of which can be hand-written, or automatically extracted from
the Java classes through introspection.

1Java API for XML Messaging
2Java API for XML-based RPC
3SOAP with Attachments API for Java
4Document Object Model
5The current edition of the JAX-RPC specification is version 1.1, and this

is the version we discuss here. JAX-RPC 2.0 is discussed in section III-A.

Client side proxy classes can be generated from the WSDL
files, proxy classes which again provide a method for every
operation the service supports. In communications between
systems running on the Java platform, the result is that
methods called on the proxy class result in the passing of the
method parameters to remote methods on an instance of the
implementation class, a behaviour that superficially resembles
Java RMI [5]. We will return to this in section II-C.

One effective architectural feature of JAX-RPC is thehan-
dler chain, which consists of an ordered sequence of classes
which are configured to manage requests and responses. Using
the handler chain, it is possible to add support for new SOAP
headers to existing services, or to apply extra diagnostics, in
a relatively transparent fashion. The dispatch of operations
to Java methods, Enterprise Java Bean methods or other
destinations is generally implemented by specific handlers,
making the handler chain the foundation for the rest of the
system.

JAX-RPC is widely implemented, both by open source
projects (for example Apache Axis [6]), and by commercial
vendors like Sun, IBM and BEA. Although these SOAP toolk-
its do all implement the appropriate version of JAXM/SAAJ
to complement the RPC model, this feature is neither broadly
promoted nor used. All theevangelisationof SOAP focuses
on JAX-RPC, as do most of the examples in the vendors’
documentation.

The bias is such that, for Java development, it is widely
seen that JAX-RPCis SOAP.

B. The Hard Lessons of Service Implementation

The authors have recently been involved in developing
independent implementations of a SOAP API for deployment
[7]. This API, specified in a set of XML Schema (XSD) [8] and
Web Services Description Language (WSDL) files [9] defines
a service endpoint providing seven operations, which permit
suitably authenticated callers to deploy distributed applications
onto a grid fabric.

The development of this service was performed in a “pure
way”, by creating the XSD and WSDL files first. This ap-
proach is believed to aid in creating a platform-independent
system, and represents current best practise. However, the
XSD file for the service messages is approximately 2000 lines,
including all the comments and annotations needed to make
it comprehensible. That it takes so many lines to describe
a relatively simple service is clearly one reason why this
approach is so unpopular.

Many problems were encountered turning this service spec-
ification into functional clients and servers, problems that we
attribute largely to JAX-RPC. In section II we discuss a num-
ber of the problems we believe this work highlighted. Section
II-D outlines the particular problems we believe typical JAX-
RPC oriented approaches to WSDL generation create.

II. T HE FUNDAMENTAL FLAWS OF JAX-RPC

A. The Object/XML Impedance Mismatch

JAX-RPC attempts to turn an XML document into Java
classes, using service specific mapping information. This is
distinct from the kind of mapping performed by DOM imple-
mentations, in that the classes are “serialised” from the XML
tree, not merely created to represent it (it is a semantic rather
than syntactic mapping). This serialisation/deserialisation is
an essential part of JAX-RPC, allowing method calls to be
translated into SOAP requests, and responses translated back
into Java objects.

We believe that the termserialisationdownplays the nature
of the problem, likening it to the more tractable problem of
creating a non-portable persistence format for a class. Instead,
we prefer to use the termO/X mappingto emphasise the simi-
larities it has with the heavily studiedO/R mapping problem6.
Over a decade has been spent trying create robust mappings
between records in relational databases and language-level
objects, and there is still no sign of an ideal solution. There
is significantly less experience in mapping between XML
and objects, and rather than drawing on the experiences of
the many failed attempts at O/R mapping, O/X mapping
technologies appear destined to share a similar evolution.

At first glance, the O/X mapping problem facing JAX-
RPC appears simple: create a Java object for each XML
element, building a directed, acyclic graph when serialising
to RPC/encoded SOAP or a tree when using document/literal
messages. Read or write between attributes and class fields,
bind to children and the conversion is complete... If only it
were so straightforward. Undermining it all is a fundamental
difference between the type systems of XML (especially that
of XML Schema) and that of Java, making any mapping both
complex and brittle.

1) Binding XML Elements to Java Classes:The language
of XML Schema is much richer than the object model of
Java. In Java, inheritance can extend a type, and change some
existing semantics, but derivation by restriction is not explic-
itly supported. Java, in common with many object oriented
programming environments, allows derived types to expand
upon the capabilities of their parents. XML schema allows
one to extend a type by restricting it, constraining attribute
and element values. Java has no intrinsic model for this type
of constraint.

