

Generating Unforgeable Evidence for Secure Communications

Minwen Ji, Tom Rodeheffer1, Marcos Aguilera, Mark Lillibridge
HP Laboratories Palo Alto
HPL-2005-71
April 21, 2005*

non-repudiation,
evidence, secure
socket layer,
security protocol,
digital witness

The Internet is increasingly being used for serious transactions involving
money and goods. However, there hardly exists any means for users of
Internet transactions to obtain third-party verifiable evidence of the
transactions in which they participate. As a solution to this problem, we
propose the use of a semi-trusted third party, called a digital witness, that
can provide unforgeable transaction evidence without ever seeing the
transaction contents. The witness is attached to secure communication
sessions in an unintrusive manner: it requires no changes to existing
servers or protocols. The key idea in enabling such a witness service is a
novel algorithm that splits the computation of a message authentication
code (MAC) between the client and the witness. We have implemented a
prototype witness, tested it with real web sites and measured its
performance. The experimental results show that the overhead of a
witness is comparable to that of a web proxy. Therefore, the witness
design can be implemented reasonably efficiently in practice.

* Internal Accession Date Only
1Microsoft Research Approved for External Publication
© Copyright 2005 Hewlett-Packard Development Company, L.P.

Generating Unforgeable Evidence for Secure Communications

Minwen Ji
�
, Tom Rodeheffer � , Marcos Aguilera

�
, and Mark Lillibridge

��
Hewlett Packard Laboratories, � Microsoft Research

Abstract

The Internet is increasingly being used for serious transac-
tions involving money and goods. However, there hardly
exists any means for users of Internet transactions to obtain
third-party verifiable evidence of the transactions in which
they participate. As a solution to this problem, we propose the
use of a semi-trusted third party, called a digital witness, that
can provide unforgeable transaction evidence without ever
seeing the transaction contents. The witness is attached to
secure communication sessions in an unintrusive manner: it
requires no changes to existing servers or protocols. The key
idea in enabling such a witness service is a novel algorithm
that splits the computation of a message authentication code
(MAC) between the client and the witness. We have imple-
mented a prototype witness, tested it with real web sites and
measured its performance. The experimental results show
that the overhead of a witness is comparable to that of a web
proxy. Therefore, the witness design can be implemented rea-
sonably efficiently in practice.

1 Introduction

The Internet is increasingly being used to conduct serious
business, such as stock and bond trading, shopping, partic-
ipating in auctions, obtaining quotes or financing, and pay-
ing bills. These activities all involve transactions of money,
goods, or offers for the same. Yet, the Internet is a relatively
dangerous venue for such dealings, so security is an important
concern.

Basic security for these Internet transactions is often pro-
vided by the Secure Sockets Layer (SSL) protocol [7], a
client-server-based protocol that guards against external par-
ties attempting to eavesdrop on or tamper with the commu-
nication between the client and the server, and optionally
against impersonation of the server or the client.

Besides attacks from external parties, users of Internet
transactions may also suffer from misbehaviors of the par-
ties they are conducting transactions with, e.g., the web site
owners. For example, a merchant might promise one price
during a purchase transaction, but bill a higher price later.
Or, an insurance company might “lose” an insurance claim
submitted online and refuse to pay it when submitted again
after the deadline. The authors know a real-life incident in
which an individual lost a considerable sum of money when

his stock broker failed to execute a trade within the promised
window. These misbehaviors need not be due to malice: soft-
ware or hardware failures can also result in lost or incorrectly
performed transactions. In contrast to old-fashioned transac-
tions, where the users receive the merchants, the services or
at least hardcopies of the receipts immediately, users of In-
ternet transactions are merely reminded to save or print the
web pages that contain summaries of the transactions. Un-
fortunately, saved or printed web pages can hardly serve as
convincing evidence of the transactions because they are eas-
ily alterable.

Clearly, a means for users to obtain third-party verifiable
evidence of any Internet transactions in which they participate
would help improve the security of the Internet as a venue
for serious business. An evidence-generating scheme should
meet the following requirements in order to be acceptable in
practice:�

Evidence integrity: The resulting evidence should not
be forgeable by the clients so that it is convincing to
third-party reviewers.�
Message confidentiality: To preserve privacy, the con-
tents of transactions should not be revealed to any par-
ties other than the clients, the servers, and the intended
reviewers.�
Manageable changes: Changes to existing systems and
protocols should be minimal, and should be transparent
to parties who do not receive a direct or substantial ben-
efit from the changes.�
Acceptable performance: The evidence-generating
processes should not significantly slow down the trans-
actions.

There are two complementary approaches to generating ev-
idence of Internet transactions, the server-initiated approach
and the client-initiated approach. In the server-initiated ap-
proach, a server is willing to and is capable of issuing a third-
party verifiable record of the transaction, such as a digitally
signed [18] receipt. In the client-initiated approach, a client
resorts to other means for obtaining evidence, with or without
the server’s awareness or cooperation. The latter approach is
useful in situations where the server is unwilling to issue a
digitally signed transaction record (e.g., for fear of additional
liability), or the server is incapable of doing so (e.g., due to
the lack of a Public Key Infrastructure), or the client wants
the record for portions of the transaction that are not covered

1

in the server-issued receipt. In fact, such situations are quite
common in current Internet experiences.

This paper proposes a client-initiated approach to generat-
ing unforgeable evidence, in which a witness is attached to a
secure communication session in such a way that it can safely
testify about the messages communicated in the session, with-
out actually knowing the contents of the messages. It does not
require any changes on the server side or in the communica-
tion protocol. This is important for very large systems with
many owners of diversed interests, such as the Internet.

Once available, such a witness service would likely find
uses other than protecting users from misbehaved merchants.
For example, mortgage lenders might start accepting “wit-
nessed” bank statements online as partial proof of a would-
be borrower’s finances; chess players might present verifiable
logs of their online games for record setting purpose; and em-
ployers might record their employees’ online transactions for
training or quality assurance.

Two issues arise from the proposal of the witness service.
The first is whether the witness scheme can meet all the tech-
nical requirements as discussed above. The second is whether
there will be sufficient market demand to economically jus-
tify the deployment of such a witness service. The first issue
can be addressed by a technical discussion on the design and
implementation of the scheme, while the second issue is es-
sensially a prediction of the profitability of a business running
the witness service. In this paper, we concentrate on the tech-
nical aspects of the scheme, and leave the business aspects to
the experts in the respective areas.

The technical contributions of this paper are the following.
First, we design a novel algorithm that efficiently splits the
computation of a Message Authentication Code (MAC) be-
tween two distrusting parties. Second, using this algorithm,
we design and implement a witness service for SSL commu-
nication that provides evidence integrity, message confiden-
tiality, manageable changes and low performance overhead.
Third, we conduct a variety of experiments and demonstrate
the robustness and efficiency of the implementation.

Since it is implemented at the SSL level, the witness ser-
vice can work for any applications that run on top of SSL,
such as HTTPS (which most secure web sites use) and secure
FTP.

The rest of the paper was written with the assumption that
the readers are familiar with the SSL protocol and the one-
way hash functions it uses to construct MACs. Appendix A
gives some background for readers who are less familiar with
this material.

2 Use of existing techniques

In this section, we briefly discuss several approaches that use
existing techniques to provide evidence for transactions con-
ducted over the SSL protocol, and why they do not meet the

requirements of evidence integrity and message confidential-
ity, as stated in Section 1.

MACs One might wonder if the client could simply use the
MAC received from the server as the evidence that an SSL
record was sent by the server, since the MAC could only be
computed with the appropriate MAC secret. The problem,
however, is that both the client and the server know the MAC
secret, so that the client itself could have created a record and
computed the MAC using the server’s sending MAC secret.
Therefore, this approach does not meet the requirement of
evidence integrity.

HTTPS proxy dump An HTTPS proxy is a third party that
is interposed between the client and the server and blindly
forwards all traffic between them [21]. One might be tempted
to have the proxy dump the traffic it forwards and use it as the
evidence. In other words, the HTTPS proxy is used as a “wit-
ness” for the HTTPS communication. Such an approach does
not compromise message confidentiality, because the proxy
only sees encrypted data. However, it is the client, not the
proxy, that authenticates the server during the SSL handshake
protocol. Consequently, the client is able to mislead the proxy
about the server’s identity. Therefore, this approach does not
meet the requirement of evidence integrity.

