

Protocol Mediation for Adaptation in Semantic Web Services

Stuart K. Williams, Steven A. Battle, Javier Esplugas Cuadrado1
Digital Media Systems Laboratory
HP Laboratories Bristol
HPL-2005-78
May 12, 2005*

semantic web, web
services, interface
description,
protocols,
mediation,
distributed systems

Protocol mediation enables interaction between communicating parties
where there is a shared conceptual model of the intent and purpose of the
communication, and where the mechanics of communication interaction
vary. The communicating partners are using different protocols to
achieve the same or similar ends. We present a description driven
approach to protocol mediation which provides a more malleable
approach to the integration of web services than the current rigid 'plug-
and-socket' approach offered by description technologies such as WSDL.
It enables the substitution of one service provider with another even
though they use different interaction protocols. Our approach is centred
on the identification of common domain specific protocol independent
communicative acts; the description of abstract protocols which
constrains the sequencing of communicative acts; and the description of
concrete protocols that describe the mechanisms by which the client of a
web service interface can utter and perceive communicative acts. This
work was conducted as part of the EU funded Semantic Web enable Web
Services project (SWWS EU IST-2002-37134).

* Internal Accession Date Only
1Hewlett-Packard Espanola SL, Jose Echegaray n°8, La Rozas, Spain 28230
 Approved for External Publication
© Copyright 2005 Hewlett-Packard Development Company, L.P.

Protocol Mediation for Adaptation in
Semantic Web Services

Stuart K.Williams1, Steven A. Battle1, Javier Esplugas Cuadrado2

1Hewlett-Packard Laboratories, Filton Road,
Stoke Gifford, Bristol, BS34 8QZ, UK.
{skw, steve.battle}@hp.com

2Hewlett-Packard Espanola SL, Jose Echegaray no8,
La Rozas, Spain. 28230

javier.esplugas.cuadrado@hp.com

Abstract. Protocol mediation enables interaction between communicating
parties where there is a shared conceptual model of the intent and purpose of
the communication, and where the mechanics of communication interaction
vary. The communicating partners are using different protocols to achieve the
same or similar ends. We present a description driven approach to protocol
mediation which provides a more malleable approach to the integration of web
services than the current rigid ‘plug-and-socket’ approach offered by
description technologies such as WSDL. It enables the substitution of one
service provider with another even though they use different interaction
protocols. Our approach is centred on the identification of common domain
specific protocol independent communicative acts; the description of abstract
protocols which constrains the sequencing of communicative acts; and the
description of concrete protocols that describe the mechanisms by which the
client of a web service interface can utter and perceive communicative acts.1

1 Introduction

Web service technologies place powerful tools in the hands of developers enabling
independent invention and re-invention of web service interfaces. Businesses will
develop and deploy web service interfaces to visible aspects of their business process.
Many of these interfaces encapsulate similar if not identical concepts. However the
factoring of otherwise similar interfaces will vary. The mechanics of interaction
protocols will differ. Yet conceptually they encapsulate similar if not identical
interaction metaphors. Consider the familiar catalogue, cart, checkout metaphor of a
typical eCommerce web site. The human user is guided through the process by their
recognition of the metaphor, their intuition about the process they are engaged in and
the continuous guidance provided by the user interface decoration (labels on buttons,
explanatory text etc.). The human user is unconstrained about which of many

1 This work was conducted as part of the EU funded Semantic Web enable Web Services

project (SWWS EU IST-2002-37134).

2 Stuart K. Williams, Steven A. Battle, Javier Esplugas Cuadrado

available on-line stores they trade with. Our aim is to provide a similar level of
flexibility for automated web service clients in the selection and use of service
providers.

By analogy, WSDL [1] supports description of the syntactic operation of individual
user interface controls; BPEL [2] describes the service provider processes which
respond to control invocations; WS-CHOR [3] describes a global view of the
sequencing constraints on externally visible messages exchanged between multiple
parties in web service interactions. However, in the current web service stack there is
no machine readable account of what a particular web service interaction or sequence
of web service interactions actually accomplishes.

In this paper we describe a framework for providing rich service descriptions that
enable web service clients to adapt their interaction behaviour to the constraints of a
particular provider’s web service interface. This removes cost and time from the
process of integrating new service providers and enables consumers of web services
greater freedom and flexibility to dynamically choose service providers. For service
providers it also means access to a broader customer base and results in a service
oriented economy where service consumer/provider relationships are formed on the
basis of business fundamentals without requiring an exact fit between the client and
provider sides of a particular web service interface.

