[

invent

Cruz: Application-Transparent Distributed Checkpoint-Restart
on Standard Operating Systems

G. (John) Janakiraman, Jose Renato Santos, Dinesh Subhraveti®, Yoshio Turner
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto

HPL-2005-66
April 7, 2005*

E-mail: {john.janakiraman,joserenato.santos,yoshio.turner}@hp.com

checkpointing,
snapshot, process
migration, error
recovery,
availability

We present a new distributed checkpoint-restart mechanism, Cruz, that
works without requiring application, library, or base Kkernel
modifications. This mechanism provides comprehensive support for
checkpointing and restoring application state, both at user level and
within the OS. Our implementation builds on Zap, a process migration
mechanism, implemented as a Linux kernel module, which operates by
interposing a thin layer between applications and the OS. In particular,
we enable support for networked applications by adding migratable IP
and MAC addresses, and checkpoint-restart of socket buffer state, socket
options, and TCP state. We leverage this capability to devise a novel
method for coordinated checkpoint-restart that is simpler than prior
approaches. For instance, it eliminates the need to flush communication
channels by exploiting the packet re-transmission behavior of TCP and
existing OS support for packet filtering. Our experiments show that the
overhead of coordinating checkpoint-restart is negligible, demonstrating
the scalability of this approach.

* Internal Accession Date Only

Currently at Meiosys

To be published in and presented at The International Conference on Dependable Systems and Networks (DSN-
2005), 28 June -1 July 2005, Yokohama, Japan Approved for External Publication

© Copyright 2005 IEEE

Cruz: Application-Transparent Distributed Checkpoint-Restart on Standard
Operating Systems

G. (John) Janakiraman

Jose Renato Santos

Dinesh Subhraveti* Yoshio Turner

Hewlett-Packard Laboratories
{john.janakiraman,joserenato.santos,yoshio.turner } @hp.com

Abstract

We present a new distributed checkpoint-restart mech-
anism, Cruz, that works without requiring application, li-
brary, or base kernel modifications. This mechanism pro-
vides comprehensive support for checkpointing and restor-
ing application state, both at user level and within the
OS. Our implementation builds on Zap, a process migra-
tion mechanism, implemented as a Linux kernel module,
which operates by interposing a thin layer between applica-
tions and the OS. In particular, we enable support for net-
worked applications by adding migratable IP and MAC ad-
dresses, and checkpoint-restart of socket buffer state, socket
options, and TCP state. We leverage this capability to de-
vise a novel method for coordinated checkpoint-restart that
is simpler than prior approaches. For instance, it elimi-
nates the need to flush communication channels by exploit-
ing the packet re-transmission behavior of TCP and existing
OS support for packet filtering. Our experiments show that
the overhead of coordinating checkpoint-restart is negligi-
ble, demonstrating the scalability of this approach.

1. Introduction

Application checkpoint-restart mechanisms have the po-
tential to significantly improve the operation of computing
environments. Application checkpoint-restart can improve
fault tolerance by allowing applications to recover from a
component failure by restarting from a recent point in the
execution. Application checkpoint-restart can also be used
to reduce application downtime during hardware and oper-
ating system (OS) maintenance by migrating the application
to a different machine before the maintenance operation. Fi-
nally, application checkpoint-restart can be used to suspend
or migrate jobs to support resource management in emerg-
ing Utility Computing and Grid environments [6].

An ideal checkpoint-restart mechanism should be
general-purpose and application-transparent, supporting a

*Currently at Meiosys

broad class of real applications without requiring applica-
tion modifications. It must checkpoint and restore all ap-
plication execution state including user-level state and the
state of OS resources used by the application. The mech-
anism must extend to parallel applications by supporting
consistent checkpoint-restart of processes running on mul-
tiple machines. Finally, the checkpoint-restart mechanism
must have a practical implementation that does not involve
designing special OSes or extensively re-engineering stan-
dard OSes. Such approaches are impractical because spe-
cial OSes have only limited appeal, and extensive OS mod-
ifications require prohibitive code maintenance overhead.

Several application checkpoint-restart mechanisms are
described in the literature, but none of them meet these
requirements [13][9][3][12][1][17][15]. Library-based im-
plementations [13][9] require modification of application
source code or re-linking of object code with special li-
braries, and they do not support applications that use system
services such as multithreading, interprocess communica-
tion, and network sockets. Vendors including SGI, Cray,
and IBM have integrated application checkpoint-restart into
proprietary systems but their implementation details are not
described in public documents. BLCR [3] is a kernel-
module based mechanism that requires application modifi-
cations in cases where the application uses uncheckpointed
resources such as network sockets. Zap [12] is a kernel-
module based process migration mechanism that does not
require application or base kernel modification. It integrates
a checkpoint-restart mechanism but this mechanism cannot
checkpoint and restore network socket state fully. However,
as we show in the rest of this paper, the Zap [12] architec-
ture can be extended to realize a checkpoint-restart mech-
anism that meets our requirements. Systems for check-
pointing parallel applications have been built using single
node checkpoint-restart mechanisms (e.g., MPVM [1] and
CoCheck [17] using Condor’s checkpointing [9] and LAM-
MPI [15] using BLCR [3]) but they are only applicable for
applications using specific message-passing libraries.

