

An Introduction to the Semantic Web, Considerations for building
multilingual Semantic Web sites and applications

Jeremy J. Carroll
Digital Media Systems Laboratory
HP Laboratories Bristol
HPL-2005-67
April 22, 2005*

semantic web,
language, RDF,
OWL,
internationalization

This paper gives a brief overview of the Semantic Web standards, the
Resource Description Framework (RDF) and the Web Ontology
Language (OWL). The emphasis is on the representation of natural
language information within these standards, particularly: encoding of
language identification, use of embedded XHTML, use of natural
language labels for concepts in multiple languages, use of
internationalized resource identifiers, and query using language
information. Some problems are identified, such as: counting in OWL,
locale and culture. The target reader knows little about the Semantic
Web, but is well-versed in software internationalization and localization.

* Internal Accession Date Only Approved for External Publication
© Copyright 2005 Hewlett-Packard Development Company, L.P.

An Introduction to the Semantic Web,
Considerations for building multilingual
Semantic Web sites and applications
Jeremy J. Carroll, Hewlett-Packard Labs.

There is a lot of information on the Web, but … to understand it at all, you need to
read and understand the text. A software system trying to use Web information has a
hard time, because it cannot understand natural language. Even the structure of the
information is encoded in HTML tags, which describe the presentation intended for a
human, rather than following the underlying knowledge available on the Web site.
This is particularly frustrating when the Web site is generated from a back-end
database in which the structure of the information is explicit in database tables, which
could be used by other software components.

The Semantic Web vision of Tim Berners-Lee, the creator of theWeb, is that Web
based information should also be available in a machine processable form, allowing
machines to do routine Web based tasks on behalf of human users, where currently
the humans are needed to make sense of the Web pages.

In this article, I give a brief introduction to the Semantic Web, and describe
difficulties, and occasionally solutions, relating to building multilingual Semantic
Web sites and applications.

The initial drivers for the Semantic Web came from metadata about Web pages. Who
wrote it? When? Who owns the copyright? Etc. To convey such metadata there needs
to be agreement about the key terms such as author and date. This agreement has
been reached by the Dublin Core community, see http://dublincore.org/. As an
example, they have an agreed definition for the term creator, generalizing author for
use in metadata records.

However, the Semantic Web does not draw a sharp distinction between metadata
about the page, and data contained within the page. In both cases, the idea is to
provide sufficient structure around the data to turn it into information, and to connect
the concepts used to express such information with concepts used by others, so that
this information can become knowledge that can be acted upon.

The Resource Description Framework (RDF)

The central Semantic Web Recommendation from the World Wide Web Consortium
(W3C) gives a universal information format for describing things, called the Resource
Description Framework (RDF). Both the things described and the terminology used in
describing them are identified using URIs. A full introduction is found in the RDF
Primer, from the W3C. Here I give just the central ideas, starting with the first
example from the RDF Primer:

I will start by describing the second arrow which is labelled
http://www.w3.org/2000/10/swap/pim/contact#fullName. This joins two
nodes, the green oval, labelled http://www.w3.org/People/EM/contact#me and
the yellow rectange labelled “Eric Miller”. The two nodes and the arrow are
together called an RDF triple. The node at the beginning of the arrow, the green oval,
is called the subject of the triple. The other node is the object. Each node represents a
thing, and the arrow represents some relationship between the two things. These
things are often referred to as resources, but I will stick to thing here. To understand
what the triple represents, it is usually best to start with the label on the arrow, called
the property. This is always a URI, and often as in this case, we can type it into a
browser, effectively clicking on it. You may need to set your browser up to accept
mimetype application/rdf+xml. Alternatively, you can look at the equivalent
documents http://www.w3.org/2000/10/swap/pim/contact.n3 or
http://www.w3.org/2000/10/swap/pim/contact.rdf. Any of these gives a
further RDF document, including, once you know how to read it, a description of the
#fullName property as “full name”.

The yellow rectangles in the picture are literal values, in this case, the string “Eric
Miller”, so the green oval represents something whose full name is “Eric Miller”.
The diagram shows a collection of these triples, called an RDF graph. Each of the
other arrows in the diagram gives a further property and value pair for the green oval,
representing more information about the thing whose full name is “Eric Miller”.
When we put it all together, we might hopefully think, that this thing is Dr Eric
Miller, (who I work with in the W3C; his role is the Semantic Web activity lead).