Fully trusted witness Another obvious way of building a
witness is to have the witness establish two independent SSL
sessions, one between the server and the witness, and the
other between the witness and the client. The witness de-
crypts the messages from one session, encrypts them using
the keys from the other session, and forwards the re-encrypted
messages to the other session. This lets the witness authenti-
cate the server and every message. However, since the witness
sees the plaintext of the messages (e.g., account numbers and
passwords), the user has no privacy. Therefore, this approach
achieves evidence integrity, but not message confidentiality.

3 Design

In this section, we describe our design of a witness for the
SSL protocol. We start with a system model in which the
various parties involved in a witnessed SSL session and the
assumptions on their trust relationships are explained. We
then show how to achieve the security goals of the witness
using a novel algorithm called MAC decomposition.

3.1 System model

In order to generate unforgeable evidence of a transaction
conducted over an SSL session, we attach a witness to the
SSL session. The server operates in the same way as in a
regular SSL session. The client records its communication

2

Figure 1: Witnessed SSL communication.

with the server in plaintext, while the witness records “evi-
dence” of the communication, as will be explained later. The
evidence is signed by the witness in the end of the session.
Together with the plaintext, it can be used as irrefutable proof
that the communication took place as recorded. The whole
scheme is illustrated in Figure 1.

We call the communication record produced by the client
verified communication record as attested to by witness � if
it is consistent with the evidence that was signed by � . We
call a party that performs this consistency check a verifier.

The trust relationships in the system are as follows:�
The witness and the verifier trust neither the server nor
the client.�
The verifier trusts the witness to produce honest testi-
mony. This is analogous to the relationship between a
reviewer of a notarized document and the licensed pub-
lic notary.�
The client trusts that the witness is not both malicious
and able to intercept messages sent directly between the
client and the server. We call this a semi-trusted relation-
ship.�
The server is not aware of the presence of the witness
during the communication with the client.

A verifier that trusts witness � is able to infer a reasonable
amount of information about a witnessed SSL session from
the verified communication record attested to by � , includ-
ing the server’s identify and the messages transmitted. In par-
ticular, the witness guards against situations where the server
denies sending a message that it actually did during the wit-
nessed period, and situations where the server falsely claims
receiving a message that the client did not actually send dur-
ing the witnessed period.

3.2 Design constraints

In order to meet the requirements for evidence-generating
schemes as discussed in Section 1, we use the following con-
straints to guide our witness design:�

In the beginning of each SSL session, the witness, not
the client, should authenticate the server and generate the
shared secrets with the server. This prevents the client
from colluding with a server impostor or forging the ev-
idence.�
The addition of a witness to an SSL session should not
enable any parties, including the witness itself, to eaves-
drop, tamper or forge the messages between the client
and the server. This ensures the same level of protection
for the client as the regular SSL protocol does.�
No changes should be required on the server side or in
the SSL protocol. This leaves the client the only adopter
of the changes, which is reasonable because the client is
the main beneficiary of the witness service.�
The performance overhead of a witness should be com-
parable to that of existing services on the Internet, such
as a web proxy. This makes the witness overhead more
likely to be acceptable.

3.3 Decomposed MAC

The main challenge in designing the witness is to prevent
the client from tricking the witness into testifying about mes-
sages that have not been exchanged between the client and the
server, while preserving the client’s privacy from the witness.
Our key idea to address this challenge is to split the compu-
tation of the MAC in SSL between the client and the witness
in such a way that produces the same results as the regular
MAC function, without giving the MAC secret to the client
or the message content to the witness. We call this method of
computing MAC decomposed MAC.

We made an important observation that the MAC function
in SSL, in particular the HMAC function [3], can be com-
puted in three steps such that each step requires only the mes-
sage content or only the MAC secret, but not both. This is at-
tributed to the iterated nature of the underlying hash functions
in HMAC, e.g., MD5 [17] and SHA1 [12], which start with a
constant Initialization Vector (IV), process an arbitrary-length
message in blocks of fixed size and use the result of the cur-
rent block as the IV for the next block. The padding in
HMAC, which was originally designed to optimize perfor-
mance, also plays an important role in decomposing HMAC.
The MAC of an SSL 3.0 record is computed by

HMAC �����
	��
������������	��
�������������� �����
	 �"!$#�%'&(�*)+���,��- � #.�
/$���
and

)+���,��- � #.�
/0�� �����
	1�"!$#�%�23�*���
�4�*�5�*	��
�����������6�
3

where
�

is an iterated one-way hash function, ����	 is the MAC
secret, ���
� is the sequence number of the SSL record, � is the
length of the record, 	��
��������� is the record content, !$#�%52 is
the byte 7+8$9+: repeated 48 times, and !;#'%.& is the byte 7<8>=<	
repeated 48 times [13]. Definitions of the HMAC terms can
be found in Appendix A.2.

Let ���
	?�*!$#�%'@2 be the first block of the message hashed
for)+���,��- � #.�
/ where !;#'%.2A�B!;#'% @ 2 �C!;#�% @ @2 . (!;#'% @ @2 is zero
bytes for MD5 and four bytes for SHA1.) In the first step
of the decomposed MAC computation, the witness computes
and then sends to the client

DeHMAC 2D� � �����
	 �"!$#�% @ 2 �
In the second step, the client computes and then sends to the
witness

DeHMAC &E� �
DeHMAC F �G!$#�% @ @2 �*���
�4�*�5�*	��
�����������

where
�

DeHMAC F denotes the hash function
�

with
DeHMAC 2 as its IV. Because of the iterated nature of

�
and

the fact that ���
	E�*!$#�%'@2 exactly fills a block, DeHMAC & is
equal to)H���,��- � #.��/ . In the third step, the witness computes

DeHMAC I?� � �����
	1�J!;#'% & � DeHMAC & �
which is equal to the normal HMAC.

In a witnessed SSL session, when the client wants to send
an SSL record, it proceeds as if it is in a regular SSL session
except that instead of computing the regular MAC locally, it
computes the decomposed MAC jointly with the witness. The
witness records the computed MAC as evidence. Receiving
a record is similar except that the witness does not give the
computed MAC to the client, but only tells it whether the re-
ceived MAC is the same as the computed MAC.

In the decomposed MAC computation, the client gets a
one-way hash value of the MAC secret (DeHMAC 2), and
the witness gets a one-way hash value of the message con-
tent (DeHMAC &). By definition, a one-way hash function�

has the following property: given a hash value / , it is
cryptographically hard to compute a message K such that� �LKM�1�N/ . It follows that it is cryptographically hard for the
client to compute the secret from DeHMAC 2 and for the wit-
ness to compute the message content from DeHMAC & . There-
fore, the decomposed MAC is safe against the client’s forgery
while it preserves message confidentiality from the witness.

As long as the communication channel between the client
and the witness is secure, an external party cannot gain any
more information about the witnessed SSL session than it
could have gained about a regular SSL session. Therefore, the
witnessed SSL protocol provides the same protection from an
external party as the regular SSL protocol does.

3.4 SSL connection handover

In the beginning of a regular SSL session, the client invokes
the SSL Handshake Protocol to authenticate the server’s iden-

tity and to generate shared session keys and secrets with the
server. (Definitions of the SSL terms can be found in Ap-
pendix A.1.) In a witnessed SSL session, sssuming that the
server, the client, and the witness are running on three inde-
pendent sites, the witnessed SSL handshake consists of the
following steps:

1. The client establishes two TCP connections, one with a
server and the other with the witness, and then informs
the witness that it wants to start an SSL connection.

2. The witness performs an SSL handshake with the server
to establish a new SSL connection, recording the results,
including the MAC secrets, the encryption keys, the ver-
ified server certificate and the selected cipher suite.

3. The witness computes the first step of the decomposed
MAC (DeHMAC 2) and copies the partial state of the
SSL connection (including DeHMAC 2 and the encryp-
tion keys, but not the MAC secrets) to the client through
a secure channel. We call this operation a handover.