This is a fundamental difference which means that one
cannot accurately model an XSD type hierarchy in a Java class
hierarchy. All one can do is inaccurately model it. Here, for
example, a postcode is modelled by restricting a string:

<simpleType name="UKPostcode">
<restriction base="xsd:string">

<pattern value="[A-Z]{2}\d \d[A-Z]{2}"/>
</restriction>

</simpleType>

6“Object-relational mapping is the Vietnam of Computer Science”- Ted
Neward, 2004.

The actual result is going to be a simple class of type
String : all restriction information will be lost in the trans-
formation from XML Schema to Java. This is a fundamental
difference, and one which would appear to remain intractable
except in special cases.

Note that XML Schema offers other type extension mecha-
nisms, such as substitution and derivation. These mechanisms
have similar issues with mapping to the inheritance and type
model of Java.

2) Mapping XML Names to Java Identifiers:Not all XML
names can be turned into Java identifiers. XML names may
begin with a letter in one of many Unicode languages,
an ideograph or an underscore (“”) . They can be fol-
lowed by any of the same characters, and also a hyphen “-
” or a full stop “.”. Some examples are:schr ödinger ,
unknown.type-set , andString .

Java identifiers almost comprise a proper subset of XML
names7. Because of the much greater range of allowable XML
identifiers, the system will often need to perform a non-trivial
mapping from the XML names to valid class and package
names. Package names are typically derived from namespace
URLs if not overridden, as discussed in section II-A.6.

The translation is inordinately brittle: whenever a new
version of Java is released, the logic must be updated to
avoid new reserved words (likeassert and enum), or
the generated code will no longer compile in the enhanced
language. Needless to say, such an upgrade will break any
existing code that linked to old classes which made use of
these names.

3) Enumerations:One example that deserves special men-
tion is the way in whichxsd:enumeration declarations
are mapped into generated Java code. Before Java 1.5,
there was no explicitenum clause in the language, and the
JAX-RPC approach to SOAP enumerations is based upon a
workaround. However, the problem of mapping enumerations
from XML to Java is unchanged, regardless of the language
version used: generate a set of identifiers, one for each value
in the enumeration.

This appears a straightforward example of how O/X map-
ping should work. But what if the value of the one of the
enumeration types is a reserved word? Our API (as described
in section I-B contains a lifecycle state machine like this:

<xsd:simpleType name="lifecycleStateEnum">
<xsd:restriction base="xsd:string">

<xsd:enumeration value="initialized"/>
<xsd:enumeration value="running"/>
<xsd:enumeration value="failed"/>
<xsd:enumeration value="terminated"/>
<xsd:enumeration value="null"/>

</xsd:restriction>
</xsd:simpleType>

One element in this enumeration is reserved:null . How-
ever, the JAX-RPC specification states that an implementation

7XML names beginning in “xml” (any case) are reserved, whereas in Java
they are valid identifier names.

must now enumerate all states asvalue1 , value2 , and
so on, for the entire list. The enumeration names in the
Java source no longer contain any informative value at all,
other than a position number in the set. Any change to the
enumeration could reorder the values, without this change
being detected by code that used the enumeration. The defect
would only show up in interoperability testing.

4) Unportable types:Some Java types are by nature ex-
plicitly unportable. One would not expect to be able to have a
SOAP runtime serialise a database connection instance and
have it reconstituted in working order at the far end, for
example. One might hope that ajava.util.Hashtable
could be translated into some XML structure that could be
turned into a platform-specific equivalent at the far end. But
surely ajava.util.Calendar object could be sent over
the wire, with its obvious relationship to thexsd:dateTime
type in XML Schema?

We can certainly attempt to send such times. They are
readable on the wire, and are mapped into whatever the remote
endpoint uses to represent time. Unfortunately, in this case,
differences in expectations between Java and .NET date/time
classes prevent the same time being received at the far end.
If both client and server are in the UTC time zone all works
well, but if either of them are in a different location, hours
appear to get added or removed. Clearly a different expectation
regarding time processing is at work.

This is an insidious defect as it is not apparent on any
testing which takes place in the same time zone, or between
Java implementations. It is only apparent when remote callers,
using different platforms, attempt to use the service.