In this paper, we describe Cruz, a general-purpose,
application-transparent checkpoint-restart mechanism.
Cruz’s single-node checkpoint-restart mechanism builds
on the Zap [12] architecture, thus avoiding the need for

Applications

Figure 1. Zap architecture

application or base kernel modification. We have enhanced
Zap in many ways enabling it to checkpoint and restart
complex applications such as databases and MPI applica-
tions. We focus our discussion in this paper on one critical
capability, the ability to migrate network addresses and
save and restore live network socket state in a manner that
is transparent to the application and external clients. To our
knowledge, this capability has not been reported in previous
literature. Leveraging our ability to capture a snapshot of
the network socket state of processes on a single machine,
we devise a novel protocol and method for implementing
coordinated checkpoint-restart of a distributed set of
processes. Our new method eliminates the expensive
step of flushing communication channels required in prior
approaches for coordinated checkpoint-restart [1][17][15].
Our approach applies generally to TCP/IP [18] based
applications and does not require modifications to MPI [16]
or PVM [7] implementations.

The rest of the paper is organized as follows. Sec-
tion 2 reviews related work and presents an introduction
to the Zap [12] architecture. Section 3 gives an overview
of our solution approach for providing general-purpose ap-
plication checkpoint-restart. Section 4 describes our exten-
sions to Zap which enable improved support for checkpoint-
restart of networked applications. Section 5 describes our
solution for global coordinated checkpoint-restart of dis-
tributed applications. We present results from performance
evaluations in Section 6 and conclude in Section 7.

2. Related Work

Checkpoint-restart mechanisms have been implemented
at user-level and at kernel-level. User-level library-based
implementations [9][13] lack support for saving/restoring
kernel state other than open files and they require applica-
tion modifications or re-linking. Thus they work only for a
narrow set of applications. Kernel-level checkpoint-restart
mechanisms integrated into OSes such as SGI's IRIX and
Cray’s Unicos are application-transparent and provide sup-

port for saving/restoring substantial portions of the appli-
cation’s kernel state including process IDs, shared mem-
ory, and pipes. However, they do not save/restore network
socket state and cannot restart applications when saved pro-
cess IDs/process group IDs are assigned to other running
applications. Moreover, extensively re-engineering the OS
to integrate support for checkpoint-restart is not practical
for most mainstream OSes.

BLCR [3] and Zap [12] implement checkpoint-restart
for Linux at the kernel level in an alternative way, us-
ing dynamically loaded kernel modules without modifying
the base kernel source code or requiring its re-compilation.
BLCR [3] saves/restores process state using a pre-existing
kernel module, VMADump', which was designed to imple-
ment remote process forking in Beowulf clusters. BLCR
has extended VMADump to support multithreaded pro-
cesses and plans to add support for files, pipes, and other
features. However, BLCR does not support the checkpoint-
restart of communication socket state or the preservation
of application’s IP addresses across checkpoint-restart. In-
stead, BLCR [3] relies on applications or message passing
libraries to be modified to work around these issues. Also,
BLCR cannot restart an application successfully if any of
its process IDs are already in use during restore.

Zap [12] is an application-transparent process migration
system for Linux implemented as a kernel module. Zap,
illustrated in Figure 1, has two components: a thin virtual-
ization layer to create secure environments called PrOcess
Domains or pods and a mechanism for checkpointing and
restarting pods. The virtualization layer intercepts system
calls to expose only virtual identifiers (e.g., virtual process
IDs) to the processes within a pod instead of the physi-
cal identifiers returned by the OS. This results in a private
name space for each pod which isolates it from other pods
and decouples it from the OS. Checkpoint stops all the pro-
cesses within the pod and extracts their state, including OS
resource state relevant to the processes. Restart re-creates
these processes and restores their execution state, mostly by
invoking system calls. While the re-created OS resources
have different identifiers inside the operating system, Zap’s
virtualization layer masks this difference from applications.
Hence, Zap can restart processes successfully even when
their process ids are already in use within the operating sys-
tem, a unique capability that is not provided by BLCR [3]
or the kernel-based implementations mentioned previously.
Our work uses and builds on the powerful architecture of
Zap to realize a general-purpose checkpoint-restart imple-
mentation. The original Zap implementation [12] provided
support for a broad class of OS resources including: process
virtual memory, CPU state, file descriptors, pipes, signals,
and terminal state. Zap does not save or restore file system
state to avoid the high performance cost of transferring file

Uhttp://bproc.sourceforge.net

system state. Like typical checkpoint-restart mechanisms,
it relies on a network-accessible file system that is acces-
sible from any machine on which the application may be
restarted. Integration of Zap with a file system with snap-
shot capability would enable checkpoint and restart of both
file system and computation state.

We have enhanced the original implementation of Zap by
adding the capability to checkpoint and restart OS resources
such as shared memory, semaphores, threads, sockets and
transient socket buffer state. We also extend Zap’s virtual-
ization layer to provide unique, externally routable IP ad-
dresses for each pod and preserve them across checkpoint
and restart. Thus networked applications can be check-
pointed on one machine and restarted on a machine with
a different IP address without changing the application’s IP
address and its connection state from the perspective of the
application or its remote clients.

Practical checkpoint-restart mechanisms for distributed
applications are limited to applications that communicate
using message passing models such as MPI [16] and
PVM [7]. MPVM [1], CoCheck [17], and LAM-MPI [15]
modify the message passing library (PVM or MPI) to im-
plement coordinated checkpoint and restart. These sys-
tems change the library as follows (with differences in de-
tails). They flush all the messages that are in flight be-
tween the application’s processes during checkpoint. They
re-establish network connections among the processes at
restart. Finally, since processes may be restarted on differ-
ent machines than they were running on before checkpoint,
the libraries are modified to reconstruct location informa-
tion at restart. In contrast, our coordinated checkpoint-
restart approach eliminates all these steps resulting in a
much simpler, more efficient, and more scalable implemen-
tation. We exploit our capability of saving and restoring
TCP socket state and socket buffer state to eliminate the
steps of flushing communication channels (instead, we sim-
ply drop all in-flight packets) and closing/reopening com-
munication channels. We preserve IP addresses for applica-
tions, thereby allowing processes to use normal IP mecha-
nisms to locate each other after restart. With these changes,
the number of coordination messages is reduced to the min-
imum necessary for ensuring the checkpoint is committed
on all nodes (i.e., equivalent to a two-phase commit [8]).
Furthermore, our resulting coordinated checkpoint-restart
mechanism can work for general TCP-based applications
(including MPI and PVM applications) without any changes
to applications or libraries.