In section 2 we introduce the topic of protocol mediation more fully. In section 3
we introduce a case study scenario drawn from the IST EU Semantic Web enabled
Web Services project (SWWS EU IST-2002-37134) which we use as a running
example through the remainder of the paper. Section 4 gives a detailed presentation of
the protocol mediation framework developed in the SWWS project. Section 5
describes our interface description language. Section 6 discusses related work. Finally
section 0 presents our conclusions and ideas for further work.

2 Protocol Mediation

Bridging or gatewaying between compatible protocols has been studied since the
1980’s [9,11,12] continuing through a period of considerable work in the field of
Open Systems Interconnection (OSI) [6,10] and the Internet. Our work on protocol
mediation draws inspiration from that work. We make particular use of the concepts
of abstract service definition [6,10] and gateways/half-gateways. Much of the
previous work was focussed on mediating between protocols established by
standardisation processes. In contrast, our work on protocol mediation is focussed on
the dynamic instantiation of description driven mediation behaviour. Our work is
motivated by the existence of similarly intentioned, independently created, and
evolving protocols which are an inevitable consequence with the successful adoption
of Web Service technologies.

Figure 1 illustrates protocol mediation the form of a protocol gateway made up of
two half gateways and a relaying function. Two processes, X and Y, wish to
communicate with one another at a business level. Each process adopts some role
with respect to the interaction. For example, process Y may act on behalf of the
provider of some (business) service, while process X may act on behalf of a consumer

Protocol Mediation for Adaptation in Semantic Web Services 3

of that service. Unfortunately, process X and process Y communicate using two
different protocols, P1 and P2, each of which has capabilities C1 and C2 respectively,
expressed in the abstract as the protocol layer services of P1 and P2.

Clearly if effective communication is to occur between processes X and Y, some
mediation must occur.

MediationProtocol
P1

Protocol
P2

Process
X

Process
Y

Mediated Interactions

P1 Messages P2 Messages P2 Services
(Capabilities C2)

P1 Services
(Capabilities C1)

C1 ∧C2

P1 P2

Protocol P1
Eg. EDIFACT

Protocol P2
Eg. RosettaNet

Fig. 1. Protocol Mediation – A conceptual model

It should be equally clear that it is only possible to mediate in the intersection of
the capabilities of the two protocols. If the mediated channel becomes too
impoverished to support the required interaction, some other approach becomes
necessary and either process X or Y or both needs to have their behaviour changed to
address the missing capability in some other way. This is known as “process
mediation” and is not the subject of this paper.

Interface

Protocol
P2P2 Messages

P2 Services
(Capabilities C2)

P1 Services
(Capabilities C1)

P2

Process
X

Process
Y

C1 ∧ C2

Mediation

Shared Ontology
(Business) Domain Concepts
and Communicative Actions

Shared Ontology
(Business) Domain Concepts
and Communicative Actions

Interface
Description

Fig. 2. Description Driven Adaptation

It is possible to associate the mediation element more strongly with one party or
the other. One can slide the mediation element toward, say, process X. At some point,
the presence of P1 in the system becomes somewhat vestigial and the mediation
component becomes logically absorbed within the infrastructure supporting process
X. Figure 2 illustrates this diagrammatic manipulation. Process X continues to make
use of P1’s protocol layer services and capabilities (restricted to those that lie at the
intersection with protocol P2’s capabilities). However, only protocol P2 messages are
exchanged externally. The P2 protocol provider and process Y are unchanged. Figure

4 Stuart K. Williams, Steven A. Battle, Javier Esplugas Cuadrado

2 also introduces the notion of there being an exposed interface at process Y which is
described with a rich behavioural description which is consumed by a mediation
component.

Our behavioural descriptions rely on abstracting the communicative actions [5] of
a protocol from the underlying mechanisms of that communication. This echoes the
practice of the OSI community [6,10] of specifying the service abstraction separately
from its message vocabulary, encoding and rules of procedure. However we make our
descriptions machine readable and interpretable by a mediation component.
Conceptually we regard an interaction protocol as animating domain concept
instances and the communicative acts which result in changes in their state are
themselves part of the ontological structure of the domain. Thus, the ontology of the
interface description is what needs to be shared between partners rather than prior
agreement on a specific interaction protocols.