Once the handover is done, the client can start exchanging
application data with the server. A web user often starts an
application session with an HTTPS server by logging into her
personal account on the server with her password. It is worth
noting that the SSL session that the witness establishes with
the server is independent of the application session, and does
not require the witness to know the client’s application-level
secrets, such as passwords. Rather, the application session is
layered on top of the SSL session.

The witness’s participation in the handshake with the
server allows the witness to directly authenticate the server,
preventing the client from impersonating the server. For ex-
ample, after the handshake the witness is convinced that it
is communicating with the server who owns the private key
corresponding to the public key in the verified and recorded
certificate.

The witness copies the encryption keys to the client after
the handshake so that the client can have confidential com-
munication directly with the server. The witness keeps the
MAC secrets from the client so that the client cannot produce
valid messages without the witness’s help. The encryption
keys and MAC secrets in SSL are independent of each other,
albeit derived from the same shared secret. Therefore, it is
impossible for the client to guess the MAC secrets even when
given the encryption keys.

3.5 Client proxy

Figure 2 shows the layering and end points of connections
in a witnessed SSL session. The SSL session is established
between the server and the witness, and partially shared with
the client. The application session resides between the client
and the server, in the same way as in a system without the
witness. TCP connections exist only between the client and
the server and between the client and the witness. That is, the

4

Client

WitnessServer

Legend

Application session TCP connection

IPSec tunnelSSL session

Figure 2: Connection hierarchy in a witnessed SSL session.
The IPSec tunnel in this figure is an example of how the chan-
nel between the client and the witness can be secured.

witness communicates with the server through the client as a
proxy. There are two reasons for this design decision.

First, many encryption engines maintain internal state that
is dependent on the stream of bytes that have been processed
in the past. Therefore, in order to keep the state of the encryp-
tion engine in the client consistent with that in the SSL server,
it is easiest to have all messages encrypted or decrypted solely
by the client once the handover of the SSL connection is done.
Before the handover is done, the witness encrypts or decrypts
all messages. An alternative is to process the messages in
part by the client and in part by the witness, and to explicitly
synchronize the encryption engine state between them. This
alternative is unattractive because it needs to be implemented
specifically for every type of encryption engine that the SSL
protocol supports.

Second, since the witness knows the SSL encryption keys
and MAC secrets, it is able to eavesdrop on or forge the mes-
sages exchanged between the client and server if it can inter-
cept those messages or impersonate the client or server. To
make these attacks harder to launch by the witness, we have
the client exchange application data with the server directly,
bypassing the witness. We assume that the witness is not on
the network path between the client and the server,1 and hence
cannot simply sniff the traffic between them. We discuss this
in more detail in Section 3.9.

All messages between the client and the witness, including
the witness-server communication through the client proxy,
are transmitted over a secure channel that is separate from
the SSL session with the server; i.e., one with independent
authentication. This secure channel can be implemented by
Secure Remote Procedure Calls, by an independent SSL ses-
sion, or by a TCP connection on top of a secure IP tunnel
(e.g., an IPSec tunnel).

1This prohibits Internet Service Providers from offering a witnessing ser-
vice to their clients.

3.6 Message exchanges

In a witnessed SSL session, all SSL records of application
data are sent or received by the client, not the witness. In
HTTPS, the application data includes URL requests, HTML
pages, cookies, etc. Before sending an SSL record to the
server, the client computes its MAC jointly with the witness
and then encrypts the record. After receiving an SSL record
from the server, the client decrypts the record and sends its
MAC to the witness, who then verifies it via the decomposed
MAC procedure. If the verification fails, the witness shuts
down the connection and invalidates the session. The client
records the connection numbers, sequence numbers, lengths,
and unencrypted contents of all the application data records
it has sent or received. The witness records all the MACs it
is asked to compute or verify, together with the correspond-
ing connection numbers, sequence numbers (determined in-
dependently of the client), directions (from client or server),
and the current time.

All SSL control messages, including handshake messages,
change-cipher-spec messages and alert messages, are initiated
or handled by the witness, although physically transmitted
through the client proxy. After sending or receiving a con-
trol message, the witness informs the client of any necessary
state updates. The witness uses the regular MAC function
to compute MACs for control messages because decomposed
MAC is unnecessary for control messages and is slower.

Detailed procedures for sending an SSL record from the
client or the witness to the server can be found in Figure 8 in
Appendix B. Detailed procedures for receiving an SSL record
from the server can be found in Figure 9 in Appendix B. Re-
ceiving an SSL record is considerably more complicated than
sending a record because it needs to handle unexpected and
out-of-band messages (e.g., alerts or session renegotiation re-
quests) from the server.

3.7 Verification of records

When it needs to prove to a verifier the contents of a witnessed
transaction, the client asks the witness for signed evidence
of the SSL communication involved. The witness will then
digitally sign and send to the verifier the recorded server cer-
tificate, the cipher suite chosen, the per-connection MAC se-
crets, and ordered lists of per-message information. The per-
message information consists of the SSL-connection number,
the direction the message was transmitted, the message’s se-
quence number, the message’s MAC, and the time the witness
computed that message’s MAC. Messages are listed in the or-
der their MACs were computed by the witness.

Signed evidence is provided only for successfully com-
pleted SSL sessions. While we could provide some evidence
for invalidated sessions (due, for example, to a fatal alert re-
ceived from the server or an incoming message’s MAC fail-
ing to verify), the obtainable evidence is hard to interpret

5

and there seems to be no compelling reason to handle these
cases. Note that if the server attempts to take advantage
of this limitation by abnormally terminating sessions once a
user’s application-level transaction has completed, the user’s
browser will complain, alerting them. Because a server has
no way of telling which clients are using a witness, doing this
means that everyone using the site will receive SSL errors,
risking alienating a large number of customers.

If the server, the client, or the witness crashes during an
SSL session, the witnessing service will be aborted and no
evidence will be provided about the session.

The verifier first authenticates the signed evidence using
the public signature key of the witness. Provided the evidence
has the correct signature, the verifier then compares it to the
communication records provided by the client. The verifier
does this by lining up the list of communication records next
to the list of per-message information in the evidence and then
comparing side-by-side entries. (Verification fails if the lists
differ in length.) A pair of entries compare successfully iff
they have the same connection number, sequence number, di-
rection, and MAC, where the communication record’s MAC
is obtained by computing the regular MAC function on it us-
ing the appropriate MAC secret and cipher suite from the ev-
idence. If all entries compare successfully, then the verifier
concludes that the records are consistent with the evidence
and marks them as verified.

3.8 Analysis of records

Given a set of verified communication records attested to by a
witness that a verifier trusts, what conclusions can that verifier
safely make about those verified communication records?

Since the client did not know any of the server’s send-
ing MAC secrets on an SSL connection while the connection
was being witnessed and is unable to alter the evidence af-
terwards due to the witness’s signature, every MAC recorded
as received from the server must have been generated by the
authentic server. Therefore, the corresponding messages in
the client’s records must have been sent by the server rather
than forged by the client. Similarly, since the client did not
know any of the witness’s sending MAC secrets, the server
could not have received any messages from the client while
the communication was being witnessed that are not recorded
as sent by the client. Because each direction of each con-
nection uses different MAC secrets and the MAC covers the
sequence number, the verifier can be sure that the information
associated with each record is correct.

When could the client have omitted telling the witness
about a received message? Because the sequence numbers
of the recorded records have no gaps (otherwise verification
would have failed), the only received messages the client
could have omitted were ones received after the recorded re-
ceived messages. Thus, the messages recorded as received on
a connection are a prefix of the messages actually received

by the client. Furthermore, if a close-notify message from
the server was recorded at the end of a connection, then the
recorded messages are an exact match of the received mes-
sages. This is because the client would not have been allowed
to accept more messages from the server after it received a
close-notify message.

When could the client have failed to send a message that it
claimed it sent? Once a client drops an outgoing message, no
further valid messages can be sent on that connection while
that connection is being witnessed, due to SSL’s sequence
number checking. The client cannot reuse or skip sequence
numbers because the sequence numbers it records are com-
pared to the witness’ independently-assigned sequence num-
bers. Therefore, the verifier can conclude that the messages
actually sent by the client on a connection while that con-
nection was being witnessed are a prefix of the messages
recorded as sent on that connection.