We see that some triples have objects which are also green ovals. These represent
further things, also identified by URIs. These things could be the subject of further

triples, that would help describe what they represent. Typically, some of the nodes
(such as the green ovals) in a RDF graph will be both the object of some triples, and
the subject of others. Loops of triples are also possible. The graph can be large and
complicated, allowing encodings or descriptions of complex data structures.
RDF consists of using graphs like this to describe things.

Some property URIs are sufficiently widely used to be well-known: an example being
http://purl.org/dc/elements/1.1/creator the creator property from Dublin
Core. This URI is known by many different applications as representing the concept
of creator.

Such RDF graphs are usually provided on the Web encoded in XML. The particular
encoding used is called RDF/XML, which is ugly and seems unnecessarily difficult,
and which I do not discuss further (although one or two examples will use it).

Typical RDF software includes a triple store, which is a database of RDF triples, with
the ability to read and write RDF/XML documents, and to query the triple store.
Typically a triple store is embedded within some programming language and the
triples can be manipulated programmatically within that language. Later, there are a
few Java examples, on top of the popular opensource Jena Semantic Web Framework
from HP, which includes a triple store.

Often, a triple store, will be referred to as a knowledge base, indicating that the RDF
graph is intended to be understood as a representation of some knowledge.

Classes
The topmost triple in the example, is labelled with the property URI:
http://www.w3.org/1999/02/22-rdf-syntax-ns#type, which is often abbreviated
to rdf:type. The subject is http://www.w3.org/People/EM/contact#me and the
object is http://www.w3.org/2000/10/swap/pim/contact#Person. The object
of an rdf:type triple is called a class, and represents a collection of things, in this
case, it is a collection of people. We can click on the URI labelling a class, in this
case, http://www.w3.org/2000/10/swap/pim/contact#Person, to find the
definition of the class: “A person in the normal sense of the word.” As before, you
might need to modify the URI, depending on your browser setup, and look at
http://www.w3.org/2000/10/swap/pim/contact.n3 or
http://www.w3.org/2000/10/swap/pim/contact.rdf. In this way, RDF provides
the ability to represent classifications within the Semantic Web.

Classes fall naturally into hierarchies of subclasses and superclasses. Properties can be
thought of as having subproperties and superproperties. The RDF Schema vocabulary
is used to describe such hierarchies. As a simple example, #Person, is described as a
subclass of #SocialEntity (which is the “sort of thing that can have a phone
number”).

The Web Ontology Language, OWL
Simple class hierarchies can be made more useful by relating classes and properties.
For example, we may want to say that a man is a male person. This relates two

classes: man and person, with a property, gender, and its value. The Web Ontology
Language (OWL) provides a way of saying such things.

EquivalentClass(
 Class(my:Man)
 Intersection(
 Class(contact:Person)
 Restriction(my:gender , Value(“Male”))))
(Note that my: and contact: are being used to abbreviate long URIs)

This expression can be read as “being a my:Man is the same as being both a
contact:Person and having a my:gender property with value “Male””
Such expressions are called axioms, and are usually translated into RDF triples, and
then written as RDF/XML (which is too verbose to include here).

An ontology, is a collection of classes and properties, along with axioms, such as this
one, relating them together.

An introduction to OWL can be found in the OWL Guide from the W3C. OWL is
designed to work well with RDF. Ontologies written in OWL can be used to help
organize and understand knowledge recorded in RDF.

Where do languages fit in?
So far, I seemed to have assumed that the whole world speaks US English. The vast
majority of examples in the W3C documentation also seem to make this assumption.
Fortunately, this is not quite true. There are five features included in RDF (and hence
in OWL) which support multilingual (or explicitly monolingual) applications:
- Unicode
- language tagging, following RFC 3066 and xml:lang
- natural language labels for concepts
- embedded XML
- and Internationalized Resource Identifiers (IRIs)

Unicode: like most recent work from the W3C, Unicode is a given. In fact, neither
RDF or OWL provide any support for any other character encodings. Typical
Semantic Web developers’ tools use Unicode throughout. Legacy encodings can be
used within RDF/XML documents, using the usual XML encoding declaration.
Semantic Web software that does not support Unicode is broken, and should be
avoided. In practice, however, many systems only allow 16 bits for each character,
and hence are not Unicode 4 compliant. Depending on your needs, a detailed
discussion with software suppliers may be useful (e.g. for Gothic, additional
mathematical symbols for MathML, or the CJK compatibility ideographs), and is
likely to require some persistence in helping them understand the issues.