A few coordinated checkpoint mechanisms designed
to work in conjunction with message logging mecha-
nisms [4][11] have exploited the message logs to eliminate
the need to flush communication channels at checkpoint.
Logging messages has prohibitive performance overhead
for communication-intensive applications, so it is not a fea-

sible substitute for flushing channels at checkpoint. Fur-
thermore, in contrast to our approach, these techniques still
require special communication libraries to log messages, to
reestablish network connections at restart, and to deal with
address relocation issues.

A few industry vendors offer products that integrate
checkpoint-restart functionality. Meiosys® offers a Meta-
Cluster product capable of checkpointing and restarting dis-
tributed applications. MetaCluster has capabilities simi-
lar to our mechanism (e.g., saving and restoring TCP and
UDP connections and working without requiring applica-
tion modifications), but the details of its implementation
are not publicly available. VMWare? provides virtual ma-
chine products including the capability to suspend, restart,
and migrate virtual machines between physical machines.
VMWare’s mechanisms differ from our approach in that
they checkpoint and restore the entire operating system in-
cluding all its applications instead of just a single appli-
cation, which imposes higher overhead at checkpoint and
restart time. VMWare’s hardware virtualization also im-
poses substantial performance overhead at runtime.

3. Solution Overview

In this paper we present Cruz, a powerful and general-
purpose checkpoint-restart mechanism. Cruz is application-
transparent, has a practical implementation based on a ker-
nel module without requiring modifications to the base ker-
nel, supports application migration between machines with-
out losing network connections, and efficiently supports
checkpoint-restart for distributed applications.

To realize these capabilities, we extend Zap to improve
its support for migrating networked applications. Our ex-
tensions to Zap enable it to save and restore the state of all
TCP connections used by a process as part of the process
state. This includes any received data that has not yet been
delivered to the process, any data submitted by the process
which has not yet been successfully acknowledged by the
recipient, and the state of the TCP connection. In addition,
we extend Zap to support network interface virtualization
to enable assigning a unique, externally routable IP address
to a pod which is preserved across checkpoint and restart.
These extensions enable pods to be migrated within an IP
subnet without disrupting communication, even if the re-
mote processes are not controlled by Zap.

The ability to capture TCP connection state enables an
elegant solution for the checkpoint-restart of distributed
processes that exploits the reliable messaging properties of
TCP. At checkpoint, only the states of the individual pro-
cesses (which includes the state of their TCP connections)

Zhttp://www.meiosys.com
3http://www.vmware.com

are saved on the respective machines and any in-flight mes-
sages in the network are discarded. At recovery, the TCP
connection states are restored and the TCP protocol ensures
that any messages which were previously discarded are re-
transmitted. A standard distributed commit protocol is used
to ensure atomicity of the checkpoint and restart.

4. Checkpoint-Restart for Networked Applica-
tions

This section describes our extensions to Zap’s support
for migrating networked applications. Section 4.1 explains
how Zap is extended to save/restore network socket state in-
cluding socket send and receive buffer contents. Although
the original Zap implementation had support for saving and
restoring a portion of socket state, it lacked support for sav-
ing/restoring data in send/receive buffers. Section 4.2 de-
scribes new support for assigning a network-visible IP ad-
dress to each pod which is preserved across migration. The
original Zap implementation assigned each pod a virtual IP
address that was not network-visible and relied on Zap at
both ends of the network connection to translate between
the virtual IP address and the network-visible IP address of
the host (by rewriting packet headers).

4.1. Network State Checkpoint-Restart

An application prepares to establish a TCP [18] con-
nection by invoking the OS to create an object called a
socket. The OS maintains the socket’s state which in-
cludes source/destination IP addresses/ports, TCP connec-
tion state including sequence numbers and connection sta-
tus, and various socket options that affect the data trans-
fer. The socket state also includes the contents of socket
send/receive buffers which reside in the kernel and store
data that are awaiting network transmission, acknowledge-
ment, or delivery to the application.

To accurately capture the state of all sockets used by
the application, the checkpoint-restart mechanism must en-
sure the application’s socket states cannot change during
the checkpoint procedure. They cannot be changed by the
application processes since Zap sends SIGSTOP signals to
stop the execution of all processes in a pod before check-
pointing it. However, OS kernel threads and the network de-
vice driver could change the socket states. Thus we extend
Zap such that at checkpoint time it acquires spin locks that
are required by the kernel for network processing to prevent
the network stack from delivering or transmitting packets
from/to the application’s sockets. Since these locks are held
only for the duration needed to save the socket states (rather
than the entire application state), the kernel’s network pro-
cessing is blocked only for a short duration.

We further extend Zap to checkpoint the frozen socket
state as follows. A socket’s receive buffer stores
application-level byte stream data which has been received
from the network but is not yet delivered to the applica-
tion. To checkpoint this data, we extend the Zap imple-
mentation to call the socket receive system call on behalf
of the application. Since checkpointing should be a non-
destructive operation which allows the checkpointed pro-
cess to resume execution immediately after the checkpoint
operation is complete, the MSG_PEEK option is passed to
socket receive to read but not remove data from the buffer.

Linux lacks a system call interface that would allow Zap
to access the contents of socket send buffers. Therefore, we
obtain this data by directly walking the send buffer’s ker-
nel data structure. The data packetization that is indicated
in the send buffer must be preserved across checkpoint and
restart because the Linux TCP stack expects ACK sequence
numbers to correspond to packet boundaries. We extend
Zap to read and save the application-level data found in the
send buffer and record the packet boundaries, which are pre-
served on restart as described later.

