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This paper presents a principled method for choosing informative lighting
directions for physical objects. An ensemble of images of an object or 
scene is captured, each with a known, predetermined lighting direction.
Diffuse reflection functions are then estimated for each pixel across such
an ensemble. Once these are estimated, the object or scene can be 
interactively relit as it would appear illuminated from an arbitrary
lighting direction. We present two approaches for evaluating images as a
function of lighting direction. The first uses image compressibility
evaluated across a grid of samples in lighting space. The second uses 
image variance and prediction error variance, which are monotonically
related to compressibility for Gaussian distributions. The advantage of
the variance approach is that both image variance and prediction error
variance can be analytically derived from the scene reflection functions,
and evaluated at the rate of a few nanoseconds per lighting direction. 
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Abstract
This paper presents a principled method for choosing 
informative lighting directions for physical objects. An 
ensemble of images of an object or scene is captured, each 
with a known, predetermined lighting direction. Diffuse 
reflection functions are then estimated for each pixel across 
such an ensemble. Once these are estimated, the object or 
scene can be interactively relit as it would appear 
illuminated from an arbitrary lighting direction. We present 
two approaches for evaluating images as a function of 
lighting direction. The first uses image compressibility 
evaluated across a grid of samples in lighting space. The 
second uses image variance and prediction error variance,
which are monotonically related to compressibility for 
Gaussian distributions. The advantage of the variance 
approach is that both image variance and prediction error 
variance can be analytically derived from the scene 
reflection functions, and evaluated at the rate of a few 
nanoseconds per lighting direction.

Introduction
Choosing good lighting directions is an important task for 
almost all human endeavors that involve vision, be it 
biological or computer vision. Here we present methods for 
choosing informative lighting directions to view real-world 
physical objects or scenes. These methods can also be 
applied to viewing synthetic objects generated by computer 
graphics, but are not limited to that domain. 

The information conveyed to a human being by viewing an 
image or scene is of course a very difficult quantity to 
determine. Up to 50% of the human brain is involved in 
processing visual data in some manner, and we are far away 
from understanding this processing, especially that of ‘late’ 
or higher level vision. As a practical matter, therefore, in 
selecting informative lighting directions, we must rely on 
available proxies for the information content of an image. 
One natural proxy is the number of bits into which an image
is encoded by a suitable data compression algorithm. Images 
requiring more bits to encode are taken to have greater 
information content. For example, an image in which all 
pixels are set to the same brightness level is encoded into 
only a few bits by virtually any reasonable compression 
algorithm, and, indeed, such an image would convey zero 
information to a viewer.  In general, the true information 
content of an image, from a human being’s perspective, and

its compressed size can be widely divergent.  An image 
consisting of pure noise, for example, is incompressible, 
while conveying zero information content. It seems 
reasonable to assume, however, that in suitably constrained
sets of images, such as those arising in this work, true 
information content and compressibility, or, more 
accurately, incompressibility, are highly correlated. Our 
overall approach will, therefore, be to select lighting 
directions that result in the least compressible images.

As the basis for our compressibility measure, we consider 
two compression algorithms. The first algorithm is Huffman 
coding with respect to the empirical distribution of 
brightness values in the image.  The overall encoding 
includes a description of the Huffman code used, as well as 
the encoding of the image data by the specified code.  The 
compressed bit stream size for this algorithm, in bits per 
pixel, is given by (up to a negligible error term) the 
empirical entropy, H [Shannon 49]:
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where I indexes the various brightness levels and pi is the 
fraction of times brightness i occurs in the image.

First order image entropy, as measured by (1), is, of course,
a limited measure of the information content. No spatial 
relationships are accounted for in this measure, nor are the 
relationships between discrete luminance bands. This 
motivates the second compression algorithm we consider: 
JPEG-LS, the current ISO standard algorithm for lossless 
image compression, which achieves superior compression, 
in part, by exploiting dependencies between neighboring 
pixel values [Weinberger 00] . It will be seen that in certain 
situations JPEG-LS compressibility can yield more 
“informative” lighting directions than first order entropy.