The description driven adapter of Figure 2 may be thought of as a ‘half-gateway’
and it should be possible to use two such structures and descriptions of the interfaces
that they each face to create a description driven ‘full-gateway’ or mediator structure
as shown in Figure 1. It should be apparent that rather than relaying protocol
messages between protocol P1 and protocol P2, such a mediator relays the common
communicative actions of protocols P1 and P2.

3 Logistics Scenario

Figure 3 illustrates the supply chain logistics scenario used as a case study in
SWWS to motivate our work [7,8].

Shipper Logistic
Coordinator Receiver

Freight
Forwarding

Service
Provider

#1

Freight
Forwarding

Service
Provider

#2

Freight
Forwarding

Service
Provider

#3

UK RUSSIANORTH SEA

Forwarder Forwarder

or Border
Supplier Customer Unit

Web Service
Interface

Web Service
Interaction(s)

Fig. 3. Multi-leg Shipment Logistics Scenario

The diagram illustrates four different logical roles: Shipper, Logistic Coordinator,
Freight Forwarding Services Provider and the Receiver. The scenario requires

Protocol Mediation for Adaptation in Semantic Web Services 5

replacement of Freight Forwarder #2. The replacement provider uses RosettaNet [13]
for interacting with the logistics coordinator whereas the replaced provider uses
EDIFACT [14]. This choice of message sets is compounded by local variations in the
way that different businesses use the message formats.

Our goal is to provide a rich description of the interaction protocol use across a
freight forwarding service provider’s web service interface. Our intent is that the user
of an interface has a rich enough description of the syntax and semantics of the
interface to enable it to adapt its behaviour to the constraints of that interface.

4 The SWWS Protocol Mediation Framework.

Under the assumption that we are not at liberty to redesign, alter or replace an existing
interaction protocol, our approach is to provide a sufficiently rich machine readable
description of the protocol. A mediation component within the client system can then
adapt its interaction behaviour to meet the interface constraints of the service provider
in much the same way as a human user of an eCommerce web site adapts their
interaction behaviour on the basis of the controls and surrounding UI narrative
presented to them.

Thus, classic web service clients can use classic integration techniques organized
around programmers retrieving WSDL [1] descriptions from UDDI registries in order
to write integration code whilst a semantic web service client containing a protocol
mediation component retrieves a rich description of the interface and adapts its
behaviour to suit.

The following sections introduce the components of our framework:
communicative acts [5] and primitives which model the significant domain specific
communications between interacting parties; abstract protocols which describe the
conversational structure of the exchange of primitives used to model communicative
acts and which are used operationally to restrict primitive sequencing; concrete
protocols which elaborate the concrete interaction behaviours required to initiate and
perceive communicative acts across a particular concrete interface; and message
filters which are used to bind inbound messages or web service invocations either to
concrete behaviours within existing active conversation instances or to factories that
create new conversation instances. Interactions between a service provider or
consumer agent and the communication infrastructure are modelled as primitive
events accompanied by knowledge bases containing relevant domain instances.

4.1 Roles and Communicative Acts

Our first step is to identify the communicative acts [5] associated with our domain
and the roles involved in communication. We regard these roles and communicative
acts as part of the ontology which structures concepts within the domain. In our
logistics scenario we identify the following 6 communicative acts that occur between
a Logistics Coordinator (LC) and a freight forwarding service provider (FF) about a
particular shipment journey leg:

6 Stuart K. Williams, Steven A. Battle, Javier Esplugas Cuadrado

Communicative Act Direction Communicative intent
informReadyForCollection LC to FF Inform the FF that the shipment is available

for collection.
requestShipmentStatus LC to FF Request an update of the shipment status

from the FF.
informShipmentStatus FF to LC Inform the LP of the shipment status
informReadyToDeliver FF to LC Inform the LP that the FF is ready to

deliver the shipment.
informShipmentDelivered FF to LC Inform the LP (and provide proof) that the

FF has infact delivered the shipment.
requestPayment FF to LC Request payment for delivering the

shipment from the LP.

Table 1. Communicative acts involved in a Logistics Journey Leg

Although only short names are used here, in practice, within a web ontology, the
names of all concepts (and communicative acts) are made global through the use of
URI [19].

The utterance and perception of these communicative acts by the logistics
coordinator and freight forwarding services provider are significant events in the
interaction between partners as the physical movement of the shipment, progresses.
We model these events as the service primitives of a communication protocol in the
style adopted by the OSI Basic Reference Model [6].

<act>.request

<act>.indication

<act>.response

<act>.confirm

time

Initiating Entity Listening Entity

Fig. 4. Sequencing of Abstract Protocol Service Primitives.