In addition, since the evidence includes a time for each
recorded MAC, the verifier can conclude that a message
recorded as received by the client at time � cannot have been
sent by the server after that time and that a message recorded
as sent to the server at time � cannot have been received by
the server before that time.

The witness’s evidence is provided only for the period in
which the witness is used. The evidence is not intended to
cover the client-server communication before the witnessed
SSL session is established or after the evidence is revealed
to a verifier or to the client itself, because the witness has no
control of such communication.

Since the SSL protocol keeps separate sending and receiv-
ing sequence numbers, the verifier is unable to determine the
exact temporal interleaving between the sent and received se-
quences. However, the verifier can be sure that the messages
recorded as sent by the server could be replying only to the
messages recorded as sent by the client. If necessary, the tem-
poral interleaving can be determined with application-specific
knowledge. For example, in the HTTPS protocol, once the
SSL records are assembled into HTTP requests and replies,
the interleaving of those messages becomes obvious.

3.9 Client Privacy

The client’s privacy depends on the witness being either un-
willing or unable to intercept the client’s direct communi-
cation with the server. While not ideal—ideally, the client
would not have to place even this much trust in the witness—
this is not without precedence; Abadi, et al. [1], for example,
provide a similar level of privacy from a semi-trusted certified
e-mail provider.

The only way we know of to remove the need for the client
to (fully) trust the witness while still leaving the server un-
changed involves the use of secure multi-party computation
(SMPC) [22] to allow the client and witness to conduct a
joint handshake with the server such that only the witness

6

gets the resulting MAC secrets and only the client gets the
resulting encryption keys. Very briefly, this would work by
having the client and witness each submit a random number
to the SMPC, which would be summed to generate the shared
secret, which in turn would be encrypted with the server’s
public-key and used to generate the MAC secrets and encryp-
tion keys. Unfortunately, all the SMPC algorithms we know
of have unacceptable performance for computations of this
size.

Why not assume a fully trusted witness who is trusted with
the full content of the client-server communication and use
the far simpler technique discussed in Section 2? We con-
tend that a semi-trusted witness is more desirable than a fully
trusted one, for several reasons:

First, there is no legal way for a semi-trusted witness to ac-
cess the communication content, while it is legal for a fully-
trusted witness to do so. Second, a semi-trusted witness,
even when it is corrupt, may be incapable of intercepting
the client-server communication because the targeted pack-
ets are not routed near the witness on the Internet. There are
known attacks for intercepting Internet traffic, such as DNS
spoofing [20] and TCP hijacking [11], but they are becoming
less effective as the Internet improves and they are usually
detectable quickly. Once a witness is caught using such at-
tacks, it would quickly lose its reputation. In contrast, a cor-
rupt fully-trusted witness can eavesdrop or tamper with the
communication content with entirely internal operations, and
hence remain undetected for a much longer time.

Using a semi-trusted service is analogous to sending a
sealed letter rather than a postcard via the post office. A post-
card corresponds to full trust since its contents are available
immediately to the postal service. A sealed letter, by contrast,
corresponds to semi-trust, because it provides a reasonable
amount of privacy while not being absolute: specialists can
(sometimes undetectably) open letters with ingenious appara-
tuses. Doing so, however, is prohibited by legislation in most
countries.

4 Implementation

We have implemented a prototype of the witness scheme on
the Linux platform; the prototype consists of a witness, a
witness-aware SSL library, and a program for verifying com-
munication records. The witness-aware SSL library is a mod-
ified version of the open-source SSL library, OpenSSL 0.9.7,
and is used by both the witness and clients. We enable client
software to work with the witness by linking it to this mod-
ified SSL library, either statically or dynamically. No other
modification to existing client software is necessary if the
client software already uses OpenSSL. If the client software
was dynamically linked to the OpenSSL library, not even re-
compilation is necessary.

The witness is implemented as a Remote Procedure Call

(RPC) server. It handles two types of client requests: SSL
connection establishment and shutdown (e.g., when a client
calls SSL connect() or SSL shutdown()), and decomposed
MAC computation for application data records. A single wit-
ness RPC server can handle multiple clients and multiple SSL
sessions/connections per client.

The client proxy is implemented as a thread in the same
address space as the client application. Each OpenSSL ap-
plication first creates a structure called SSL context, which it
then uses to make SSL connections in the created context.
The context consists of information such as a preferred ci-
pher list and session cache. When a new context is created
for a witnessed SSL client, the witness-aware library creates
an RPC handle to the witness and forks a proxy thread for
that context. The proxy accepts TCP connections from the
witness by listening on a port; this port number is sent to the
witness in the first call to the witness RPC server within this
context. There is a witness-proxy connection for each client-
server SSL connection. To reduce the overhead for three-way
TCP connection establishment, we keep a witness-proxy con-
nection in a pool of “free” connections after its corresponding
SSL connection is shut down, and reuse the freed connection
when a new client-server SSL connection is established.

The client proxy repeatedly polls the per-connection server
sockets and witness sockets, the free sockets, and the per-
context RPC socket. For each control message that ar-
rives at a per-connection server/witness socket, the proxy de-
crypts/encrypts it as necessary and forwards it to the corre-
sponding witness/server socket. Each message that arrives
at a free socket indicates the need for a new witness-proxy
connection and hence converts the free socket into a per-
connection witness socket.

We have implemented two alternatives to handle applica-
tion data in the client proxy. The first one is a naive, syn-
chronous method. For each application data record that ar-
rives at a per-connection server socket, the proxy forwards it
to the application, which then makes a synchronous RPC to
the witness for MAC verification. In the synchronous method,
the MAC computation for the next record will not be started
until after the processing of the current record is completed.
Therefore, the communication overhead to the witness for
sending or receiving � records is � times the round trip la-
tency between the client and the witness.

The second method is an optimized, asynchronous method.
It reduces the witness overhead for sending or receiving large
amounts of application data by pipelining the MAC compu-
tation on multiple records and by overlapping communica-
tion to the witness with communication to the server. For
each record that arrives at a server socket, the proxy adds the
record to a pending records queue, makes an asynchronous
RPC to the witness for MAC verification, and continues to
process the next message without waiting for the reply of the
current RPC. When the reply for a MAC request arrives at
the RPC socket, the proxy stores the reply with the relevant

7

Witness

Per−Context
RPC Sock

Per−Context
RPC Sock

Pending
Records Queues

Recv Queue

Send Queue
Ctrl Msg

Reply
MAC

Verify

Compute
MAC
Reply Compute MAC Request

Verify MAC Request

App Data

RPC
Request

RPC
Reply

Application
RPC Server Proxy

Per−ContextPer−Context

Free Sock Free Sock

Per−Conn
Proxy Sock

Per−Conn
Witness Sock

Ctrl Msg

App Data

Client

Select SSL_read SSL_write

To Server

Server Sock
Per−Conn

Figure 3: Components and messages in the witness prototype.

pending record in the queue and marks the record as ready for
the application. When it tries to read an SSL record by call-
ing SSL read(), the application retrieves the first ready record
with its MAC result and removes it from the queue. The use
of the pending records queues enables parallelism in process-
ing and transmitting multiple SSL records.

Figure 3 shows the data and control flows between the com-
ponents in the witness prototype.

During recording, the witness-aware SSL library writes
each MAC (for the witness) or SSL record (for the client) to a
separate file with the connection identifier (unique within an
SSL session), direction (sending or receiving) and sequence
number in the file name.

The prototype implementation involves roughly 7,000 lines
of manually written C code and 1,000 lines of automatically
generated RPC stubs.

5 Robustness tests

Links [15] (different from Lynx) is an open-source, text-
based Web browser that is included by default in some Red-
Hat Linux installations. It supports HTTPS through the
dynamically-linked OpenSSL library (libssl.so). We
replaced the system’s default OpenSSL library with the
witness-aware library and ran the witness on one of the local
machines. We then invoked the unmodified browser to access
real-world HTTPS sites that the authors have personal ac-

counts on, including online merchants (e.g., amazon.com),
phone companies (e.g., verizonwireless.com), calling
card companies, etc. Each test started with logging onto a
personal account and continued with browsing web pages or
making test transactions, such as changing the account pass-
word and address.