5) Serialising a Graph of Objects:XML is a hierarchical
data structure, and can only describe trees or lists of data.
Java classes almost invariably refer to other objects, often
creating cyclic graphs of references. If such a cyclic graph
is to be mapped into XML, the mapping infrastructure must
recognise the cycle (a naive implementation would enter a
non-terminating loop). Once the cycle is recognised, it must
be addressed. The options appear to be:

1) Signal an error.
2) Insert cross references into the XML message, for

processing by the mapper at the destination.
3) Break the graph by duplicating content in the XML.

The only one of these solutions which seamlessly mar-
shals cyclic graphs of objects is the second: inserting cross
references into the XML. The SOAP solution for this is
described in section 5 of the specification [10]. This linking
mechanism is only supported in RPC/encoded messages; the
document/literal message format does not allow it.

JAX-RPC was originally based on RPC/encoded messages,
but the alternate representation, document/literal, is now
broadly agreed to be more flexible and generally superior.
There is no way to marshal a cyclic graph into a docu-
ment/literal message without custom code8. Any technology

8This problem is covered in detail in “Effective Enterprise Java” [11], where
it is termedthe object-hierarchical impedance mismatch.

that attempts to map XML to a cyclic object graph will suffer
from the same problem.

6) XML Metadata and Namespaces:As discussed in the
previous sections, XML Schema provides a type system that
is much richer than that of Java. One aspect not mentioned
so far is the relationship between XML metadata, notably
namespaces, and Java classes.

The problem is essentially as follows: each node in an XML
message can have attached to it a namespace. There is no
related construct in Java which can model this accurately.
The choice that is normally made is to model it inaccurately
by package names (mapping namespaces to Java packages
provides many of the problems discussed in section II-A.2,
since these are more examples of identifiers).

The problems that typically arise are of two kinds:

1) Mapping an incoming message to a web service object
requires that either the namespace of either the operation
itself or its parameters be guessed. This guessing can be
wildly inaccurate when the web service’s Java interface
was generated from WSDL using package renaming.

2) When dynamic invocation is desired (service invocation
without the use of pre-built stub classes) it can be very
difficult to determine the correct namespaces for service
invocations (the WSDL typically leaves this unspecified,
meaning that for JAX-RPC services the WSDL is not a
complete description of the service interface).

If more metadata were recorded with generated types, this
problem would not arise. We therefore believe that future
versions of JAX-RPC will address this problem by way of
the annotation facility recently added to the Java language.

7) Message validation:When a message is received, the
serialised form is generated and passed to the handlers for
processing. In typical SOAP stacks, no validation of the
incoming XML against the message schema is performed, and
in particular any restrictions on the number of times an item
is required are not checked. This forces the implementation
code to follow one of two paths:

1) It could ignore the problem. If the client code and
functional tests do not generate invalid messages (as is
likely if they are also all written in JAX-RPC) then the
problem will not be noticed, only only surfacing when
a third party attempts to use the service.

2) The developers could write procedural logic to verify
that the Java classes representing a deserialised message
have a structure that matches their expectations given the
schema. This requires an understanding of the schema,
knowledge of the serialisation mapping and its potential
trouble spots, and the willingness to write the tests to
validate this extra logic.

We suspect that most services err on the side of ignorance,
and do not validate their incoming messages adequately. This
brings their ability to operate in a heterogeneous environment
into serious question.

8) Inadequate Mixing of XML and Serialised Data:JAX-
RPC and JAXM are two different views of the world. When

JAX-RPC encounters a piece of XML which cannot be
deserialised within a message, it creates a SAAJNode to
describe that part of the document tree. From that point on,
the tree below the node is permanently isolated from JAX-
RPC processing (in some sense the developer has sailed off
the edge of the JAX-RPC world, and fallen into the universe
of XML.) Any O/X mappings which may exist for data within
this piece of the message are now inaccessible: all that is left
is the low-level JAXM API.

This behaviour implies that incorporating arbitrary XML
within a SOAP message is not an approved action, yet the
ability to easily incorporate such XML is a key aspect of
SOAP’s flexibility and a major part of enabling it to be more
extensible and less brittle than its predecessors.

9) Fault processing: JAX-RPC’s fault handling encom-
passes two distinct and opposing viewpoints. On one hand,
the SOAPFaultException type provides direct access to
the XML elements of a generic SOAP fault. Users of this
mechanism can construct SOAP faults with arbitrary contents9

and process faults from any remote endpoint, regardless of its
implementation type or version.