The occurrence of a communicative act is modelled as the occurrence of 4
primitives illustrated in Figure 4. Two primitive events are experienced at the
initiating party which utters the communicative act and, in the absence of failure, two
primitive events are experienced at a listening party which perceives the
communicative act. The four primitives of the communicative act, <act>, model:

• the initiation of the act by the initiating agent, <act>.request;
• the perception of the communicative act by a listening/responding agent,

<act>.indication;
• acknowledgement by the listening/responding agent that the act has been

perceived, <act>.response;

Protocol Mediation for Adaptation in Semantic Web Services 7

• and reporting the outcome of the communicative act to the initiating
agent, <act>.confirm.

The .response and .confirm primitives effectively model a technical
acknowledgement that the communication has reached its intended recipient. Any
substantive response motivated by the communicative act itself is modelled as a
subsequent communication in the opposite direction. Communicative acts therefore
achieve a single domain level communication, but may correspond to an exchange of
one or more lower level messages or web service operations.

At the initiator, the outcome of a communicative act falls into one of three broad
categories:

• Success: The communication is known (by the initiator) to have
reached the intended recipient.

• Exception The communication is known (by the initiator) to have
failed to reach the intended recipient.

• Indeterminate The outcome of the communicative act is unknown (to the
initiator).

This provides the basic framework for modelling communication between agents.
Each communicative act may carry information (a message) from initiating agent to
responding agent and return status information about the outcome of the
communication. An important facet of our model is that the occurrence of a
.request primitive at the initiator is always followed by an occurrence of a
.confirm primitive, even if the latter reports that the outcome of the
communication is indeterminate or failure.

4.2 Abstract Protocol

The next step in our process is to observe that the sequencing of communicative
acts is constrained. In our example scenario, the dialog about a given shipment
commences with the utterance of an informReadyForCollection and ends
either with an informShipmentDelivered or a requestPayment. The
structure of these conversational constraints can be captured in the form a monitoring
process which (impractically) takes a global view of the system, the occurrence of a
communicative act only being possible when it is admissible by the monitoring
process. The behaviour of the monitoring process may be expressed in a number of
formalisms, such as the ad-hoc notation in figure 5 or more formally using process
algebra’s such as CCS [16] or UML style Harel State Charts[15] as in figure 6.

Note that as specified here these behavioural expressions treat a communicative act
as an atomic occurrence, however, as stated earlier we have modelled each as a
sequence of four primitives, two of which are experienced by each party to the
communication. The basic patterns above can be specialized to the consumer and
provider roles with appropriate re-labelling of events. In addition, since the primary
motivation for treating a communicative act as four discrete events is to enable
explicit consideration of errors handling, different behaviours may be added to cater
for the different kinds of outcome listed above: success, exception and indeterminate.

8 Stuart K. Williams, Steven A. Battle, Javier Esplugas Cuadrado

seq(informReadyForCollection,
 par(repeat(seq(requestShipmentStatus,
 informShipmentStatus)),
 seq(informReadyToDeliver,
 par(requestPayment,
 informShipmentDelivered)
)
)
)

Fig. 5. Simplifed ad-hoc expression of the Abstract Protocol for Journey Leg monitoring and
execution.

informShipmentStatus

stopResponder

requestShipmentStatus

informReadyForCollection

informReadyForDelivery

informShipmentDelivered/
stopResponder

requestPayment

Fig. 6. UML/Harel State Chart expression the Abstract Protocol for Journey Leg monitoring

and execution

4.3 Concrete Protocol

In the previous section we considered the role based sequencing constraints on the
occurrence of abstract primitives crossing the boundary between a service provider
agent or a service consumer agent and the underlying entities that realise concrete
interaction behaviours, see figure 7. We now consider the interface specific concrete
protocol description which binds the occurrence of these primitives to concrete
protocol behaviours. Descriptions are divided into initiating and responding
behaviours.

Initiating behaviours are associated with the occurrence of a .request primitive
and ultimately giving rise to the corresponding .confirm primitive. Responding
behaviours perceive the occurrence of a communicative act generally through the
arrival of a message or an inbound invocation of a web service operation which gives
rise to a .indication primitive. A responding behaviour may remain active
beyond the occurrence of the corresponding .response primitive in order to absorb

Protocol Mediation for Adaptation in Semantic Web Services 9

duplicated inbound messages or to repeat apparently lost outbound messages in
accordance with the requirements of the concrete protocol.