A limitation of Links is that it does not support Javascript
and hence cannot handle web pages that contain Javascript
code. To further test the witness prototype, we modified
the Mozilla browser source code so that it calls the witness-
aware OpenSSL library instead of its own security library
(i.e., the Network Security Services (NSS) package). With
the modified Mozilla browser, we were able to success-
fully use web sites that require Javascript support, including
credit card companies (e.g., americanexpress.com) and
banks (e.g., addisonavenue.com).

After a browsing session finished, we used a verifier pro-
gram to successfully compare the contents recorded by the
browser to the MACs recorded by the witness, following the
procedure described in Section 3.7.

These tests helped us improve the robustness of the imple-
mentation, particularly the handling of non-blocking sock-
ets, fragmented messages, connection shutdown, and call-
back functions. After these improvements, the witness-aware
browsers were able to access any HTTPS site that the original
browsers were able to access in the experiments.

8

O(P
Round-trip network latency between the client and the serverO3Q
Round-trip network latency between the client and witnessO(R
Average disk seek and rotation latency on the client and witness machinesSTP
Network bandwidth between the client and the serverSTR
Disk write bandwidth on the client and witness machines

Table 1: Variables used in the analysis of witness overhead.

6 Performance

An important aspect of the witness design and implementa-
tion is understanding the overhead that witnessing adds to
regular SSL communication, and optimizing it if needed. In
this section, we first analyze the witness overhead for an SSL
handshake and for application data, and then report experi-
mental results on the prototype.

6.1 Overhead analysis

Table 1 defines the variables used in the analysis. For simplic-
ity, we assume that computation speed and disk access time
on the client and the witness machines are the same.

6.1.1 Handshake messages

In order to initiate a handshake with the server, the client
needs to make an RPC to the witness. In handling this RPC,
the witness exchanges a number of messages with the server
through the client proxy. All other computation and com-
munication done in a regular SSL client, such as certificate
verification and key generation, will be done in the witness
instead. Let U4V be the amount of time needed for such com-
putation and communication. Since the messages during a
handshake are small and are not recorded to disk, only net-
work latencies matter in this case.

Therefore, the time needed for a regular handshake is� O(P �WU4V , while the time needed for a witnessed handshake isO3Q �X�1� O3Q � O(P �H�MU4V , where � is the number of round trips
between the witness/client and the server during the hand-
shake. There are 12 one-way messages for a full handshake in
the SSL 3.0 specification, but less are needed in practice (e.g.,
9 in the experiments) because some of the 12 messages are
optional. However, the messages are not exact request/reply
pairs, but instead come in groups of multiple messages sent
and multiple messages received. Assuming that the underly-
ing network protocols (e.g., TCP/IP) pipeline messages trans-
mitted in the same direction, the number � of round trips is
actually 2 during a full handshake and 1 during a partial hand-
shake. The additional round trip between the witness and the
client is for the RPC request and reply. The overall witnessing
overhead for a handshake is thus �Y�0�[Z�� O4Q .

We compare the witness overhead to that of a regular, non-
caching HTTPS proxy, which is interposed between the client
and server and blindly forwards all traffic between them [21].

The HTTPS proxy overhead for a round-trip message ex-
change between the client and an HTTPS server is approx-
imately the round-trip latency between the client and the
proxy. Therefore, the proxy overhead for an SSL handshake
is � O(Q , which is comparable to the witness overhead. Since
web proxies are widely deployed on the Internet today, such
overhead appears to be acceptable to Internet users.

6.1.2 Application data

Under the synchronous method (Section 4), in order to send
or receive an application data record, the client needs to
make an RPC to the witness for a decomposed MAC com-
putation. Since the RPC request and reply contain mainly
DeHMAC values or the MAC verification result, all of which
are small, only the network latency between the client and
the witness matters. The witness needs to write the MAC
and a small amount of other data to disk; here the disk seek
and rotation time dominates. The client also needs to write
the record’s contents to disk. On both the client and the
witness, at least two disk accesses are needed by the pro-
totype, one for updating the metadata for a newly created
file, and the other for writing the MAC data or record con-
tents to the file. The total amount U]\ of computation needed
for processing an application record (including MAC com-
putation and encryption) is the same in both regular and
witnessed SSL. Therefore, the time for sending or receiv-
ing a record of size � is �
^ S P �_U \ for regular SSL, and��^ S P �`U \ � O Q �ba O(R �c��^ STR for witnessed SSL. The
overhead per record is thus

O Q �da O(R �e��^ STR .
Under the asynchronous method, the MAC computation on

multiple records is pipelined. Therefore, the witness over-
head for sending or receiving - records of size � each is the
pipeline setup time plus -�fgZ times the pipeline bottleneck.
The pipeline setup time is the witness overhead for the first
record in the pipeline,

OhQ �ia O R �W��^ S R , and the pipeline bot-
tleneck is the disk write time at the client, j O R �i��^ S R . There-
fore, the average overhead per record, processed in batches of- records, is

j O R �*��^ S R � O Q �*��^ STR-
We compare the witness overhead for batched SSL records

in the asynchronous method to that of a regular, non-caching
HTTPS proxy [21]. Based on the same pipeline time calcula-
tion as above, the HTTPS proxy overhead for sending or re-

9

ceiving a record of size � in - -size batches is �
^ SEk � O k ^.��j�-<� ,
where

O k
is the round-trip latency and

SEk
is the network

bandwidth between the client and the proxy. Assuming thatSDk
is comparable to

S R
and that ��^ S R is negligible compared

to
O(Q

, the difference between the witness overhead and the
proxy overhead is j O R �`� O(Q f Olk ^<jH�m^�- . If the disk seek
and rotation latencies for batched records can be reduced by
file system or disk scheduling optimization (such as NVRAM
caching or request sorting and coalescing), then the witness
overhead for batched records is comparable to that of a regu-
lar HTTPS proxy that has a round-trip latency of

O k �`j O Q
to the client.

6.1.3 Scalability

The amount of computation and communication required on
the witness is similar to that of a regular SSL server with little
or no application-specific processing. Therefore, we expect
that the witness will exhibit the same scalability (i.e., supports
the same number of clients) as a regular SSL server does.

6.2 Experimental setup

We ran experiments on the prototype to measure the overhead
that witnessing adds to the response time of client SSL oper-
ations.

We conducted the experiments on an emulated wide area
network (WAN) environment. 4 Celeron 400 MHz PC’s were
used. Machine 1 ran a popular WAN emulator on FreeBSD
called Dummynet [19] in its bridging mode, and physically
connects the other machines. Machine 2 ran an Apache web
server with HTTPS support. Machine 3 ran the witness. Ma-
chine 4 ran a client test program that accessed the HTTPS
pages on the Apache server, either directly or with the help
of the witness. The web server, the client, and the witness
communicate with each other through the WAN emulator.

We used Dummynet to control the delay of Ethernet pack-
ets transmitted between the other machines. We configured
four pipes, one in each direction between the client and the
server and one in each direction between the client and the
witness. Each pipe was configured to hold 50 packets (1500
bytes each) and to delay half of the desired round-trip latency
between the relevant machines. For example, to establish a
round-trip latency of 100 ms, the delay for each pipe would
be set to 50 ms. Since the effective bandwidth of a pipe is
the product of the pipe capacity and the one-way latency, in
this case the bandwidth is roughly 1.5 MB/s. By using Dum-
mynet, the client, server, and witness applications observe
network latencies similar to those in a WAN.

The client and the witness communicate over an IPSec tun-
nel running on top of the emulated WAN. The tunnel is pro-
vided by the IPSec implementation package FreeS/Wan [6].
The purpose of using IPSec is to provide a secure channel
between the client and the witness while leveraging the RPC

service available on Linux. Since IPSec protects data at the IP
layer, it works transparently underneath RPC or any other IP
application. In the experiments, IPSec adds about aH7+7]�n75o a�p
microseconds to the one-way latency of each p -byte IP packet.