Language Tagging: following XML, text in RDF can have a language tag, such as
“en-US” or “ja” taken from RFC 3066. In RDF/XML, this is done using xml:lang,
just like in other XML documents. The xml:lang declaration can be on the root
element, or lower down, as appropriate. In an RDF graph there is no default language
tag. Every string needs to be individually marked. In a triple store, the language tag is
stored with each string. As an example the “Dr.” in the example should have been

tagged with en-US, and would have conventionally been written as “Dr.”@en-US.
Note that RFC 3066 is currently being updated.

Natural Language Labels: Concepts, whether things, properties or classes, in the
Semantic Web are represented using URIs. Normally, as in the example, these URIs
have some intelligible meaning in some natural language, usually English. However,
there is a property rdfs:label, that is used to provide natural language strings that
should be used in preference to the URI. These string labels should be tagged with a
language identifier, and Semantic Web software should display an appropriately
chosen label. As an example, this class definition includes both an English and an
Italian label (this is in RDF/XML):

<owl:Class rdf:ID="ShakespearePlay">
 <rdfs:label xml:lang="en">Shakespeare's plays</rdfs:label>
 <rdfs:label xml:lang="it">Opere di Shakespeare</rdfs:label>
</owl:Class>

In this example, the English and Italian labels are included in the same RDF/XML
file. It may be easier to organise the labels for each language in separate files:

<owl:Class rdf:ID="ShakespearePlay">
 <rdfs:label xml:lang="en">Shakespeare's plays</rdfs:label>
</owl:Class>

in one, and

<owl:Class rdf:ID="ShakespearePlay">
 <rdfs:label xml:lang="it">Opere di Shakespeare</rdfs:label>
</owl:Class>

in the other. The ability to do this gives flexibility. Indeed it is possible to add labels
to concepts defined by different organizations on different sites, for knowledge bases
for which you do not have write-access. (There is no mechanism for persuading
people to use your labels).

Embedded XML/XHTML: There are some cases where natural language cannot be
adequately presented as a text string. These include mixed language examples, where
some of the string is one language, and some another, and cases where complex
markup is needed such as Ruby annotation (http://www.w3.org/TR/ruby).
RDF provides the ability to embed XML within an RDF graph instead of a string
value for these cases. From a multilingual perspective, it is vital to appreciate that any
language tagging must be explicitly represented within the XML or XHTML
fragment as an xml:lang attribute value, for example, on a or <div> element.
Unlike with text strings within an RDF/XML document, an XML fragment ignores
any xml:lang that lies outside it, despite the usual scoping rules for xml:lang. Here
is a Ruby example from the OWL Test Cases:

<owl:Class rdf:ID="ShakespearePlay">
 <rdfs:label xml:lang="en">Shakespeare's plays</rdfs:label>
 <rdfs:label xml:lang="it">Opere di Shakespeare</rdfs:label>
 <rdfs:label rdf:parseType="Literal"
 ><span xml:lang="ja"
 >��������<ruby><rbc><rb>�</rb><rb>�</rb></rbc>
<rtc><rt>��</rt><rt>��</rt></rtc></ruby></rdfs:label>
</owl:Class>

Notice the position of the “ja” language tag, differing from the position of the “it”
tag. In particular, the following is wrong, and does not mark the Japanese text as
Japanese:

<rdfs:label xml:lang="ja" rdf:parseType="Literal"
 >��������<ruby><rbc><rb>�</rb><rb>�</rb></rbc>
<rtc><rt>��</rt><rt>��</rt></rtc></ruby></rdfs:label>

The xml:lang="ja" attribute, lies outside the literal XML content, and is ignored,
due to a limitation of RDF/XML.

A further limitation of the embedded XML support is that it is primarily designed for
XHTML. Certain XML applications, in particular, XSLT and XML Schema, use “Q-
Names in attribute values”, which do not work with XML embedded within RDF. The
namespace information, which is necessary to correctly understand such attribute
values, gets lost. Hence, XSLT documents, and XML Schema documents, cannot be
embedded in this way in RDF. @@@ should this para be deleted – it does not
connect with interests of multilingual computing readers.