Service
Consumer

Service
Provider

Service Consumers
Web Service

Interface

Service Providers
Web Service

Interface

Service Provider initiated
Web Service Operations

Service Consumer initiated
Web Service Operations

Abstract Protocol Service Primitives

Abstract Protocol constrains
Primitive Sequencing

Concrete Protocol
Entities

.req .conf .ind .resp

Initiating
Behaviours

Responding
Behaviours

.req .conf .ind .resp

Initiating
Behaviours

Responding
Behaviours

Fig. 7. Abstract and Concrete Protocols

Both initiating and responding behaviours may involve both the sending and
receiving of one or more messages or the inbound and outbound invocation of one or
more web service operations. For example, in RosettaNet, lost business action
messages may be retransmitted a prescribed number of times at prescribed intervals,
typically 3 times at 30 minute intervals. This behaviour is embedded in the concrete
protocol and is not exposed to the service consumer/provider except in as much as it
may give rise to failed or indeterminate outcomes.

The abstract protocol acts as a guard which ensures that abstract service primitives
cannot occur except when they are admissible. The concrete protocol descriptions
provide an expression of how to initiate and perceive the communicative acts initiated
and perceived. These behaviours can also be described as processes using any of the
formalisms noted earlier. However the actions associated with state transitions need to
be capable of performing simple computations and manipulations on message content.
We use a simple event, guard, and action model to described concrete behaviours as
simple state machine processes. Figure 8, below, illustrates the concrete RosettaNet
protocol behaviour required of a freight forwarding service initiating the
informReadyForCollection communicative act. Similarly, figure 9 illustrates
the corresponding behaviour required of the freight forwarding services provider in
order to perceive the occurrence of the same communicative act. One of the important
complex operations that we hide here is the extraction of domain instance information
from inbound messages and the generation outbound message content from the
instances of the domain ontology. This is the problem of data mediation, and our
approach to this is described elsewhere [17]. The operation of these concrete
behaviours coordinates the lifting and lowering of domain knowledge between
message structure and ontology instances.

10 Stuart K. Williams, Steven A. Battle, Javier Esplugas Cuadrado

informReadyForCollection.request(params)/
msg = RN-EncodePIP3B2(params) //lower - DataMediation!!
startTimer(30mins)
sendMessage(msg)

TimeOut/
startTimer(30mins)
sendMessage(msg);

TimeOut/
startTimer(30mins)
sendMessage(msg);

TimeOut/
startTimer(30mins)
sendMessage(msg);

Timeout/
informReadyForCollection.confirm(Outcome=INDETERMINATE);

receiveMsg(rmsg, RN_SIGNAL_MATCH(msg)) /
if RN-Signal-Type(msg) == ACK {

informReadyForCollection.
confirm(Outcome=SUCCESS);

} else { //RosettaNet Exception
informReadyForCollection.
confirm(Outcome=EXCEPTION);

}

A

A

A

A

A +

Fig. 8. Concrete RossettaNet protocol behaviour associated with a Logistics Coordinator

initiating uttering an informReadyForCollection communicative act.

receiveMsg(rmsg, RN_PIP3C3_MATCH(conversation)) /
//Data mediation/Lift
actionParams = RN-Decode-3C3-Request(rmsg);
requestPayment.indication(actionParams);

receiveMsg(rmsg,
RN_PIP3C3_MATCH(conversation)) /

// Do nothing – ignore retransmission

requestPayment.response(Outcome, responseParams) /
if(Outcome==EXCEPTION) {

//Data mediation/lower
msg = RN-Encode-Signal(EXCEPTION, responseParams)

} else { //SUCCESS
//Data mediation/lower
msg = RN-Encode-Signal(ACK, rmsg);

}
sendMessage(msg);

receiveMsg(rmsg,
RN_PIP3C3_MATCH(conversation)) /

sendMessage(msg);
// resend previous signal

Fig. 9. Concrete RosettaNet protocol behaviour associated with a Freight Forwarder perceiving

the occurrence of an informReadyForCollection communicative act.

The message driven transitions shown in figures 8 and 9 involve the installation of
message filters specified by the second parameter in the receiveMsg statements.
When a message driven transition is followed the triggering message, which matches
the corresponding filter is made available for computation via the variable nominated
in the first parameter. A given state may have a number of message driven transitions
to the same or to different successor states. Conceptually, on entry to a state with
message driven transitions, the relevant filter expressions are installed to associate
inbound messages with a given instance of a state transition. On transition,
conceptually, all those filters are removed and on entry to a new state any filters
relevant to that state are installed. In this way, messages are directed towards
appropriate transitions. If multiple transitions are possible from a state, then the
choice of which transition is actually taken is non-deterministic, however the message

Protocol Mediation for Adaptation in Semantic Web Services 11

is only assigned to the nominated variable and thereby consumed if the particular
message driven transition is actually taken.