In contrast, the other fault processing mechanism offered
by JAX-RPC aims to provide for loss-less marshalling of Java
exceptions across the SOAP infrastructure. The implementa-
tion and platform dependence inherent in this represents the
complete antithesis of the generic SOAP fault mechanism.

While this may seem a simpler approach for the application
developer, mapping faults into Java exceptions with a specific
static structure means that extra data included in the original
SOAP fault is likely to be lost. For example, should a remote
runtime include a hostname or stack trace, this information
will be stripped out on the receiving side before the client can
be made aware of it. The process is also inordinately brittle:
if, for example, an updated endpoint were to throw a new
exception, any callers built against earlier WSDL would have
to revert to handling a genericSOAPFaultException .

While the goal appears to have been to provide near-
seamless marshalling of Java exceptions whilst permitting
the exceptions to be immutable, the technical details of the
marshalling undermine the success of the approach even
without the interoperability problems. For example, there is
a requirement that special constructors exist to configure the
created exception to preserve its immutability, and WSDL
generation is unreliable unless sufficient debug information
is included in the bytecode for the names of all parameters to
the constructor to be visible.

We believe that the attempt JAX-RPC makes to seamlessly
marshal faults is consistent with its general approach, but like
so much of that approach, it undermines the interoperability
and robustness of services created with it. By propagating
Java’s requirement that all posssible exceptions be declared
into remote interfaces, it exposes platform implementation
details. Interoperability is a major strength of SOAP, yet here

9In Apache Axis, this technique is used to add non-standard diagnostic
elements such as hostname, HTTP error codes and stack trace to messages.

JAX-RPC tries too hard to mimic Java RMI, and abandons
many of the gains SOAP would otherwise have over RMI.
In our opinion, the only sensible approach for working with
faults in JAX-RPC is to have services throw pure SOAP faults
and leave it to the recipient to process them.

B. SOAP is not just RPC

SOAP’s parentage includes XML-RPC [12] and (indirectly)
COM/DCOM [13] and CORBA [14]. It was clearly designed
at its outset to be a form of remote procedure call in XML,
over HTTP. Over time, the world-view that lead to that choice
has changed. Though it is often presented as a form of RPC,
we would argue that it is coming to be seen as more powerful
when viewed as a system in which arbitrary XML documents
are exchanged between parties, perhaps asynchronously, and
potentially via intermediaries.

In this world, the programming paradigms that seemed
appropriate for an RPC infrastructure look out of place. On
a fast network, RPC invocation is often a good choice, as
other models of communication are harder to code, and their
benefits are not readily apparent. A complex communication
can be modelled in a few lines of code, rather than a state
machine, and the synchronous nature of the communication
makes it easier to to build a model of the state of the remote
system.

When we begin to work over long-haul connections, how-
ever, or with large content (e.g. several megabyte attachments),
the limitations of RPC become clear. The greatest of these is
that RPC is synchronous. Although asynchronous behaviours
can, with some difficulty, be introduced, this is not the natural
way for RPC to behave. As content becomes larger and the
network latency increases, the problems posed by synchronous
calls become more and more acute.

Currently, our only option is to split network communication
into a separate thread from the rest of the program. While
this works, it provides the programmer no way to give the
user effective feedback or control over the communications.
There is no way to receive progress notifications or cancel
an active call, despite the face that the underlying transport
code invariably permits such features. This can cause problems
when working with file transfers, foe example: one of the
authors wrote a GUI front end to a service that could accept
15-30MB CAD files, and whilst multithreading could keep the
UI responsive, there was no way to present an upload progress
indicator or offer a cancel button. These are both features one
expects in an application of this kind.

Again, following our principle that SOAP technologies
should uphold the same desiderata as SOAP itself, we note
that one reason SOAP was adopted was to simplify the task
of working over long haul connections. By making it both
difficult and complicated to work over a long connection, JAX-
RPC fails to meet this criterion for a SOAP technology.

C. SOAP is not RMI

JAX-RPC suffers from a greater flaw than those classically
associated with RPC invocation: it tries to make the commu-
nications look like Java RMI. Java’s RMI system is a simple

and effective mechanism for connecting Java classes running
on different machines. It is an IDL-free system that relies
upon introspection to create proxy classes and to marshal data.
It works because the systems at both ends are running on
the Java platform, typically different pieces of a single larger
application. Even then, its implementation-first design means
that it is brittle to change, and most effective when both ends
are using the same versions of all classes.