IRIs: Both RDF and OWL allow Internationalized Resource Identifiers to be used in
place of URIs. In practice this means that almost the full range of Unicode characters
can be used. This permits one string, the IRI, to be used to name the property or thing.
Developers are not restricted to URIs in US ASCII only. But there is only one URI
naming a property, so this does not address the multilingual need of one string for
each language. Labels, as described above, are better.

Limitations with Language Tagging
RFC 3066 gives structured language tags: subtags are used for region, scripts and
other things. This structure is being extended and better formalized in the current
revision being worked on. Two key concepts to use with this structure are language
ranges and language tag fallback. A language range is a tag with a wildcard, such as
“en-*”, which covers all variations of English. Language tag fallback is a process of
matching tagged resources to the linguistic abilities of an end user, by allowing the
user to describe their preferences with a precise language tag, and then progressively
shortening it, to provide a best match from a set of linguistic resources.

Both of these features of RFC 3066 would be useful with Semantic Web knowledge
bases. Unfortunately, no support for these is routinely provided, nor envisaged in the
recommendations.

In a way, the structure of language tags provide an ontology for languages on the
Web, but the Web Ontology Language cannot exploit, use or interoperate with this
ontology at all.

Semantic Web Query and Language
A basic function of the Semantic Web is query. The W3C is currently working on a
standard query language. Right now different systems have different query languages.
Mostly these query languages, like most Semantic Web software, have been
developed for monolingual applications, and no support for query by language
information is provided.
However, the most widely deployed query language, the RDF Data Query Language,
RDQL, has recently been updated to include basic language awareness. As an
example, to find the Italian label in the earlier example, you can ask the query:

SELECT ?resource, ?label
FROM <http://www.w3.org/2002/03owlt/miscellaneous/consistent201>
WHERE (?resource, rdfs:label, ?label)
AND (?label langeq 'it')

This functionality, using the langeq test, is new, and will be available soon in version
2.2 of HP’s Jena Semantic Web framework. Similarly functionality is expected in the
query language being developed by the W3C.
In cases where the query language does not support language tagging, or when
language ranges or language tag fallback are required, it is necessary to write some
program code. The following snippet, shows how the API of Jena could be used to
select an English label. The matchLanguageTag method needs to be defined, and
could implement a simple case insensitive match, or a more complex wild card match
for language ranges.

Model model = ModelFactory.createDefaultModel();
String url = "http://www.w3.org/2002/03owlt/miscellaneous/consistent201";
model.read(url);
Resource plays = model.getResource(url + "#ShakespearePlay");
StmtIterator iterator = plays.listProperties(RDFS.label);
while (iterator.hasNext()) {
 Statement triple = iterator.nextStatement();
 if (matchLanguageTag(triple.getLanguage(),"en"))
 System.out.println(triple.getLiteral().getLexicalForm());
}

Code for language tag fallback would be more complex, since the best match needs to
be found.

Neither of these approaches will work for the Japanese label, because the
xml:lang=‘ja’ is embedded within the XHTML. If necessary, the
matchLanguageTag method could be extended to look for language information
inside XML embedded within RDF.

Counting and OWL

A specific problem to be faced with ontologies written in OWL concerns counting.
OWL provides a variety of features that can be used to count the number of values
that a property has for a particular thing. These features include
owl:FunctionalProperty. A functional property is one which has at most one value
for each distinct thing, as an example, movie-title is typically functional – either
things like movies have one movie-title, or other things like books or Web pages, do
not have a movie-title (since they are not movies).

When thinking multilingually, we see that this observation, which is true when we
restrict ourselves to a monolingual view, is no longer true. A film like “Harry Potter
and the Philosopher’s Stone” has many different titles, a different one for each of the
languages in which the film is distributed.

This can cause specific problems when migrating an ontology developed in OWL
from a monolingual application to a multilingual environment.

One approach to addressing this, is to add ‘another layer of indirection’. Specifically
do not use a string as the value for a property like movie-title, but use an abstract
resource, and give that resource many different labels, one for each language.

“Harry Potter and the Philosoper’s Stone”@en

“Harry Potter e la pietra filosofale”@it

eg:HarryPotter1

eg:movieTitle

rdfs:label

rdfs:label

The property eg:movieTitle is now functional, in that it has one value, but that
single value can be displayed in different ways for different users.

However, a refactoring of the ontology of this sort has other consequences, and you
will need to work with the knowledge engineers in charge of the ontology to ensure
that they are all worked through.