5 Rich Service Description

The previous section introduced all the important elements of a rich service interface
description.

• A domain ontology which structures the concepts associated with domain.
• A catalogue of roles adopted by the participants of domain interactions and the

communicative acts which each role utters or perceives.
• On a per role basis, an expression of the abstract protocol which governs of the

sequencing of the occurrence of the primitives modelling communicative acts.
• On a per provider per role basis, an expression of the concrete protocol associated

with the utterance and perception of communicative.
• Associated with each concrete protocol description is an expression of the data

mediation transformations that extract domain instance information from inbound
messages and draw on domain instances in the formulation of outbound
messages.

vscl:State vscl:State

vscl:Transition

rdf:type
rdf:type

vscl:nextStatevscl:transition

vscl:
transitionBehaviour

vscl:
guard

vscl:InternalScript

rdf:type

“JavaScript”

vscl:scriptLang

<JavaScript Statements>

vscl:scriptText

vscl:GuardCondition

rdf:type

vscl:scriptLang

<BooleanValued
JavaScript
Expression>

vscl:scriptText

rdf:type

Fig. 10. A state transition in VSCL

During the course of the SWWS project we devised a “Very Simple Choreography
Language” (VSCL) which embodies these elements. Abstract protocols are described
as a collection of roles and each role is described in terms of the communicative acts
which it initiates or perceives. The occurrence of primitives is constrained by a
monitoring process. On per interface basis a concrete protocol is described in terms of
the required concrete behaviour a peer role must adopt which is scoped by reference

12 Stuart K. Williams, Steven A. Battle, Javier Esplugas Cuadrado

to the corresponding abstract protocol and role. Each primitive that a given role
experiences is bound to the concrete behaviour required to either initiate or perceive
the associated communicative act. Both the monitoring behaviours of abstract
protocols and the concrete behaviours of concrete protocols are described as processes
which are expressed as finite state machines in the manner described previously.

The abstract syntax of VSCL is expressed as an OWL [4] ontology [20]. A
common part abstract and concrete VSCL descriptions is the description of finite state
machine processes. VSCL descriptions are written in RDF [21] using properties
drawn from the VSCL ontology [20]. Figure 10 illustrates how a transition between
two states is encoded in VSCL.

With respect to the example scenario presented in section 3 the VSCL description
of the abstract journey leg protocol is available at [22] while the corresponding
concrete protocol description provided by a freight forwarding services provider that
uses the RosettaNet [13] protocol is available at [23].

The transition behaviours available in VSCL include: message driven, primitive
driven, event driven and time driven transitions; sending receiving and replying to
messages; raising events and primitives; forking concurrent processes (figures 5 and 6
illustrate the use of concurrency). In order to augment process behaviours with
variables for storage and procedures which can perform computation over those
variable we provide the ability to include scripted behaviours. In our prototype
implementation we used the Mozilla open source embeddable Javascript engine,
Rhino [24].

For protocol mediation, it is important that a description of a service provider’s
interface describes the roles and associated behaviours required of a user of that
interface. The role and behaviour of the interface provider may be made explicit, but
that is not strictly necessary. The assumption we make is that a service provider is
economically motivated to ensure that potential service consumers are able to use the
service provided. Hence, we place the onus is on the service provider to provide a rich
descriptions.

6 Related work

OWL-S [4], WSMO [26] are two activities in the field of semantic web service
description. We briefly consider the connection between these activities and the ideas
discussed in this paper.