Finally, Zap reads the TCP connection state directly from
the socket data structure. As we describe below, when an
application is restarted from a checkpoint image, its sockets
are re-created with empty buffers before the saved socket
buffer data is restored. Therefore, the checkpoint proce-
dure saves a modified version of the TCP connection state
which reflects an empty receive buffer in which the current
contents have been successfully delivered to the application,
and an empty send buffer in which the current contents have
not yet been issued by the application to the OS. The neces-
sary modifications to the connection state are minimal and
consist of changing the values of two sequence numbers in
the saved copy of the socket data structure.

When restarting an application from a saved checkpoint
image, Zap creates the number of sockets that were check-
pointed. These new sockets are initialized with the saved
TCP connection state which indicates empty send and re-
ceive buffers. We extend Zap to issue a sequence of socket
send system calls to restore the saved sequence of send
buffer data blocks. To preserve the original send-side packet
boundaries, we issue individual send operations for the data
associated with each packet. In addition, the mechanism
temporarily sets the socket TCP options to disable the Na-
gle algorithm and other mechanisms that could change the
packet boundaries (e.g., TCP_CORK in Linux) before issu-
ing the send system calls.

It is cumbersome to insert application-level byte stream
data into socket receive buffers, which are designed to re-
ceive packet data directly from the network. Therefore, we
extend Zap to restore this data for each socket by copying it
to an alternate buffer which the mechanism allocates for the
socket in kernel address space. Zap’s system call intercep-

tion mechanism is configured to intercept the socket receive
system call such that data stored in the socket’s alternate
buffer is transparently delivered to the application when it
issues a receive call for the socket. The interception code
checks if the socket’s alternate buffer is empty, and if so in-
vokes the original socket receive system call to deliver data
from the socket’s receive buffers. As a performance opti-
mization, the interception of the socket read system call is
removed when the alternate buffers for all sockets become
empty. If a checkpoint is initiated when the alternate buffers
are not empty, data in the alternate buffers and any data in
the socket receive buffers are both retrieved through the in-
tercepted socket read system call. Data from both buffers
are concatenated and saved in the checkpoint. This mech-
anism allows a checkpointed application to transparently
continue network communication with other processes af-
ter restart. While network packets can be dropped or be
received multiple times across checkpoint and restart, the
underlying TCP protocol handles these cases transparently.

We have verified that our current implementation works
correctly for multiple kernel versions (e.g., Linux 2.4.20
and Linux 2.4.25). In general, however, the representation
of socket data structures in a new kernel version could be
different to the extent that our implementation would have
to be ported to accommodate the changes. Porting effort can
be minimized if OSes can be extended with a small set of
new interfaces to provide high-level access to internal net-
work state (e.g., sequence numbers). Such extensions have
been proposed previously [10] and we are investigating their
feasibility.

4.2. Network Address Migration

We have extended Zap to support persistent, externally
routable addresses to pods. This is accomplished by attach-
ing to each pod a virtual network interface (VIF) which is
the only network interface that is visible to processes within
the pod. The VIF can be assigned a network-visible IP ad-
dress and an ethernet MAC address. When a pod is mi-
grated, its VIF is deleted at the original host and a new VIF
is created at the destination host. The new VIF is attached
to the migrated pod and is assigned the same addresses as
the original VIF. This enables remote processes to continue
communicating with a migrated process even if the remote
processes are not under control of Zap. Since the IP address
assigned to a pod is visible to the network, this approach re-
quires the source and destination of migration to be within
the same routing domain (e.g., the same IP subnet). Several
operating systems, including Linux, support the creation of
VIFs and assignment of IP addresses to VIFs. Our exten-
sions to Zap use this feature to provide VIFs for pods.

A pod’s VIF can be assigned a unique static IP address
by the system administrator or alternatively it can be as-

signed a dynamic IP address if a DHCP client process run-
ning in the pod queries a DHCP server on the network. The
DHCEP client composes a query message which contains the
MAC address of the pod’s VIF. The DHCP server associates
the MAC address with an appropriate IP address assignment
which it returns to the client. Since both the IP and MAC
addresses for a pod are migrated along with the pod, migra-
tion is transparent to both the DHCP server and the client.

Since multiple VIFs may share a physical ethernet inter-
face, a pod’s VIF can be assigned a unique network-visible
MAC address that can be migrated with the pod (as dis-
cussed above) only if the ethernet hardware supports mul-
tiple MAC addresses or if it can be placed in promiscuous
mode. Otherwise, all VIF’s that share a physical interface
must share its MAC address, and this MAC address cannot
be migrated with a pod (since other pods which are not be-
ing migrated are using it). We have developed an alternate
solution for such environments. With this solution, when a
pod migrates, the pod’s VIF starts using a different physi-
cal interface with a different MAC address even though it
keeps the same IP address it had before the migration. The
standard Address Resolution Protocol (ARP) is used to up-
date the network about this new mapping of IP address and
MAC address. If the IP address is static, this is sufficient.
However, for dynamic IP addresses, the DHCP server uses a
MAC address specified in the payload of the DHCP request
to identify the client and renew its lease for the IP address.
Unless this MAC address is preserved across migration, the
dynamic IP address assigned to the client will change at the
end of the lease causing active network connections to be
lost. To avoid this problem, we ensure that the DHCP client
uses a fake MAC address which is preserved across migra-
tion. This is achieved by extending Zap to intercept network
device-related 1ioct1 calls to provide a virtualized view of
network hardware. In particular, the STOCGIFHWADDR re-
quest type is intercepted to return the fake MAC address of
an interface. The DHCP client invokes this request and em-
beds the fake MAC address in its DHCP request message.