We toggled witness recording in the experiments. When
the recording was turned on, each file was flushed to the disk
synchronously. The client and the witness each have an IDE
disk with a maximum bandwidth of approximately 25 MB/s
and an average seek and rotation latency of 10 ms.

All SSL sessions created in these experiments used the ci-
pher suite RSA-RC4-MD5. That is, RSA was used in the
handshake for key generation, RC4 was used as the symmet-
ric encryption algorithm, and MD5 was used as the underly-
ing hash function in the HMAC function.

In the beginning of the each experiment, the client program
measured the round-trip network latencies to the witness and
to the server by pinging those two machines 10 times and
calculating the average response times. The client then re-
peats the following procedure 100 times in each experiment:
establishing an SSL connection with the HTTPS server (i.e.,
socket connect and SSL connect()), sending a CGI request
to the server (i.e., SSL write()), receiving the CGI response
from the server (i.e., SSL read()), and shutting down the SSL
connection (i.e., SSL shutdown() and socket shutdown). We
measured the elapsed time on the client machine for each of
the above operations.

There are two types of CGI requests in the experiments,
read intensive and write intensive. The read-intensive request
carries an integer argument, �rq , which is randomly selected
from the range 0–100K for each request. The CGI program
on the server responds to the client with �sq random bytes.
We have observed that the Apache web server fragments the
reply into SSL records which are typically 4 KB and never
more than 4 KB in size. The write-intensive request posts
160 KB of random data to the server, using SSL records of
size � Q , where � Q is randomly selected from the range 512
bytes to 16 KB for each request. 16 KB is the maximum SSL
record size. The CGI program on the server responds with a
small fixed-size message.

The figures in Section 6.3 show the results of the 100 runs
with randomized parameters in each experiment, averaged
into bins for better readability.

6.3 Experimental results

Figure 4 shows the time for SSL handshakes (i.e.,
SSL connect()) as a function of the round-trip latency to the
witness, called the witness latency hereafter. Every additional
second in the witness latency increases the full handshake
time by 5 seconds and increases the partial handshake time
by 4 seconds. This is larger than the estimated overhead ratio,
i.e., 3 for a full handshake and 2 for a partial handshake (Sec-
tion 6.1.1). Tcpdump output explains the difference. The wit-
ness RPC reply message was large enough to be fragmented

10

0

200

400

600

800

1000

1200

1400

1600

1800

0 50 100 150 200

fu
ll

ha
nd

sh
ak

e
tim

e
(m

ill
is

ec
on

ds
)

witness round trip latency (milliseconds)

with recording
no recording

no witness

0

200

400

600

800

1000

1200

1400

1600

1800

0 50 100 150 200

pa
rt

ia
l h

an
ds

ha
ke

 ti
m

e
(m

ill
is

ec
on

ds
)

witness round trip latency (milliseconds)

with recording
no recording

no witness

Figure 4: Handshake time vs. witness latency. The round-trip latency to the server is 100 ms in these experiments. The slope
of the no-recording and with-recording lines is roughly 5 for full handshakes and 4 for partial handshakes.

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160 180 200

re
co

rd
 r

ea
d

tim
e

(m
ill

is
ec

on
ds

)

witness round trip latency (milliseconds)

with recording
no recording

no witness

Figure 5: Record read time vs. witness latency. The round-
trip latency to the server is 100 ms and the SSL record size
is 4 KB in these experiments. The slope of the no-recording
and with-recording lines is roughly 1.

into 6 packets, and the TCP sender underlying the RPC chan-
nel at the witness waited for the acknowledgment of the first
2 packets before it sent the other 4, because it was in a slow
start mode. Consequently, the RPC reply took 1.5 times the
round-trip time instead of the estimated 0.5 times. TCP slow
start also broke the pipeline for the transmission of the first
few handshake messages between the client and the witness.

There is little difference between the witness lines with
recording turned on and off, because only a minimal amount
of information (e.g., MAC secrets) is recorded during the
handshake.

Figure 5 shows the SSL read() time for a 4 KB SSL record
as a function of the witness latency. The witness lines have a
slope of roughly 1. In Section 6.1.2, we estimate that the wit-
ness overhead for each SSL record is the witness latency plus
disk write time. In the experiments with the witness and no

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60 70 80 90 100

re
pl

y
tim

e
(m

ill
is

ec
on

ds
)

total reply size (KBytes)

naive with recording
naive no recording

optimized with recording
optimized no recording

no witness

Figure 6: Reply time vs. reply size. The round-trip latency
to the server and to the witness are both 100 ms, and the SSL
record size is 4 KB or less in these experiments. The naive-
no-recording line has a slope of 100 ms per 4 KB, and the
naive-with-recording line has a slope of 131 ms per 4 KB. The
average difference between the optimized-no-recording line
and the no-witness line is roughly 80 ms. The difference be-
tween the optimized-with-recording line and the optimized-
no-recording line ranges from 48 ms to 245 ms.

recording, the witness overhead is nearly equal to the witness
latency. In the experiments with recording, the estimated disk
write time is aut 10 ms � 4 KB ^v� 25 MB/s �]w 40 ms, which
roughly matches the difference between the no-recording and
with-recording lines.

Figure 6 shows the time for receiving a large reply (i.e.,
multiple calls to SSL read()) as a function of the reply size.
Since the Apache Web server sends the reply by SSL records
of 4 KB or less in size, larger reply sizes result in larger
numbers of SSL records. Therefore, Figure 6 actually shows
the time for receiving a batch of fixed-size SSL records as a

11

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12 14 16

av
er

ag
e

re
co

rd
 w

rit
e

tim
e

(m
ill

is
ec

on
ds

)

write record size (KBytes)

with recording
no recording

no witness

Figure 7: Record write time vs record size. The round-trip la-
tency to the server and to the witness are both 100 ms. 160 KB
are written using a selected record size and the average write
time per record is computed.

function of the batch size (Section 6.1.2). With the naive or
synchronous method and no recording, every SSL record has
the witness overhead of 100 ms, which is equal to the wit-
ness latency in these experiments. With recording, there is
an additional 31 ms disk access time per record. With the
optimized or asynchronous method, the reply time does not
increase linearly with the reply size. Instead, the shapes of
the optimized witness lines are very similar to that of the no-
witness line. Without recording, the pipeline bottleneck is
negligible; therefore, the witness overhead without recording
is nearly constant and is close to the witness latency. This
is consistent with the estimate in Section 6.1.2. In fact, the
performance overhead of a witness without recording is the
same as that of a regular, non-caching HTTPS proxy that
has a 200 ms round-trip latency to the client. The difference
between the witness-with-recording overhead and the proxy
overhead increases with the reply size, but at less than half of
the estimated slope, i.e., 9 ms per record vs. j O R � 20 ms per
record (Section 6.1.2). In practice, the recording can be done
by asynchronous disk accesses; therefore, the witness over-
head can be further reduced. The results confirm the analysis
that the witness overhead for batched records is comparable
to that of a regular, non-caching HTTPS proxy that is twice
as far away from the client as the witness.

Figure 7 shows the SSL write time for an SSL record as
a function of the record size. In Section 6.1.2, we analyzed
that the witness overhead per SSL record is independent of
the record size, given that the disk write time is dominated
by seek and rotation latency. The experimental results show
that the overhead is actually decreasing as the record size gets
larger. This is an artifact of the TCP buffering. The data
passed to SSL write() will not necessarily be transmitted over
the network before SSL write() returns. Therefore, an RPC to
the witness might be overlapped with the actual transmission

of the data in the previous SSL write(). When the record size
gets larger, the transmission time of a record gets more sig-
nificant in comparison to the witness latency, which results in
less perceived witness overhead. The maximum TCP buffer
size in these experiments is 16 KB, while the total amount
of data passed to SSL write() in each experiment is 160 KB.
Therefore, in the end of the write operations, at most 10% of
the data was left in the buffer.

In summary, the experimental results confirm the analysis
on the performance overhead of the witness, and show that
the optimization with pipelining is effective in reducing the
witness overhead.

