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Abstract Content Delivery Networks (CDNs) provide an efficient sup-
port for serving http and streaming media content while minimizing the
network impact of content delivery as well as overcoming the server over-
load problem. For serving the large documents, software download pack-
ages and media files, there is an additional problem of the original content
distribution across the edge servers in CDN infrastructure. We propose
an algorithm, called ALM-FastReplica, for optimizing replication of large
files across the edge servers in CDNs. The original file is partitioned into
k subfiles, and each subfile is replicated via a correspondingly constructed
multicast tree. Nodes from the different multicast trees use additional cross-
nodes connections to exchange their corresponding subfiles such that each
node eventually receives an entire file. This new replication method signif-
icantly reduces file replication time, up to 5-15 times compared to the tra-
ditional unicast (or point-to-point) schema. Since a single node failure in
the multicast tree during the file distribution may impact the file delivery to
a significant number of nodes, it is important to design an algorithm which
is able to deal with node failures. We augment ALM-FastReplica with an
efficient reliability mechanism, that can deal with node failures by making
local repair decisions within a particular replication group of nodes. Un-
der the proposed algorithm, the load of the failed node is shared among
the nodes of the corresponding replication group, making the performance
degradation gradual.

1 Introduction

The amount of streaming media content online increase ev-
eryday. Major news companies are among the largest pro-
ducers of streaming media content. Sports and music video
sites add their lion share to popular media content. Video
clips of important events (SuperBowl, Olympics, Elec-
tion’2000, Election’2004) drew unprecedented amounts of
traffic. Streaming media can easily become a bandwidth
“hog” that overwhelms networks and impacts mission-
critical applications unless the special content distribution
techniques are used.

Fast and reliable distribution of data from a single source
to a large number of receivers located across the Internet has
got a lot of attention during last decade. Content Delivery
Networks (CDNs) (e.g. Akamai), employ a dedicated set of
machines (edge servers) to distribute content to clients on
behalf of the origin server. In this solution, content is repli-
cated at the edge servers (typically through caching) closer
to the end user, thereby improving content delivery latency
while reducing WAN traffic.

For media files, it is desirable to replicate these files at

∗A slightly shorter paper version will be published in Proceeding of the 10th IEEE
Symposium on Computers and Communications (ISCC’2005).

edge servers in advance, using the so-called push model. For
large media files it is a challenging, resource-intensive prob-
lem, e.g. media files can require significant bandwidth and
download time due to their large sizes: 20 min media file
encoded at 1 Mbit/s results in a file of 150 MBytes. While
transferring a large file with individual point-to-point con-
nections from an original server can be a viable solution
in the case of limited number of mirror servers (tenths of
servers), this method does not scale when the content needs
to be replicated across a CDN with thousands of geographi-
cally distributed machines.

In our recent work [6], we proposed a new algorithm Fas-
tReplica for replicating large files in the Internet environ-
ment. There are a few basic ideas exploited in FastReplica.
In order to replicate a large file among k nodes (k is in the
range of 10-30 nodes), the original file is partitioned into
k subfiles of equal size and each subfile is transferred to a
different node in the group. After that, each node sends its
subfile to the remaining nodes in the group, and the replica-
tion process is iteratively repeated by taking the nodes with
already replicated file as the origin nodes. A file transfer in
FastReplica follows a store-and-forward mode, i.e. only af-
ter a subfile is received by a node, this node starts sending
the corresponding subfile to the subsequent nodes. In this
“store-and-forward” model, when the node failure occurs, it
may only impact the content delivery for nodes in the local
replication group. The recovery algorithm is somewhat nat-
ural and straightforward: it only involves the nodes within
the corresponding replication group.

Since the native IP multicast has not received wide-
spread deployment, many industrial and research efforts
shifted to investigating and deploying the application level
multicast, where nodes across the Internet act as interme-
diate routers to efficiently distribute content along a prede-
fined mesh or tree. A growing number of researchers [4, 5,
8, 11, 14, 9] have advocated this alternative approach, where
all multicast related functionality, including group manage-
ment and packet replication, is implemented at end systems.