OWL-S is a natural vehicle for capturing the abstract protocols that describe the
interfaces with each logistics provider. The protocol of figure 5 may be translated
straightforwardly into an OWL-S composite process using sequential, iterative and
concurrent process compositions. The leaves of this abstract process are described
here as communicative acts, so can we identify OWL-S processes with such acts.
Communicative acts certainly address the actions performed by agents, except that
the communication is an intrinsic component of the action. This suggests that they
really fit into a service-oriented, rather than a message-oriented, model. OWL-S
processes are also designed to represent the actions of agents so we seem to have a
good match. However, with the standard OWL-S to WSDL grounding, mapping each

Protocol Mediation for Adaptation in Semantic Web Services 13

atomic process onto a WSDL operation can lead us astray. The problem is that there
is nothing to stop a service provider mapping a pair of communicative acts onto a
single operation, and hence a single atomic process. For example, it is reasonable to
ground the requestShipmentStatus and informShipmentStatus in the
separate request and response messages of a single WSDL operation. The knock-on
effect is that we have to model this with a single atomic-process. This decision
bubbles up through the design of the interface forcing the designer to conflate two
otherwise distinct acts all the way up the model. On the plus side, the current
grounding is not mandated as the only possible grounding. Indeed, the concrete
protocol described by the VSCL of section 5 may be thought of as a description-
driven grounding that allows us to map these conceptually distinct acts to (different
parts of) the same WSDL operation.

The work of the SWWS and WSMO projects are both motivated by the Web
Services Modelling Framework (WSMF) [27] and there has been an on-going
exchange of ideas between both projects. Our work is focussed in the mediation of
interaction protocols and is most closely related to WSMO Orchestration and
Choreography [28]. WSMO uses Abstract State Machines (ASM) as a formalism for
describing both choreography and orchestrations. WSMO choreography is most
closely aligned with our notion of an abstract protocol, whilst WSMO orchestration is
most closely aligned with our notion of concrete protocols. Our work on SWWS has
taken the ‘easier’ path abstracting communicative intent as communicative acts to
which a semantic account could be given. WSMO takes the more challenging path of
goal driven interaction intended to bring about desired change in the partial state of a
world model.

7 Conclusions.

Current practice in Web Service integration relies of a rigid plug and socket fit
between the provider and consumer of a web service interface. We have demonstrated
an approach that provides for description driven adaptation. Our approach relies on
the provision of a rich description of the behaviour required of the user of a web
service interface. Whilst this places a significant additional burden on the provider of
the web service interface, it provides for massive leverage, since it vastly reduces the
integration work required of a consumer of that interface. In effect we have provided
a more malleable approach to the description of web service interfaces that enables
interoperability and substitution were there is significant conceptual overlap between
alternate interfaces.

Our approach relies on there being a shared understanding of the semantics of
domain specific communicative acts and requires understanding of the semantics of
individual web service operations on the part of the provider of the enriched interface
description. This obviates the need for a machine readable semantic description of
each web service operation, however, this results in concrete protocol descriptions
that are somewhat imperative with respect to the behaviours associated with state
transitions. Nevertheless, at both the abstract and concrete level, the structure of the
concurrent state machines used to specify behavioural constraints is exposed and

14 Stuart K. Williams, Steven A. Battle, Javier Esplugas Cuadrado

potentially available for more formal analysis with respect to the desired safety and
liveliness properties of the combine abstract/concrete behaviour.

A prototype mediation component which implements the framework described in
this paper has been was developed as part of the SWWS project and used as part of
the logistics case study demonstrator described in [8].

8 Acknowledgements

The authors gratefully acknowledge the support of the EU who partially funded this
work under SWWS consortium under agreement IST-2002-37134. In addition we
extend particular thanks to Silvestre Losada, Oscar Corcho and Jorge Pérez Bolaño of
Intelligent Software Components S.A. (ISOCO) [30] for their work implementing
protocol mediation component discussed in this paper. Finally we would like to thank
our colleague Chris Preist for his feedback on early drafts of this paper.

9 References

1. Christensen, E., Cubera, F., Meredith,G., and Weerawarana, S.: “Web Services Description
Language (WSDL) 1.1”, W3C Note (15 March 2001),
<http://www.w3.org/TR/2001/NOTE-wsdl-20010315>

2. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller,
D., Smith, D., Thatte, S., Trickovic, I., and Weerawarana, S.: “Business Process Execution
Language for Web Services – Version 1.1” BEA Systems, IBM, Microsoft, SAP AG and
Sibel Systems Whitepaper (5 May 2003),
<ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf>

3. Kavantzas, N., Burdett, D., Ritzinger, G., Fletcher, T., and Lafon, Y.: “Web Services
Choreography Description Language Version 1.0”, W3C Working Draft (17 December
2004), <http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/>

4. Martin, D. et. al: “OWL-S: Semantic Markup for Web Services”, W3C Member submission
(November 2004) <http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/>