7 Implications to other protocols

Intuitively, a security protocol between two parties A and B
is likely a candidate for witnessing on behalf of the party A if
it has the following properties:

1. The party B’s identity is authenticated and the shared
secrets are generated in a way that does not require
the party A’s secret or at least does not require non-
decomposable computation with A’s secret. This allows
the witness to authenticate the party B’s identity and gen-
erate the shared secrets on behalf of A, without knowing
A’s secret.

2. The encryption keys and MAC secrets used in the proto-
col are independent of each other. This allows the wit-
ness to give the encryption keys to the party A while
keeping the MAC secrets to itself.

3. The protocol uses a decomposable MAC function, such
as HMAC or NMAC [3], to provide message integrity.
This allows the party A to compute and verify MAC’s
without knowing the MAC secrets.

An (infrequently used) option in SSL is for the server to re-
quest and verify the client’s certificate. Since both the certifi-
cate and verification messages can be generated by the client
without the involvement of the witness, and are independent
of the rest of the handshake protocol, SSL is still witnessable
on behalf of the client with this option turned on.

Another possible application of the witness is IPSec [10],
a widely used security protocol at the IP layer. IPSec sup-
ports the Oakley Key Determination Protocol [14], which
generates shared keys using the Diffie-Hellman key agree-
ment method [16], and authenticates the identity of each party
by signing some public information with that party’s private
key. It provides data confidentiality with encryption algo-
rithms such as DES, and provides data integrity with the
HMAC function. IPSec looks promising as a candidate for
witnessing on behalf of either party. However, further details
have yet to be worked out.

12

8 Related work

Related work includes non-repudiation services that aim to
provide unforgeable evidence on the origins, contents, re-
ceipts, timed existence, etc., of electronic messages.

The digital signature [18] of a message allows the receiver
to prove the origin and contents of the message. Ideally, users
of Internet transactions should be able to obtain receipts that
are digitally signed by the servers. However, it requires the
cooperation of the servers and implies the deployment of a
Public Key Infrastructure (PKI). We know of few, if any,
commercial web sites that digitally sign their web contents.
Therefore, we believe that technologies that enable client-
initiated evidence generation are valuable to today’s Internet
practices. Hopefully, such technologies will raise users’ con-
fidence, enable new or larger quantities of transactions to be
done over the Internet, and eventually motivate the commer-
cial web sites to adopt server-initiated approaches, such as
digital signatures, to improve customers’ experiences.

A certified mail delivery service guarantees that the receipt
of an email message produces a receipt certificate whether
the receiver is honest and diligent or not. Among the various
classes of such services, the witness service is closest in spirit
to those that use an online trusted third party during message
exchanges [2, 23, 4, 1]. With the exception of [1], those ser-
vices do not preserve message confidentiality from the trusted
third party, and require the receiver and sometimes the sender
to sign messages. The use of the trusted third party in [1] dif-
fers from the use of a witness in that both the receiver and the
sender in [1] are aware of and need to cooperate with the third
party, while in the witness scheme only the party that uses the
witness service (i.e., the client) cooperates with the witness.

A time-stamping service, or a digital notary service, pro-
vides unforgeable evidence on the existence of a digital doc-
ument at a certain point in time, while preserving message
confidentiality from the service provider [8]. However, it does
not provide evidence for the origin of the document.

Overall, the witness service differs from existing non-
repudiation services in the following two important ways:
First, the witness service is mainly targeted at interactive
transactions, though it can also be applied to static messages
as a degenerate case; the existing non-repudiation services
were designed for static or one-way messages, and their ef-
ficiency for interactive transactions has not been well stud-
ied. Second, the witness service is designed to work with
existing security protocols (e.g., SSL), while the existing non-
repudiation services are based on new protocols between all
involved parties and hence require all parties to either install
new software or change their behavior.

9 Conclusion

We have presented a scheme to witnessing secure commu-
nication, using the novel algorithm of MAC decomposi-
tion. MAC decomposition allows the witness and the client
to jointly compute the MAC without the witness knowing
the message content or the client knowing the MAC secret.
Therefore, the witness design meets the requirements of mes-
sage confidentiality and evidence integrity simultaneously.
Furthermore, the scheme requires no changes to the server,
no changes to the communication protocol and only modu-
lar changes to the client, hence meeting the requirement of
minimal changes.

We have implemented a prototype witness and demon-
strated its robustness by using it to witness transactions with
a variety of real web sites. We applied pipelining to minimize
the performance overhead of witnessed communication and
conducted experiments in a configurable emulated wide area
network. The experimental results show that the performance
overhead of a witness is comparable to that of widely de-
ployed web proxies. Therefore, we conclude that the goals of
evidence integrity, message confidentiality and manageable
changes in the witness design are compatible with acceptable
performance in practice.

We plan to open-source the witness code. Before we
achieve that, the source code may be made available upon
request.

Acknowledgments

We would like to thank Martin Abadi, Mike Burrows, Stu-
art Haber, Ram Swaminathan and Bob Tarjan for giving valu-
able feedback, Dennis Fetterly for helping with experimental
setup and Nitin Garg for porting the Mozilla browser source
code.

References

[1] M. Abadi, N. Glew, B. Horne, and B. Pinkas. Certified email
with a light on-line trusted third party: Design and implemen-
tation. In Proceedings of the 11th international WWW Confer-
ence, pages 387–395, May 2002.

[2] A. Bahreman and J. D. Tygar. Certified electronic mail. In
Proceedings of the Internet Society Symposium on Network
and Distributed System Security, pages 3–19, San Diego, CA,
February 1994.

[3] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash
functions for message authentication. In Advances in cryptog-
raphy – Crypto ’96 proceedings, Lecture Notes in Computer
Science, volume 1109, pages 1–15. Springer-Verlag, 1996.

[4] R. H. Deng, L. Gong, A. A. Lazar, and W. Wang. Practical
protocols for certified electronic mail. Journal of Network and
Systems Management, 3(4), 1996.

13

[5] T. Dierks and C. Allen. The TLS Protocol, RFC 2246. Internet
Engineering Task Force, January 1999.

[6] FreeS/WAN: An implementation of IPSEC and IKE for Linux.
http://www.freeswan.org.

[7] A. O. Freier, P. Carlton, and P. C. Kocher. The SSL Protocol
Version 3.0. Netscape, November 1996.

[8] Stuart Haber and W. Scott Stornetta. How to time-stamp a
digital document. Journal of Cryptology, 3(2):99–111, 1991.

[9] International Telecommunications Union (ITU-T). Recom-
mendation X.509: The Directory-Authentication Framework,
1989.

[10] S. Kent and R. Atkinson. Security Architecture for the Internet
Protocol, RFC 2401. Internet Engineering Task Force, Novem-
ber 1998.

[11] R.T. Morris. A weakness in the 4.2BSD Unix TCP/IP software.
Technical Report 117, Bell Labs, 1985.

[12] National Institute of Standards and Technology. Secure Hash
Standard, April 1995. FIPS PUB 180-1.

[13] M. Oehler and R. Glenn. HMAC-MD5 IP Authentication with
Replay Prevention, RFC 2085. Internet Engineering Task
Force, February 1997.

[14] H. Orman. The OAKLEY Key Determination Protocol, RFC
2412. Internet Engineering Task Force, November 1998.

[15] Mikulas Patocka. Links: The WWW text browser.
http://links.sourceforge.net/.

[16] E. Rescorla. Diffie-Hellman Key Agreement Method, RFC
2631. Internet Engineering Task Force, June 1999.

[17] R. Rivest. The MD5 Message-Digest Algorithm, RFC 1321.
Internet Engineering Task Force, April 1992.

[18] R. L. Rivest, A. Shamir, and L. M. Aldeman. A method for ob-
taining digital signatures and public-key cryptosystems. Com-
munications of the ACM, 21(2), 1978.

[19] L. Rizzo. Dummynet. http://info.iet.unipi.it/˜luigi/ip dummynet,
2001.

[20] D. Sax. DNS spoofing (malicious cache poisoning), 2002.
Published via Global Information Assurance Certification
Practical Repository,
http://www.giac.org/practical/gsec/Doug Sax GSEC.pdf.

[21] Squid web proxy. http://www.squid-cache.org.