In a system with shared code at both ends, objects can be
trivially serialised and transmitted across a network connec-
tion. Exceptions are just another type of object, and so too can
be sent over the wire. There is less need for an IDL, as Java
interface declarations can perform much of the same role. And
as the recipient is a remote object, state is automatic. One can
even keep code synchronised by using a special class loader,
one that fetches code from jointly accessible URLs.

JAX-RPC tries to reuse many of the programming pat-
terns of RMI. For example, the runtime will attempt to
serialise classes marked asSerializable , ignoring those
fields marked astransient . It will even serialise complex
compound objects where possible. The user appears to have
a reference to something like an object, though one that
represents the current conversation with an endpoint, not a
direct endpoint proxy.

Recall that one of the perceived gains that drove the adop-
tion of SOAP (section I) was that it enabled loose coupling
between the components of a distributed system. SOAP strove
to overcome many of the failings of precursor technologies
like CORBA and DCOM, which worked over local area
networks, and enabled rich bidirectional communications, but
were not completely cross platform10, and ended up being
used to produce distributed object systems that were too tightly
coupled.

While Java RMI provides convenience, the one thing it does
not provide in any way is loose coupling. Interacting systems
typically run from the same codebase, and each element of the
distributed system contains many implicit assumptions about
the rest of the system. By trying to turn SOAP into RMI, we
imitate this architecture, and risk losing the very things we
turned to SOAP for in the first place.

D. WSDL: an extra complication

The role of an interface definition language (IDL) has
always been twofold:

1) Firstly, an IDL allows the creation of a definition of
the interface of the remote system, independent of
any particular implementation, programming language
or environment. This is “interface” in the sense ofthe
implementation independent signature of the service,
and does not imply that an implementation language
needs an explicit notion of interfaces. The interface
is inherently implementation independent, and can be
frozen or carefully managed with respect to versioning.

10Admittedly for arguably political rather than technical reasons

2) Secondly, the act of writing an IDL description forces
the author to define the system in terms of the portable
datatypes and operations available in the restricted
language of the IDL. This can effectively guarantee
portability, and is a significant improvement over in-
terfaces defined in the implementation languages them-
selves, which invariably contain constructs which are not
portable.

IDLs have many advantages for creating interoperable sys-
tems, yet the generally accepted practice for working with
JAX-RPC discards all these notions. Instead of generating
implementation classes from WSDL, the WSDL description is
usually generated from the implementation classes using tools
leveraging Java’s Reflection API. We shall term this process
contract-last development.

This has the following consequences.

• There is no way to ensure that a service’s published
interface remains constant over time. Every redeployment
of the service or may change the classes, and hence the
contract.

• Some aspects of the interface a service provides are
not amenable to extraction simply from signatures of its
constituent classes and methods. A given method might,
for example, choose to extract attachments from messages
programmatically, without declaring that attachment in
the signature.

• No warnings about portability issues are available before
deployment occurs. When defining a service using an
IDL, the author typically knows when there are problems
as the IDL will not compile. Yet with contract-last
development, everything may well seem to work until
the service goes live and a customer using a different
language attempts to import the WSDL and invoke the
service.

The alternative to contract-last development is clearly
contract-first development. Although this is the better approach
from the perspective of portability and interface stability, web
service developers are not pushed in this direction.

One of the underlying causes of this has to be the sheer
complexity of XML Schema and WSDL. The XSD type
system bears minimal resemblance to that of current object
oriented languages, and WSDL itself is over-verbose and
under-readable. As evidence of this, consider the broad variety
of products that aim to make authoring XSD and WSDL
documents easier, and recall that such products were never
necessary in the IDL-era of distributed systems programming.

Returning to the desiderata for SOAP, following a contract-
last process sacrifices interoperability for ease of service
development. Perhaps WSDL is not the appropriate language
for describing SOAP services (we are certainly not enthused
about it), yet the sole solution being advocated is not a major
undertaking to fix WSDL’s core flaws, it is to continue to
encourage developers to hand over to their SOAP stacks the
challenge of deriving a stable and portable service interface
from the inherently unstable and unportable service imple-

mentation.
We are not proposing any changes to WSDL, merely mourn-

ing the fact that its over-complexity discourages contract-
driven development more aggressively than any previous IDL
ever did. We do observe that once the type declarations of a
service have been moved into their own document, WSDL
becomes much more manageable and this is a pattern of
service definition which we strongly encourage.