A primary implementation challenge for our approach is
to confine a pod’s processes to use only the pod’s VIF for
accepting incoming network connections and for initiating
outgoing network connections. To prepare a socket to listen
for incoming connections, a process issues the bind sys-
tem call and gives a local network address as the argument,
or else specifies that the socket can bind to any local IP ad-
dress. To ensure that the calling process can only accept
connections that are incoming to the pod’s IP address, we
extend Zap to intercept the bind system call using a sim-
ple wrapper function which checks if the calling process is
in a pod, and if so replaces the network address argument
with the IP address of the pod’s VIF.

A process initiates an outgoing network connection by
calling the connect system call with arguments specify-

ing the remote network address and the socket to connect.
The connect system call implicitly binds the socket to a
local network address (IP address and free IP port) which is
chosen by the OS. We extend Zap to intercept the connect
system call using a simple wrapper which invokes bind
prior to the original function that implements connect.
The wrapper ensures that sockets in a pod are bound to the
pod’s IP address on a free port.

5. Checkpoint-Restart of Distributed Processes

The mechanisms described so far allow application state
of processes in a single pod to be checkpointed and restored
atomically. For a parallel application with processes run-
ning on multiple machines, the checkpoint and restart of the
application’s processes on each machine must be orches-
trated so that the global application state is consistent [2].
For simplicity, in the following description we use the terms
“node” and “pod” interchangeably to refer to the set of pro-
cesses on a machine that are part of the distributed applica-
tion. Chandy and Lamport [2] have shown that a global
checkpoint state is consistent if it satisfies the following
properties: 1) if any node’s state indicates a message has
been received, the sending of the message must be reflected
in the state of the sender, and 2) if any node’s state indi-
cates a message has been sent but the state of the intended
recipient does not indicate that the message has been re-
ceived and the communication channel is reliable, then the
message must be saved as part of the state of the channel
between these two nodes. Coordinated checkpointing is a
well-known technique for consistent checkpointing which
we employ in our solution. Pros and cons of coordinated
checkpointing and alternative approaches are well docu-
mented in the literature so we do not discuss them here [5].

With coordinated checkpointing, nodes checkpoint con-
currently and employ a coordination protocol to ensure their
checkpoint states are globally consistent. To guarantee the
first consistency property, the protocol prevents any mes-
sage sent after a node has completed its checkpoint from
becoming part of the receiver’s checkpoint state. To guar-
antee the second consistency property, the protocol also
ensures all messages in transit over the channel are saved
(the communication channel is reliable in most environ-
ments through the use of TCP). Prior coordinated check-
pointing implementations had no means to capture the state
of the systems implementing the communication channel
(e.g., TCP state, state of network switches). Consequently,
their protocols require each node to exchanges markers with
every other node to flush in-transit messages to the receiver,
where they are saved. Our single node checkpoint-restart
mechanism can save and restore the state of TCP which im-
plements the reliable communication channel (Section 4.1).
With the TCP state included as part of the checkpoint state,

the uncaptured in-transit messages constitute only the state
of the unreliable communication channel (state on network
switches and routers). Since the state in this unreliable com-
munication channel can be ignored without violating the
consistency requirements, we develop a simpler coordina-
tion protocol that does not flush in-transit messages.

The steps in our coordinated checkpoint algorithm are
specified at a high level and shown by illustration in Fig. 2.
When a parallel application must be checkpointed, the
Checkpoint Coordinator notifies a Checkpoint Agent on
each machine on which the application is running. Each
Agent reacts to the notification by disabling all network
communication for the local pod that hosts the application®
(in Linux, for example, the Agent can add a netfilter rule
which ensures that all traffic to or from the local pod is
silently dropped). This step isolates the local pod’s state and
prevents it from being changed by pods that compose the
distributed application on other machines. The Agent next
uses our single-node checkpoint mechanism to save the lo-
cal pod’s state independently. Since the pod’s state includes
TCP state, any dropped messages will be re-transmitted by
TCP when normal execution resumes. When all pods have
successfully checkpointed their individual states, the set of
saved states constitutes a consistent global state of the sys-
tem. Once the Checkpoint Coordinator is informed by all
Agents that local checkpoints have been successfully com-
pleted, it notifies each Agent to allow the pods to resume
execution. Each Agent re-enables communication for its lo-
cal pod (by undoing the netfilter configuration rules, in the
case of Linux) and allows the application processes in the
local pod to run.

Coordinated restart operates similarly except, of course,
state is restored from checkpoint instead of being saved.
It is necessary to disable communications as the first step
of restart even though application processes have not been
restored at that point. This prevents application messages
from being sent on the network prematurely before the ap-
plication state is restored fully on all pods. If communica-
tion were not disabled, the OS would resume transmitting
messages on the network as soon as the TCP connection
state of the pod is restored. These messages may arrive at
a pod before the appropriate connection state has been re-
stored because each pod restores its state at a different rate.
This would result in an error which would destroy the con-
nection and cause application failure. This situation is pre-
vented by disabling communications as the first step. When
all pods have completed restoring their state, each pod can
be notified to resume their operation (enable communica-
tions and allow processes to run).

The simplicity of our mechanism is readily apparent.

“4Since the Agent on each machine runs outside of the application’s pod,
this step does not disrupt communication between the Checkpoint Agent
and the Checkpoint Coordinator.

Checkpoint Coordinator:
Step 1: Send <checkpoint> message to all Agents.
Step 2: Wait to receive <done> from all Agents.
Step 3: Send <continue> message to all Agents.
Step 4: Wait to receive <continue-donex>
from all Agents.

Checkpoint Agent:
(when <checkpoint> message is received)

Step 1: Configure ipfilter to drop
packets to/from local pod.