[22] A. C. Yao. Protocols for secure computations. In 23rd Annual
IEEE Symposium on Foundations of Computer Science, pages
160–164, 1982.

[23] J. Zhou and D. Gollmann. Certified electronic mail. In Pro-
ceedings of Computer Security–ESORICS ’96, pages 160–171.
Springer Verlag, 1996.

A Background
In this section, we give some background on the Secure Sockets
Layer (SSL) protocol and on iterated one-way hash functions used
to construct Message Authentication Codes (MACs).

A.1 SSL

The SSL protocol allows client/server applications to communicate
over the Internet in a way that prevents eavesdropping, tampering,
and message forgery. SSL communication occurs through sessions
and connections.

To establish an SSL session, the client invokes the SSL Handshake
Protocol to negotiate with the server the cryptographic algorithms to
use in the session, to optionally authenticate the server’s identity, and
to generate a shared secret between the two parties. The client pro-
vides a list of acceptable cipher suites and the server chooses one of
them. The server typically identifies itself by sending an X.509 cer-
tificate [9] that contains the server’s domain name and RSA public
key [18], and is signed by a certification authority.

Assuming this typical case and that the client accepts the
certificate—which sometimes happens automatically in some
browsers—the client then generates a random number, encrypts it
under the server’s public key, and sends the result to the server. The
server then uses its private key to decrypt the random number. The
random number can then be converted to a shared secret between
the two parties. The ability to compute the shared secret proves that
the server is the party who owns the private key corresponding to
the public key in the server’s certificate. In this way, the server is
authenticated to the client.

An SSL session consists of one or more SSL connections. Each
SSL connection has connection-specific security parameters and is
layered on top of a reliable transport protocol (e.g., TCP). When a
connection is created, the session’s shared secret and the connec-
tion’s additional parameters are used together to generate symmetric
encryption keys and MAC secrets that are shared between the parties.
Each direction of a connection has its own encryption key and MAC
secret. The handshake that establishes an SSL session and the first
connection in the session is called a full handshake, while the hand-
shakes that create subsequent connections in an established session
are called partial handshakes.

In an SSL connection, all control messages and application data
are transmitted between the parties as SSL records. Each record is
optionally compressed, has a MAC attached, and is encrypted before
it is sent. The MAC consists of a key-dependent cryptographic hash
of the record’s content; a record with a correctly computed MAC
can only have been generated by a party that has the appropriate
MAC secret. In this way, attackers cannot spoof or undetectably alter
SSL records. A received record is decrypted using the same key, its
MAC is recomputed using the same secret and compared against the
received MAC, and the record is decompressed if needed.

In order to prevent the dropping or replaying of messages by a
third party, SSL gives each record a sequence number, which is also
protected by the MAC. Each direction of a connection uses a sepa-
rate sequence of numbers, starting from zero. When a party receives
a record that does not have the sequence number it expected, a MAC
error is reported and the session is invalidated.

In order to detect truncation attacks in which messages at the end
of an SSL connection are dropped, SSL applications are required to
shutdown each SSL connection with an explicit notification, called
a close-notify message, to the peer.

The most popular application of SSL is the secure HTTP
(HTTPS) protocol, which is used by most web sites that have pri-
vacy or security needs, such as financial sites and online merchants.
It consists of plain HTTP running on top of SSL connections. Secure

14

FTP is another application of SSL.

A.2 One-way hash functions and MACs
A one-way hash function, xMy{zW| , operates on an arbitrary-length
message, z , and returns a fixed-length hash value, } , with the fol-
lowing properties: (1) given z , it is easy to compute } ; (2) given } ,
it is hard to compute z such that xMy{zW|�~d} ; and, (3) given z , it is
hard to find another message, z�� , such that xMy{zW|�~*xMy{z���| .

An iterated one-way hash function, such as MD5 [17] and
SHA1 [12], starts with a constant initialization vector (IV) and pro-
cesses the message in blocks of fixed size—512 bits (64 bytes) for
both MD5 and SHA1—and uses the result of the current block as
the IV for the next block. That is, the hash of the first � blocks of a
message (���
�
���6�
���
�) is defined as}���~ �} � ~ x��6�{� F y{� � |m���s�C�
where xT�+y{�
| denotes the result of applying an underlying hash
function to both IV � and message block � , and � denotes the it-
erated hash function’s starting IV. The hash of an entire messagez_~n���>���6�
���J�
� is then

xMy{z�|,~dxMy{���$�n�
�6�6�"���'|,~d}��
where � � through � � are the sequence of blocks that z is broken
into and “ � ” denotes concatenation. The size of the IV and the
result is 16 bytes for MD5 and 20 bytes for SHA1. If necessary,
padding is added to the last block � � of the message to ensure that
it is a complete block. We will use x � y{zW| to denote the result of
applying the iterated hash function x with starting IV � instead of� to message z . Thus, for example, provided � is a complete block
and z�� is non-empty, we have that

xMy{�,�"z � |,~dx��3������y{z � |
A MAC function is a function that computes a one-way hash from

a secret and a message. HMAC [3] is a particular way of construct-
ing a MAC function from an iterated one-way hash function. HMAC
and its variants are widely used in standard security protocols, in-
cluding SSL 3.0, TLS 1.0 [5] and IPSec [10]. For example, the
MAC of an SSL 3.0 record is defined as

HMAC yL�6 �¡¢���6 6£+�¥¤���¡�¦¢§.¨� 6§.¨�|,~xMyL�6 6¡r��©'ª+«+¬��xMyL�6 �¡r�W©�ª<«��;�­�� 6£l�­¤+�J¡�¦¢§v¨¥ 6§v¨�|�|m�
where �� 6¡ is the MAC secret, �6 6£ is the sequence number of the SSL
record, ¤ is the length of the record, ¡�¦¢§.¨� 6§.¨ is the record content,x is the underlying hash function, ©�ª<«.� is the byte �¢®.¯�° repeated
48 times, and ©'ª+«+¬ is the byte ��®v±�¡ repeated 48 times [13].

HMAC uses the underlying hash function twice for better secu-
rity. The use of ©�ª<«.� and ©�ª<« ¬ ensures that the first block fed to
the hash function x always consists of the MAC secret and padding
only, which is independent of the message. This is a performance
optimization technique, since the hashes of the first blocks can be
computed only once and reused for multiple messages.

B Sending and receiving an SSL
record

15

Witness−Enabled Client Witness

Send
App Data

Send

Create A
Record

Compute
DeHMAC2

Alert

Send Send

AlertCtrl Msg

Encrypt

Send
Record

Compute
HMAC

Encrypt

After
Handover

Before
Handover

Create A
Record

Compute
HMAC

Encrypt

Send
Record

Send
App Data

Send
Ctrl Msg

Send
Alert

To Server To Server

Record
HMAC

Regular Client

Record
Content

Compute
DeHMAC3

Create A
Record

Figure 8: Sending an SSL record from the client or witness to the server. “Ctrl msg” in this figure refers to a handshake
message or a change-cipher-spec message, not an alert message.

No
Error

Expected
App Data

Update
State

Compute
DeHMAC3

Send
Alert

Handle
Ctrl Msg

Handle
Ctrl Msg

Handle
Unexpected

Update
State

Verify
HMAC

Compute
HMAC

Decrypt

WitnessWitness−Enabled ClientRegular Client

Update
State

Verify
HMAC

Compute
HMAC

Receive
A Record

Decrypt

Return
To App

From Server

Handle
Unexpected

Error

Receive
A Record

Decrypt

Return
To App

From Server

Invalidate

Send
Alert

Session

Unexpected
Msg

After
Handover

Before Handover

App Data

Compute
DeHMAC2

Ctrl Msg

Msg

UnexpectedError

Expected

Ctrl Msg
Error

No Error
No Error

Error

Error

No Error

Exp. App Data
Error

Ctrl

Expected

Invalidate
Session Invalidate

Session

Msg

Figure 9: Receiving an SSL record from the server. “Ctrl msg” in this figure refers to a handshake message, a change-cipher-
spec message, or an alert message. Recording of the MAC and the content, which is similar to that in Figure 8, is omitted in
this figure for readability.

16