5. Searle, J.R, “Speech Acts – An essay in the philosophy of language”, Cambridge University
Press, 1969

6. ISO 7498/CCITT X.200, “Open Systems Interconnect Basic Reference Model”, 1994
International Standards Organisation.

7. Esplugas-Cuadrado, J., Preist, C., Williams, S., “Integration of B2B Logistics Using
Semantic Web Services”, Lecture Notes in Computer Science, Volume 3192, Aug 2004

8. Preist, C., Esplugas-Cuadrado, J., Battle, S., Grimm, S., and Williams, S., “Automated
Business-to-Business Integration of a Logistics Supply Chain using Semantic Web Services
Technology”, Submitted to ISWC 2005

9. Bochmann, G.V., “Higher-level protocols are not necessary end-to-end”, ACM SIGCOMM
Comput. Commun. Rev., Vol 13, No 2, April 1983.

10. Tomas, J.G., Pavon, J., and Pereda, O., “OSI service specification: SAP and CEP
modelling”, ACM SIGCOMM Comput. Commun. Rev., Vol 17, No 1-2, Jan-Apr 1987

11. Calvert ,L., and Lam, S. S., “Deriving a protocol converter: a top-down method”, ACM
SIGCOMM Comput. Commun. Rev., Vol 19, No 4, Sept. 1989.

12. Tao, Z. , Bochmann, G.V., Dssouli, R., “A formal method for synthesizing optimized
protocol converters and its application to mobile data networks”, Mobile Networks and

Protocol Mediation for Adaptation in Semantic Web Services 15

Applications, Vol.2 No.3, p.259-269, Dec. 1997
13. “RosettaNet Implementation Framework: Core Specification Version 2.00.01”, March 2002,

<http://www.rosettanet.org>
14. ISO 9735, “Electronic data interchange for administration, commerce and transport

(EDIFACT) -- Application level syntax rules”, 2002, International Standards Organisation
15. Harel, D. “Statecharts: A Visual Formalism for Complex Systems”, Science of Computer

Programming, Vol , No 3 p. 231-274 June 1987
16. Milner, R., “Communications and Concurrency”, Prentice-Hall, ISBN 0-13-115007-3, 1989.
17. Battle, S. “Round Tripping between XML and XML”, Poster ISWC 2004,

<http://iswc2004.semanticweb.org/posters/PID-BRRGVFRE-1090254811.pdf>
18. Berners-Lee, T., Fielding, R., Masinter, L., “Uniform Resource Identifier (URI): Generic

Syntax.”, RFC 3986, IETF, January 2005. <http://www.ietf.org/rfc/rfc3986.txt>
19. Dean, M., Schreiber, G. (eds), “OWL Web Ontology Language Reference” W3C

Recommendation, 10 Feb 2004. < http://www.w3.org/TR/2004/REC-owl-ref-20040210/>
20.VSCL Ontology <http://swws.semanticweb.org/ontologies/protocolMediation/vscl>
21. Beckett, D. (ed), “RDF/XML Syntax Specification (Revised)”, W3C Recommendation,10

February 2004, < http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/>
22. Sample VSCL Abstract Protocol Description <http://swws.semanticweb.org/wp8/logistics>
23. Sample VSCL Concrete Protocol Description

<http://swws.semanticweb.org/ontologies/choreo/rn.owl>
24. Mozilla Rhino: JavaScript for Java <http://www.mozilla.org/rhino>
25. Waldo, J., Wyant, G., Wollrath, A. and Kendal, S., “A Note on Distrubuted Computing”,

Sun Microsystems Laboratories, Inc TR-94-29, Nov. 1994,
<http://research.sun.com/techrep/1994/smli_tr-94-29.pdf>

26. Feier, C. (ed), “WSMO Primer”, DERI Working Draft, Apr 2005,
<http://www.wsmo.org/TR/d3/d3.1/v0.2/>

27. Fensel, D., Bussler, C., “The Web Service Modeling Framework WSMF.” In: Electronic
Commerce Research and Applications, Vol. 1, Issue 2, Elsevier Science B.V., Summer
2002. <http://www.wsmo.org/papers/publications/wsmf.paper.pdf>

28. Roman, D., Scicluna, J., Feier, C. (eds), “Ontology Based Choreography and Orchestration
of WSMO Services”, DERI International, March 2005,
<http://www.wsmo.org/TR/d14/v0.2/>

29. BEA, IBM, “BPELJ: BPEL for Java” Joint Whitepaper, March 2004,
<ftp://www6.software.ibm.com/software/developer/library/ws-bpelj.pdf>

30. Intelligent Software Components <http://www.isoco.com>