Previous Work
There is a significant body of work dealing with the 
selection of good lighting directions. In the computer 
graphics literature most approaches have relied of user 
judgment to assess the quality of lighting choices [Marks 
97], [Gershbein 00]. If one has a 3D model of the scene on 
hand, along with surface material properties, the approach of 



[Shacked 01] can be used to determine optimal lighting 
parameters based on a number of perceptual metrics. An 
important advance is also presented in [Gumbold 02], where 
image entropy is used to automatically infer the quality of 
lighting. This model is extended to correspond more 
accurately with experimental data from human subjects 
evaluating the quality of lighting directions. Several 
limitation in Gumbolds approach are addressed in [Vazquez 
03], namely the incorporation of color measures that may 
distinguish equi-luminance regions, and spatial continuity of 
patches of similar color and luminance. Vazquez also works 
in a perceptually uniform color space, namely LUV.

Figure 1. Top left: Sample of indented writing reconstructed 
from an overhead lighting position yielding low image 
entropy. Top right: Same sample using a grazing lighting 
direction (high entropy, low compressibility) yields image 
detail. Bottom: Entropy plot of writing sample as a function 
of lighting direction. 

Like Gumbold and Shaked, our method is based on image 
entropy to measure the information content a particular 
lighting direction achieves. However, our approach is image-
based and can be applied to any physical object, without 
requiring any 3D geometry. We start by taking 50 images of 
a static object or scene. In each image, illumination is 
provided by a point light source at a unique, known location. 

These measurements are then incorporated into a low order 
per-pixel reflectance model [Malzbender 01] of the form:
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where (lu,lv) are projections of the normalized light vector 
into the local texture coordinate system (u,v) and L is the 
resultant surface luminance at that coordinate. Coefficients 
a0-a5 are computed using least-squares fitting independently 
for each pixel from the 50 illumination varying images.

Once this characterization is complete, images can be 
computed from arbitrary lighting directions at greater than 
60 frames / second using either graphics hardware 
acceleration or software only implementations, This is due
largely to the reliance of eq. 2 on only fixed point 
multiplication and addition. 

Figure 2.  Images for lighting directions corresponding to 
maximum first order empirical entropy (left) and maximum 
JPEG-LS compressed size (right).

Entropy Measure
To evaluate image compressibility, we uniformly sample the 
lighting space (lu, lv) at discrete locations and compute the 
resultant image using PTM parameters a0-a5. From these 
images we can compute the histogram, and derive the image 
entropy; and we can also compress each image to derive its 
JPEG-LS compressed size. Figure 1 shows one example 
applied to indented writing. This paper sample was 
underneath a sheet of paper as it was written on and reveals 
very subtle depressions from the superimposed writing. 
When viewed from overhead lighting only the color of the 
paper is revealed, and measuring entropy and JPEG-LS 
compressed size yields low values (high compressibility) 
associated with a lack of detail. However, grazing lighting 
helps bring out features, consistent with increased entropy 
values and JPEG-LS compressed sizes (reduced 
compressibility) in the perimeter of the lighting space shown 
in Figure 1.
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Figure 3. Objects captured under 50 varying lighting directions and associated image variance as a function of lighting 
direction. Red indicates lighting directions of high luminance variance, blue of low variance. A) Leaves on a slate 
background. B) Indented writing on paper. C) Knit sweater closeup D) Polyester carpet E) Gold Coin from the 7th century.



Figure 2 compares the images corresponding to maximum
image entropy and maximum JPEG-LS compressed size, 
respectively, for the example of Figure 1.  As can be 
observed, the least compressible JPEG-LS image is more 
informative than the maximum first order entropy image, in 
that the writing indentations are more visible.  Apparently, in 
this case, the first order entropy measure is inflated by a 
gradual and systematic brightness variation across the 
maximum entropy image.  The JPEG-LS algorithm, on the 
other hand, takes into account relationships between 
neighboring pixels and (roughly speaking) assigns shorter 
compressed codewords to effects (such as a systematic 
brightness variation) that can be learned and predicted as the 
image is scanned.

Analytic Variance Functions
Evaluating the compressibility measures discussed above 
requires rendering an image at a particular lighting 
condition, then computing the compressibility measure from 
the image. This is also true of other measures such as those 
discussed earlier [Marks 97],  [Gershbein 00], [Shacked 01], 
[Gumbold 02], [Vazquez 03]. However, in our image based 
approach using a low order parametric model (eq. 2), we 
derive an analytic description of how the surface reflectance 
varies with lighting direction. 