III. I MPLICATIONS

We believe that only two categories of web service de-
veloper exist: those who are comfortable with XML and
want to work with it, and those who aren’t but end up
doing so anyway. JAX-RPC provides a sugar coated wrapping
that encourages developers who are relatively unfamiliar with
XML to bite. Yet, as anyone who has written a web service of
any complexity knows, the XML must be faced and understood
eventually. In practise, the task of creating a real web service
is made more difficult, not less, by the huge volume of code
JAX-RPC introduces into a project.

JAX-RPC only superficially benefits developers who do not
want to work with XML: by hiding all the details, and giving
developers a model of remote method calls via serialised Java
graphs, JAX-RPC makes it harder to write true, interoperable
SOAP services. Not only that, but it introduces the O/X
mapping problem, while retaining an invocation model that
is inappropriate for long-distance networks and slow commu-
nications.

We argue that JAX-RPC greatly complicates users’ software
by introducing a complex and fickle serialisation system. The
generation of WSDL from Java code, which JAX-RPC encour-
ages, makes it very difficult to maintain version consistency of
an interface, and creates significant interoperability problems.

On top of all of this, for users who do want to work with
the XML (typically those whose first project did not!) JAX-
RPC is inappropriate because it hides everything. Trying to
integrate custom XML documents with JAX-RPC serialisa-
tions is possible, but very hard work. In Apache Axis, DOM
trees get recreated when assigning or extracting them from
SoapMessageElement implementations.

A. The Future

JAX-RPC has become a cornerstone of Enterprise Java [15],
alongside RMI and RMI-over-CORBA. That is not by itself
a bad thing, but we believe that it creates the misconception
that developers can trivially migrate from RMI to SOAP. If
they attempt to do, they will fall into the traps that JAX-RPC
creates for them.

The 2.0 revision of the JAX-RPC specification promises to
correct some of these flaws, but we believe many problems
remain. It uses a new O/X mapping, the Java Architecture
for XML Binding 2.0 (JAXB 2.0)[16]. This is a sophisticated
framework for mapping XML into Java, having broad support
for the generation of classes from XML Schema, and of XML
Schema from annotated classes. Despite many improvements
over its predecessors, we believe JAXB is simply a more

comprehensive approach to a problem that is fundamentally
ill-posed.

JAX-RPC 2.0 continues the attempt to provide a metaphor
of method-invocation on object instances across SOAP trans-
port. This fundamentally unmaintainable metaphor, coupled
with the automated generation of WSDL from Java source
code, means that in our opinion JAX-RPC has not outgrown
its limitations.

It is easy to understand the rationale behind the decisions
made in designs JAX-RPC and JAXB 2.0. Working with raw
XML is hard. Writing good XML Schema documents is hard.
WSDL is exceedingly painful to work with. Asynchronous
messaging is more complex than blocking RPC. Nevertheless,
we believe that all these things will be part of any solution
enabling developers to realise the promised interoperability
and loose coupling of SOAP-based systems.

WSDL itself is also evolving, with the 2.0 revision of
the specification nearing completion [17]. It is to be hoped
that a new WSDL syntax will make it easier to specify
service contracts, and some new features of the language (for
example theinterface construct) promise to increase the
opportunities for reuse and extension of service interfaces.
Unfortunately, the sheer breadth of the WSDL goal set makes
it exceedingly complex, and this, coupled with the needless
verbosity that it enforces, is likely to make it a difficult
language to work with for some time11.

IV. A LPINE: A PROPOSED ALTERNATIVE

We are in the preliminary stages of designing an alternative
SOAP stack for Java, which we are callingAlpine12.

A. Manifesto

Our goal is to create a SOAP stack that is easy to use,
robust, and maintainable. In order to do this, we are adopting
an XML centric approach. Alpine will make no attempt to
map between XML and custom Java classes, instead providing
access to the SOAP messages using modern XML support
libraries, which make it easy to navigate an XML document.
By avoiding O/X mapping we greatly decrease the volume
and complexity of our code. Some may argue this will make
Alpine more difficult to use, but experience shows us that
simpler systems are typically more straightforward to work
with, as they react in more predictable ways.

If a WSDL/XSD description of an Alpine-hosted service is
required, the user will be required to write it: as we concluded
in section II-D generating these from Java introduces unwanted
implementation dependencies and hampers interoperability.

With so much stripped out, Alpine will be a SOAP stack
reduced to its essentials: a system for managing the flow of
messages through a set of handlers, and libraries to handle
transport across supported the protocols. Core compliance
with the SOAP protocol will be provided, namely envelope

11As any SOAP stack developer will attest, bug reports involving handwrit-
ten WSDL are the ones they fear.