Step 2: Stop local pod’s processes and take
local checkpoint.

Step 3: Send <done> to Coordinator.

Step 4: Wait to receive <continues.

Step 5: Resume stopped processes in
local pod.

Step 6: Configure ipfilter to allow
packets to/from local pod.

Step 7: Send <continue-done> to
Coordinator.

——» Time

nnD nl
_ \checkpoint S/ _ .
AT donel <31 "~ "~ continue
!

Coordinator

Node 1 g T 1 I o \\ >
Node 2 E Y &I . >
1 «
i / /
H I3 P
1 saving state continuing
; execution” |
Node N m—t L] I >

T 1 1 —
«———— Checkpoint latency ————»!

Figure 2. Global Coordinated Checkpoint Al-
gorithm.

Previous mechanisms implement all-to-all communication
protocols which either send messages on each pairwise
channel to flush all in-transit messages [17][1] or exchange
messages between every pair of nodes to estimate the
amount of data that must be received before checkpoint
can proceed [15]. Our approach eliminates this complex-
ity. The state of communication channels, i.e., packets that
are in-flight in the network, is not saved. Instead, packets
received from the network after communication has been
disabled are silently dropped at the lowest levels of the OS
network stack. Since the checkpoint state of each pod in-
cludes the state of its TCP connections, any dropped mes-
sages will be automatically recovered by TCP’s reliable
message protocol during normal execution (when the ap-
plication continues computation after checkpoint or when
the application restarts from this checkpoint state). Co-
ordinated restart is similarly simplified over previous im-
plementations, since our approach neither requires the ex-
change of application-level messages to discover the new
locations of processes nor the establishment of new con-
nections between every communicating pair of processes.
As we will discuss shortly, the simpler implementation also
improves performance and scalability.

The coordination algorithm we have described (Fig. 2)

unack_nxt snd_nxt

Sender lsend buffer l

S Sy S5 54 S5 Sy Sy Sg Sy Sig Sy i SR

Receiver
rev_nxt

Figure 3. TCP communication of a pair of pro-
cesses. All pointers advance to the right.

can be extended in a straightforward way to tolerate Coor-
dinator and Agent failures. We have not included these ex-
tensions, which are well-known, to highlight the simplicity
enabled by the capability to migrate network state.

5.1. Correctness Discussion

Our coordinated checkpoint-restart approach leverages
the reliable delivery properties of TCP. TCP uses packet
sequence numbers, acknowledgements, send buffers’, and
timers to ensure exactly-once and in-order message deliv-
ery. Figure 3 shows a simplistic representation of the key el-
ements of TCP state at the sender and receiver. The sender’s
TCP state maintains two pointers into the sequence number
stream: unack_nxt which is the smallest unacknowledged
sequence number and snd_nxt which is the sequence num-
ber that will be used for the next packet that is sent. All
data packets with sequence number less than unack_nzt
have been successfully acknowledged. Data packets with
sequence numbers from unack_nzt and less than snd_nxt
have been sent but are not yet successfully acknowledged.
These packets are maintained in the send buffer. The re-
ceiver maintains a variable rcv_nzt which is the next se-
quence number that it expects to receive. Data packets with
sequence numbers less than rcv_nxt have been received and
an acknowledgement packet has been sent for them. During
normal TCP operation the predicate

unack_nxt < rcv_nxt < snd_nxt @))

is invariant. This invariant, the send buffers, and TCP’s
retransmission protocol collectively guarantee that all data
will eventually be successfully received by the receiver and
successfully acknowledged.

Our mechanism for saving and restoring network state
(Section 4.1) saves unack_nxt, snd_nxt, and the send
buffers of packets with sequence numbers from unack_nxt
and less than snd_nzt at the sender. This state is saved for
every connection but we focus our attention on one of these
connections without loss of generality. Our mechanism also
saves and restores rcv_nxt at the receiver. However, the
sender and receiver states are saved and restored on differ-
ent physical nodes and thus at different times. If we can

SReceive buffers are not central to the reliable properties of TCP

show that the previous invariant is maintained in any global
checkpoint state in spite of the asynchrony, that would guar-
antee that all messages will be successfully delivered dur-
ing continued operation from this global state (whether the
operation continues after the checkpoint completes or af-
ter restarting from this saved checkpoint state). This would
effectively satisfy the sufficient conditions described in [2]
proving the consistency of the checkpoint and restart.

We show that the TCP invariant remains satisfied in any
global checkpoint state if the checkpoints of participant
nodes are coordinated using the protocol described in Fig. 2
Consider the instant when the Checkpoint Coordinator be-
gins to execute its Step 3. It is straightforward to observe
from the coordination protocol that, at that instant, com-
munication is disabled on all nodes and, hence, the TCP
state is frozen on all nodes (i.e., the elements of TCP state
mentioned above cannot change on any node). If this TCP
state on each node is saved, this would amount to capturing
the TCP state synchronously on all nodes which would triv-
ially satisfy the TCP invariant. In the Checkpoint Agent’s
operation described in Fig. 2, the TCP state is actually cap-
tured at an earlier time on each node. However, we observe
that each node disabled its communication (in Step 1) be-
fore capturing its TCP state and this communication is re-
enabled (in Step 7) well after the instant discussed above.
Consequently, the TCP state saved at each node is identical
to the TCP state on the node at the instant discussed above.
Hence, the global checkpoint state preserves the TCP in-
variant and is thus consistent.

Our distributed restart mechanism disables communica-
tion on each node before restoring its part of the global state.
The restart of participant nodes is coordinated using a pro-
tocol identical to the coordinated checkpoint protocol. An
argument similar to the one above can be used to show that
our coordinated restart mechanism resumes the processes
and the communication from the consistent global check-
point state resulting in correct execution.