Locale and Semantic Web Applications
RDF and OWL provide no support for locale. The rationale is that locale is an end-
user feature, and RDF and OWL are Web technologies suited for knowledge
exchange across locale boundaries. Locale needs to be handled in application code.

As an example, let us consider a date. Dates can be included in RDF using the
Gregorian date datatype from XML Schema, this then needs to be correctly formatted
for the user locale before display.

In our knowledge base, we may have a triple like:

“1999-08-16”^^xsd:date

http://www.example.org/index.html

http://www.example.org/terms/creation-date

The value ”1999-08-16”^^xsd:date, indicates the Gregorian date.

Java code, using Jena, that formats this date for the French locale, could include the
following snippet:

Model model = ModelFactory.createDefaultModel();
... // read in RDF graph from Web

String url = "http://www.example.org/";
Resource index = model.getResource(url+"index.html");
Property creationDate =
 model.createProperty(url+"terms/creation-date");
// Extract date from triple store.
XSDDateTime date = (XSDDateTime)index.
 getProperty(creationDate).
 getLiteral().
 getValue();
// Extract java.util.Date from XSDDateTime.
Date dateToFormat = date.asCalendar().getTime();
// Make Locale dependent formatter.
DateFormat format = DateFormat.getDateInstance(
 DateFormat.LONG,
 Locale.FRANCE);
System.out.println(format.format(dateToFormat));

Culture and Knowledge
Perhaps the hardest problem to address when internationalising a Semantic Web
application is culture. The Semantic Web is used to capture knowledge, but any
statement of knowledge inevitably makes cultural presuppositions, and may be
inappropriate within a different culture. A simple, but pervasive, example is names.
Ontologies for people developed by Americans and Europeans typically include
properties such as first-name and last-name. However, different cultures name people
in different ways. Representing the same knowledge as given-name and family-name
is a little more robust, but still fails to be a cultural universal (Russian names for
example, have a more complex structure).

Cultural issues in knowledge representation are difficult, and it is necessary to have a
good knowledge of all the cultures involved to even understand what the difficulties
are. No easy solution is known. Some people may believe that it is possible to
represent knowledge in a culturally independent way, or depending only on features
that are common to all cultures, I am deeply sceptical of such claims. Even if they are
true, it remains difficult to excise the cultural dependencies from a knowledge base.

Summary: Multilingual Semantic Web Applications
These new technologies are still being tried in monolingual environments. If you are
asked to help with production of a multilingual Semantic Web application you will be
asking tool developers for new features, you will be pushing at the boundaries, and
finding problems in the specifications - budget accordingly, try and keep multilingual
features to the minimum needed (e.g. small number of languages, avoid language
ranges).

Turning a monolingual system into a bilingual system should not be too difficult, by
concentrating on the features highlighted above: Unicode, language tagging, labels,
and embedded XML. If you hit problems, one thing you can do to help everyone is to
give feedback to the W3C, so that they can continue to put World Wide into the Web,
and the Semantic Web.

Further Reading
From the World Wide Web Consortium:

The Recommendation concerning Resource Description Framework (Feb
2004) is split into six documents, including: RDF Primer,
http://www.w3.org/TR/rdf-primer, edited by Frank Manola and Eric Miller;
RDF /XML Syntax, http://www.w3.org/TR/rdf-syntax-grammar/, edited by
Dave Beckett; and RDF Concepts and Abstract Syntax,
http://www.w3.org/TR/rdf-concepts/, edited by Graham Klyne and Jeremy J.
Carroll. The Recommendation for the Web Ontology Language also comes in
six documents, of which the easiest is the OWL Guide,
http://www.w3.org/TR/owl-guide/, edited by Michael K. Smith, Chris Welty,
and Deborah L. McGuinness.
A description of RDQL can be found in RDQL - A Query Language for RDF
http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/ by Andy
Seaborne.

Jena is available for free download from http://jena.sourceforge.net/. A high level
description can be found in Jena: Implementing the Semantic Web Recommendations
by Jeremy J. Carroll et al. available from
http://www.hpl.hp.com/techreports/2003/HPL-2003-146.html
A recent draft for the next revision of RFC 3066 Tags for Identifying Languages,
edited by A. Phillips and M. Davies, can be found at http://www.inter-
locale.com/ID/draft-phillips-langtags-05.html