12Its inspiration being derived in part from nimble, lightweight Alpine-style
mountaineering approaches.

validation and mustUnderstand processing of headers.
Developers will be expected to use XPath specifications to
work with contents of the message; we are considering basing
our design upon the “XOM” XML framework [18].

This will not be a SOAP stack that attempts to make SOAP
look like Java RMI, nor will it prevent developers from being
aware of the format of the messages sent over the wire. Instead,
Alpine will just provide the basic housekeeping and handler
chain management to make simplify web service development,
leaving the interpretation and mapping of the XML messages
to the applications themselves.

B. Design Goals

The full design goals are as follows:

1) Stay in the XML space as much as possible.
2) Take advantage of as much leading edge infrastructure

as we can.
3) Adopt the the handler chain pattern of Axis/JAX-RPC.
4) Target SOAP 1.2 (POST) only, WS-I Basic Profile 1.1

[19].
5) Document/literal mssages only, not RPC/encoded.
6) Support XSD and Relax NG schemas.
7) Run server-side, client-side, and as an intermediary.
8) No support for JAX-RPC or JAX-M/SAAJ APIs.
9) Configurable procedurally, through the Java Manage-

ment API (JMX).
10) Permit dynamic handler chain configuration during mes-

sage processing.
11) One supported parser.
12) Run on Java 1.5 and later.
13) No provision of side features such as a built in HTTP

server, or a declarative configuration mechanism. These
are delegated to other products.

We believe the core of this design is likely to resemble
JAX-M/SAAJ in in terms of classes, integrated with a handler
chain based on the JAX-RPC/Axis model.

C. XSD validation

Although we are still unsure as to how complete our WSDL
support will be, we note that document/literal SOAP messages
can be validated simply by comparing the incoming messages
to the XML Schema that describes them. Mainstream SOAP
stacks do not do this at present, usually for performance
reasons, but this means that the set of XML documents an
endpoint might receive is significantly larger than the set of
those considered valid by its XML schema. With no automatic
validation, developers must either write both validation logic
and corresponding tests themselves, or choose to ignore the
problem. Given that there is no warning of potential problems
before deployment, we suspect that many developers remain
unaware of the problems they face.

Errors caused by the absence of logic to detect and reject
illegal documents are unlikely to show up in development,
especially if a test-centric process is not followed, but become
inevitable once a service goes live, and callers using other

languages invoke the service. Such insidious defects, defects
that only show up in production, are always unwelcome.

There is a trivial solution to this problem, one that is com-
mon to other XML stacks. It is: validate incoming messages
against the XML schema of the service. We aim to implement
a handler which will do this, which, if included on a handler
chain, will reject invalid messages. It will also be able to
validate outbound messages, which should be useful during
development.

D. A Community SOAP Stack

An open source project, by its very nature, is written by
its users, and so it is critical to such a project’s success
that as many users as possible are able to contribute to
its implementation. The split between XML in JAX-RPC’s
internal API, and mapped object instances in the external
API, creates a gulf between the implementation of the stack,
and that of end user applications. This creates a significant
barrier between external and internal developers, making it
much more difficult for users to contribute to the system’s
development. With Alpine, we hope to avoid such a split,
because the XML emphasis, and hence the terms of reference,
are consistent between user applications and the SOAP stack
itself.

E. The Implications of Alpine

If Alpine succeeds, it will be a SOAP stack that requires an
understanding of XML before it can be used. This might ap-
pear to be a barrier to the widespread adoption of the tool, and
perhaps it will prove so. Unlike commercial SOAP vendors, we
have no financial incentive to make our product broadly usable.
We will, however, have a SOAP implementation which all its
users should be able to understand and maintain. Furthermore,
we believe that a good understanding of XML is needed to
develop any robust web service, and that by forcing developers
to acquire that skill early on in the development process, we
help them avoid being forced to learn it just before their
shipping deadlines are missed.

This may seem somewhat ruthless: to deny the right to
write web services to developers who are and wish to remain
ignorant of XML. However, we have to ask:if they do not
want to know XML, why are they writing web services?If the
developers want to use a less portable, more brittle, remote
method invocation system, they would be better off using a
stable technology such as Java RMI or CORBA.