5.2. Performance Discussion

Our coordinated checkpoint-restart approach is
lightweight and scalable, improving significantly over
previously proposed mechanisms [1][17][15]. The mes-
sages exchanged to coordinate checkpoint and restart in our
approach (Fig. 2) are the minimum necessary to ensure the
atomicity of the global checkpoint, such as with two-phase
or three-phase commit protocols. The approaches used in
MPVM [1], CoCheck [17], and LAM-MPI [15] require ad-
ditional messages to flush the channels between every pair
of processes. This results in O(N?) message complexity
compared to O(N') complexity with our approach.

The algorithm we described in Fig. 2 blocks processes
until all nodes have completed their checkpoint. Our mech-

—— > Time

Coordinator — - D o
ch;E (POi v 326@? n_t‘ii%,\(/égﬁj’/
1 3y |4
L\ \ / \ N
/ \ A

Node 1 —Z
\ A

v

V1

Node 2 . 7 — x| \‘ .
A <
1 / o
“saving st continuing \
1 execution
Node N L ¥ s —

‘«—— Checkpoint latency —»!

Figure 4. Coordinated Checkpoint Operation
with optimization.

anisms can be extended with optimizations explored in
prior research such as copy-on-write to allow applications
to compute concurrently with their checkpointing and in-
cremental checkpointing to minimize checkpoint size. In
addition, we now describe an optimization that can permit
nodes to continue computation without waiting for all nodes
to complete their checkpoints. Recall from Section 5.1 that
each node saves its state after its communication has been
disabled. We observe that the state of each individual node
cannot change as long as its communication is disabled.
Therefore, once the Coordinator has confirmed that com-
munication is disabled on all nodes, it can permit each node
to continue operation as soon as it has completed saving
its checkpoint state, without any possibility of changing the
checkpoint state of other nodes. With this optimization (il-
lustrated in Fig. 4), each node notifies the coordinator as
soon as its communication is disabled without waiting to
save its local state. Mechanisms to support further asyn-
chrony among the checkpointing nodes (e.g., using check-
point sequence numbers) are not justified since applications
will be forced to stall when a non-blocked node tries to com-
municate with a blocked node.

Several other optimizations are worth examination.
Since communication is disabled at each checkpoint, pack-
ets may be lost and TCP may backoff causing performance
to be degraded for a short duration after the checkpoint
while TCP recovers from its backoff. We evaluate this effect
experimentally in Section 6. The impact of TCP backoff can
be reduced by keeping communication disabled only for the
duration it takes to save the communication state. Since sav-
ing the communication state is a fast operation, this allows
any recovery from TCP backoffs to proceed in parallel with
saving the checkpoint state, which is dominated by the time
to save the application’s virtual memory state.

6. Performance Evaluation

We have implemented Cruz on a cluster of Linux 2.4 sys-
tems and integrated it with LSF [14], a job scheduler for

1500
1400 -
1300 -
1200 -
1110 -
1000 -
900 -
800 -
700 -
600 -
500 -
400 -
300 -
200 -
100

checkpoint time (ms)

.
2 3 4 5 6 7 8
number of nodes

(a) Total checkpoint latency

1000

900 [

800 [

700 [

600 [

500 [

400 [

overhead (microsec)

300 [

200 [

100 -

.
2 3 4 5 6 7 8
number of nodes

(b) Coordination overhead

Figure 5. Results for sim benchmark experiments.

clusters. In this section we show experimental performance
results obtained for checkpointing distributed applications
with this implementation using two benchmarks: a) a semi-
lagrangian atmospheric model benchmark (slm), which is
a parallel application used for weather prediction; and b)
a TCP streaming benchmark, consisting of a transmitting
node sending data through a TCP socket connection to a
receiving node at maximum rate. The benchmarks were ex-
ecuted on a cluster of machines interconnected by a gigabit
ethernet switch. Each node consists of two 1 GHz Pentium
III processors, 2 GB of RAM, 256 KB of cache and an In-
tel €1000 gigabit NIC. During all experiments, checkpoint
is initiated by a coordinator located on a node distinct from
the application nodes.

The runtime overhead of Cruz is negligible (less than
0.5%) since the underlying Zap mechanism requires noth-
ing more than virtualizing identifiers. Figures 5(a) and 5(b)
show experimental results for checkpointing the slm bench-
mark with the number of nodes varying from 2 to 8. The
error bars represent the standard deviation of the measure-
ments ([u — o, + o]) among the total number of mea-
surements observed during one complete execution of the
benchmark. During the experiments the application was
run from beginning to completion with checkpoints every
8 seconds interval of execution time. The total execution
time for the benchmark®, varies from 545 seconds for 2
nodes to 205 seconds for 8 nodes. Figure 5(a) shows to-
tal checkpoint latency, measured in the coordinator, i.e., the
time interval elapsed from the first checkpoint message sent
to the last done message received at the coordinator. Figure
5(b) shows the estimated overhead asssociated with coor-
dination. The overhead was computed by subtracting from
the total checkpoint latency measured in Figure 5(a), the
time spent in executing local operations of checkpoint and
continue in the application nodes. Since application nodes

%not including the time the application is stopped for checkpointing

execute these local operations in parallel, we consider the
global cost of each local operation as the maximum time
measured in all nodes.

The results of Figure 5(a) show an overhead of approx-
imately 1 second for checkpointing the slm benchmark for
all node configurations. This time is a function of the size
of the application state that needs to be saved, and is domi-
nated by the time to write this state to disk. In general, most
of the state consists of the non-zero contents of the virtual
memory of all processes running in the pod.