Although the empirical first order entropy and JPEG-LS 
compressibility cannot be analytically derived from this 
representation, related quantities can. One such quantity is 
the empirical image variance. The link between variance and 
entropy is strongest for a Gaussian random variable for 
which the (differential) entropy is given by (1/2)log(2•e•2), 
where •2 is the variance. We choose the following 
formulation for empirical variance where Li is pixel i’s 
luminance value in an image:
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referring to Appendix A, we recover an analytic description 
of this reflection based image variance,
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Once the 21 variance constants (J0-J14, K0-K5) are computed 
from the parametric reflection coefficients, 

,50 (u,v)a(u,v)a − image variance from an arbitrary 
lighting direction can be evaluated at a cost of  few dozen 
multiplies and adds (Appendix A). Images of several 
samples along with their empirical variance functions are 
shown in Figure 3. Red areas correspond to regions of high 
variance, typically corresponding to informative lighting 
directions. Note how grazing lighting is often preferred.

Similar analytical quantities can be derived for 
approximating JPEG-LS compressibility. One such quantity 
is the empirical variance of the prediction error 
corresponding to the linear portion of the predictor at the 
core of the JPEG-LS algorithm. The prediction error at 
location u,v under consideration is
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and the quantity of interest is

22 ),( vuee =σ .

Note that the empirical mean of e(u,v) will always be
essentially zero, since the four terms comprising e(u,v),
summed over all the u,v, cancel, up to a negligible amount 
arising from the image boundaries.  Since e(u,v) is linear in 
the pixel values, the prediction error variance can also be 
expressed as a fourth order polynomial in lu and lv, in a 
manner similar to (4), as it appears in Appendix A.  In this 
case, additional correlations among the ai(u,v) are required.  
Let a(u,v) denote the vector [a0(u,v),…,a5(u,v)].  The terms 
J0-J14 can be computed as linear combinations of the 
elements1 of the 6 x 6 matrix •u,v a(u,v)T a(u,v). In addition 
to this, the prediction error variance also requires the 
matrices •u,v a(u,v)T a(u-1,v), •u,v a(u,v)T a(u,v-1), •u,v
a(u,v)T a(u-1,v-1), and •u,v a(u,v)T a(u+1,v-1).  The 
coefficients of the fourth order polynomial can then be 
computed as linear combinations of these matrix elements.  

The prediction error variance, like its JPEG-LS 
compressibility counterpart, may be less susceptible to 
selecting suboptimal lighting directions than the first order 
empirical variance, particularly in cases similar to that of 
Figure 2.  A simpler predictor resulting in the prediction 
error

),1(),(),( vuLvuLvue −−=
may also be considered, resulting in fewer correlations 
among the ai(u,v) required to compute F(lu,lv), in this case 
only •u,v a(u,v)T a(u,v) and •u,v a(u,v)T a(u-1,v).

Conclusions and Future Work
We have presented two methods for choosing lighting 
directions of physical objects. In both cases we start by 
collecting image-based per-pixel reflection measurements, 
which we parametrically describe using low order 
polynomial functions. In the first method, image 
compressibility is measured by constructing an image of the 

  
1 Note that this matrix is symmetric, so only 21 elements 
need to be computed.



object under a particular lighting direction and then 
compressing the resultant image. The second method 
involves a direct analytic derivation for image and prediction 
error variance, which can be computed directly from the 
reflection parameterization of the object and avoids the 
expensive image evaluation and compression/entropy 
measurement. 

This second approach could also be applied across the space 
of possible enhancement parameters as well. For instance, 
[Malzbender 00] describes the technique of Diffuse Gain 
and its use in bringing out surface detail. The method has a 
free parameter, gain g, that controls the degree of 
enhancement one achieves.  Although space does not permit 
its derivation here, an analytic expression for eq. 3 can be 
recovered, yielding a principled way to choose gain 
parameters  and lighting directions that yield images with 
high variance.
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Appendix A 
Luminance Variance Derivation

Image variance, 2σ , can be analytically derived from the 
per-pixel reflectance functions described by eq. 2. Starting 
from the expression of variance for an image with N pixels 
described by eq. 3,  

222
ii LL −=σ

∑
∑
















−=

i

i
i

i

N

L

N
L

2
2

2σ

we substitute equation 2 yielding:
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simplifying yields:
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