If Alpine is not adopted, then either the design was flawed,
or it did not appeal to a sufficiently large developer community
to survive. At present it seems the design problem is the most
pressing one. We have argued that JAX-RPC is the wrong API
for working with SOAP in Java. If an XML-centric design
were to prove equally unworkable, this might well mean that
the promised flexibility of XML messaging infrastructures is
not easily accessible to languages of the “Java generation”
(in which we include C# and VB.NET), all of which share
a similar static type system and object model. Should these
languages not prove flexible enough to exploit the full potential

of XML, then it may be that the promise of XML messaging
systems, both REST and SOAP, will only be realised by the
next generation of platforms, be they extensions of existing
languages, such as Cω, or XML runtimes such as Apache
Cocoon and NetKernel by 1060 Research [20], [21].

V. ACKNOWLEDGEMENTS

The authors would like to thank Tim Ewald and Ted Neward
for their valuable feedback and corrections. One implementa-
tion of the CDDLM deployment service was created for the
OGSAConfig project, which is funded by a grant from the
Joint Information Systems Committee (JISC). The other was
produced in HP Laboratories, integrating with the SmartFrog
deployment infrastructure.

REFERENCES

[1] N. Kassem, A. Vijendran, and Rajiv.Mordani, “Java API for
XML Messaging (JAXM),” Sun Microsystems, Tech. Rep., 2003,
http://java.sun.com/xml/downloads/jaxm.html.

[2] R. Chinnici, “Java API for XML-Based RPC (JAX-
RPC),” Java Community Process, Tech. Rep., 2003,
http://java.sun.com/xml/downloads/jaxrpc.html.

[3] Sun Microsystems, “SOAP with Attachments API for
Java (SAAJ),” Sun Microsystems, Tech. Rep., 2004,
http://java.sun.com/xml/downloads/saaj.html.

[4] V. Apparaoet al., “Document Object Model (DOM),” W3C, Tech. Rep.,
1998, http://www.w3.org/DOM/.

[5] Sun Microsystems, “Java Remote Method Invocation - Distributed
Computing for Java,” Sun Microsystems, Tech. Rep., 1997,
http://java.sun.com/products/jdk/rmi/reference/whitepapers/javarmi.html.

[6] Axis, Apache Axis, 2001, http://xml.apache.org/axis/.
[7] S. Loughran, “A SOAP API for Deployment,” online,

2004. [Online]. Available: http://forge.gridforum.org/projects/cddlm-
wg/document/DeploymentAPI - Draft 0/en/1

[8] D. C. Fallside and P. Walmsley, “XML Schema 1.0,” W3C, Tech. Rep.,
2004, http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/.

[9] E. Christensenet al., “Web Services Description Language (WSDL)
1.1,” W3C, Tech. Rep., 2002, http://www.w3.org/TR/2001/NOTE-wsdl-
20010315.

[10] D. Box et al., “SOAP version 1.1,” W3C, Tech. Rep., 2000,
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

[11] T. Neward,Effective Enterprise Java. Addison-Wesley, 2004.
[12] D. Winer, “XML-RPC,” 2000, http://www.xmlrpc.com/spec.
[13] D. Box, Essential COM. Addison-Wesley, 1997.
[14] M. Henning and S. Vinoski,Advanced CORBA(R) Programming with

C++ . Addison-Wesley, 1999.
[15] Sun Microsystems, “Java 2 Platform, Enterprise Edition Specification,”

Sun Microsystems, Tech. Rep., 2003, http://java.sun.com/j2ee/.
[16] N. Kassem, A. Vijendran, and Rajiv.Mordani, “Java API for XML

Binding (JAXB),” Java Community Process, Tech. Rep., 2004,
http://java.sun.com/xml/downloads/jaxrpc.html.

[17] R. Chinnici, “Web services description language (WSDL) ver-
sion 2.0 part 1: Core language,” W3C, Tech. Rep., 2004,
http://www.w3.org/TR/2004/WD-wsdl20-20040803.

[18] E. R. Harold, “What’s Wrong with XML APIs (and how to fix them),”
2002, http://www.cafeconleche.org/XOM/whatswrong/.

[19] K. andeith Ballinger, “Basic Profile,” WS-i, Tech. Rep., 2004,
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html.

[20] L. Cardelli, “Transitions in Programming Models,”
online presentation, 2003. [Online]. Available:
http://research.microsoft.com/Users/luca/Slides/2003-11-
13%20Transitions%20in%20Programming%20Models%20(Lisbon).pdf

[21] P. Rodgers, “Introducing NetKernel,” online, 2005,
http://www.xml.com/pub/a/2005/04/27/netkernel.html.