More importantly, the results of Figure 5(b) show that
the overhead for coordination is negligible, on the order of
350 ps to 550 ps. The graph shows that the overhead in-
creases by approximately 50 us for each node for configura-
tions with more than 4 nodes. This suggests that our check-
point mechanism should scale to a large number of nodes
before the overhead becomes comparable with the check-
point time. Performance results for the restart operation are
similar to the results of Figures 5(a) and 5(b) but are omitted
here because of space limitations.

We performed experiments using a TCP streaming
benchmark running between two nodes to evaluate the per-
formance impact of packet drops in the network when com-
munication is disabled for the nodes to perform check-
points. Figure 6 shows the measured rate of the TCP stream
between two nodes, as a function of time. The plotted rate
corresponds to the average rate measured in the receiver
during a sliding window of 10 ms duration previous to the
corresponding point. A checkpoint operation is started at
time ¢ = 0 when the rate drops to zero’. The checkpoint
operation completes after approximately 120 ms. At this
time the receiver continues consuming data in the TCP re-
ceive buffer that arrived before the checkpoint operation
was started, illustrated by the short pulse at 120 ms. How-

"The curve reaches 0 only at time t=10, since the plotted rate is aver-
aged over the previous 10 ms window.

checkpoint |
}

TCP recovery.

rate (Mb/s)

|

0 PR
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
time (ms)

Figure 6. Effect of dropped packets on flow
rate (TCP streaming benchmark)

ever, the sender does not continue sending data until later
when it recovers from lost packets due to our network fil-
ter. At this time communication resumes at the normal rate
as before the checkpoint operation. The small oscillations
in the curve is due to the fact that the application receives
bytes in multiples of packets which in this experiment have
the maximum size of 1500 bytes. Although the network fil-
ters used in our distributed checkpoint caused packets to be
dropped and network communication to be suspended, this
perturbation is small, with normal communication restart-
ing after approximately 100 ms.

7. Summary

We presented a powerful and general-purpose
checkpoint-restart mechanism, Cruz, which improves
the operation of computing environments, reducing both
planned and unplanned downtime and increasing resource
allocation flexibility. ~ Our mechanism has two main
contributions. First, we enable saving and restoring the
state of live TCP connections. Second, we leverage this
capability and develop a new lightweight distributed
checkpoint-restart mechanism which uses the fewest
messages necessary to ensure the atomicity of the global
coordinated checkpoint. We have implemented our mech-
anism and evaluated its performance using a scientific
parallel application and a network intensive benchmark.
Our results show negligible coordination overhead demon-
strating the scalability of our approach. The results suggest
that the system should scale to a large number of nodes
before coordination overhead becomes comparable to the
time to perform local checkpoint or restart.

We propose performance optimizations to our base so-
lution. As future work, we plan to evaluate the benefits of
these optimizations. In addition, we plan to evaluate per-
formance of our mechanism across a wide range of applica-
tions and cluster configurations.

References

(1]

(2]

(3]
(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

(16]

(7]

(18]

J. Casas, D. L. Clark, R. Konuru, S. W. Otto, R. M. Prouty,
and J. Walpole. MPVM: A migration transparent version of
PVM. Computing Systems, 8(2):171-216, 1995.

K. M. Chandy and L. Lamport. Distributed snapshots: De-
termining global states of distributed systems. ACM Trans-
actions on Computer Systems, 3(1):63-75, Feb. 1985.

J. Duell, P. Hargrove, and E. Roman. The design and imple-
mentation of Berkeley Labs’ Linux checkpoint/restart. 2002.
E. N. Elnozahy and W. Zwaenepoel. On the use and im-
plementation of message logging. In Int’l Symp on Fault-
Tolerant Computing, Jun 1994.

E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. John-
son. A survey of rollback-recovery protocols in message-
passing systems. ACM Computing Surveys, 34(3):375-408,
Sep 2002.

I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid Ser-
vices for distributed system integration. Computer, 35(6),
2002.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
and V. S. Sunderam. PVM: Parallel Virtual Machine A
Users’ Guide and Tutorial for Networked Parallel Comput-
ing. MIT Press, 2000.

P. Jalote. Fault Tolerance in Distributed Systems. PTR Pren-
tice Hall, 1994.

M. Litzkow, T. Tanenbaum, J. Basney, and M. Livny. Check-
point and migration of unix processes in the condor dis-
tributed processing system. Computer Sciences Technical
Report 1346, University of Wisconsin, Madison, WI, 1997.
J. Mogul, L. Brakmo, D. Lowell, D. Subhraveti, and
J. Moore. Unveiling the transport. In Second Workshop on
Hot Topics in Networks, Nov 2003.

N. Neves and W. K. Fuchs. RENEW: A tool for fast and
efficient implementation of checkpoint protocols. In Int’l
Symp on Fault-Tolerant Computing, Jun 1998.

S. Osman, D. Subhraveti, G. Su, and J. Nieh. The design
and implementation of Zap: A system for migrating com-
puting environments. In Fifth Symp. on Operating System
Design and Implementation (OSDI 2002), pages 361-376,
Dec 2002.

J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt:
Transparent checkpointing under Unix. In Usenix Winter
1995 Technical Conference, pages 213-224, 1995.
Platform Computing Corporation. LSF User’s Guide. www .
platform.com.

S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine, J. Du-
ell, P. Hargrove, and E. Roman. The LAM/MPI check-
point/restart framework: System-initiated checkpointing. In
Proceedings, LACSI Symposium, October 2003.

M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Don-
garra. MPI: The Complete Reference (Vol. 1) - 2nd Edition.
MIT P ress, 1998.

G. Stellner. Cocheck: Checkpointing and process migration
for MPI. In [0th International Parallel Processing Sympo-
sium (IPPS 1996), 1996.

W. R. Stevens. TCP/IP Illustrated, Volume I The Protocols.
Addison-Wesley, 1994.