In this work, we propose to combine FastReplica ideas
with application level multicast (ALM) for optimizing the
replication of the large files within CDN. We call this



method ALM-FastReplica. The original file is partitioned
into k subfiles of equal size, and each subfile is replicated via
a correspondingly constructed multicast tree using a fast-
forward mode, i.e. each node starts a file transfer to the
next nodes immediately after receiving the first packet of the
corresponding subfile. Nodes from the different multicast
trees use additional cross-nodes connections to exchange
their corresponding subfiles such that each node eventually
receives an entire file. This new replication method signif-
icantly reduces file replication time, up to 5-15 times com-
pared to the traditional multiple unicast method. In multiple
unicast method, the whole file is transferred in a point-to-
point fashion to the first group of nodes, and after that each
node from the first group initiates a file replication process
to the next group, etc.

ALM-FastReplica exploits diverse set of Internet paths
within the replication groups to exchange the complemen-
tary content between these nodes. Multiple Description
Coding (MDC) codes a media stream into multiple com-
plementary descriptions [18, 10, 15]. These descriptions
have the property that if either description is received it
can be used to decode the baseline quality video, and mul-
tiple descriptions can be used to decode improved quality
video. We show how to apply the ALM-FastReplica algo-
rithm for an efficient replication of multimedia files encoded
with Multiple Description Coding (MDC). This new repli-
cation method significantly reduces the distribution time of
MDC-encoded files to the edge servers in CDN.

Under the “store-and-forward” model, the node failure
may only impact the content delivery in the local replica-
tion group. However, under the fast-forward model, a sin-
gle node failure in a multicast tree during the file distribu-
tion may impact the file delivery to a significant number of
nodes. Thus, it is important to design an algorithm which
is able to deal with node failures. It is a non-trivial task
because each node in the multicast tree has a wide fan-out
(10 or more connections out). A solution that is based on
a straightforward approach, where the tree below the failed
node Nfailed is reconnected to its predecessor-node Nprev,
will suffer from poor performance. Under such a solution,
node Nprev becomes a severe bottleneck in the whole sys-
tem since it needs to handle the doubled number of connec-
tions.

We augment ALM-FastReplica with an efficient reliabil-
ity mechanism, that can deal with node failures by making
local repair decisions within a particular replication group
of nodes. Under the proposed algorithm, the load of the
failed node is shared among the nodes of the correspond-
ing replication group, making the performance degradation
practically unnoticeable.

The rest of the paper explains these ideas in more detail.

2 Related Work

During few last years, fast and reliable distribution of data
from a single source to a large number of receivers located
across the Internet has been a topic of many research studies.

One method consists of accessing multiple servers in par-
allel to reduce downloading time or to achieve fault toler-
ance. The authors in [16], demonstrate improved response
time observed by the client for a large file download through
the dynamic parallel access schema to replicated content at
mirror servers.

Digital Fountain [2] applies Tornado codes to achieve a
reliable data download. In their subsequent work [3], the
download times are reduced by having client receive a Tor-
nado encoded file from multiple mirror servers. The target
application under their approach is bulk data transfer.

In recent years, overlay networks have become an effec-
tive alternative to IP multicast for efficient point to mul-
tipoint communication across the Internet. An interesting
extension for the end-system multicast is introduced in [4],
where authors, instead of using the end systems as routers
forwarding the packets, propose that the end-systems do ac-
tively collaborate in informed manner to improve the per-
formance of large file distribution. The main idea is to
overcome the limitation of the traditional service models
based on tree topologies where the transfer rate to the client
is defined by the bandwidth of the bottleneck link of the
path from the server. The authors propose to use additional
cross-connections between the end-systems to exchange the
complementary content these nodes have already received.
However, the authors do not explicitly partition the original
document into a set of complementary subfiles for speeding
up the file delivery. Their method relies on the assumption
that any given pair of end-systems has not received exactly
the same content, and these cross-connections between the
end-systems can be used to “reconcile” the differences in
received content in order to reduce the total transfer time.

Other work aimed on distribution large files uses cus-
tom overlay protocols in peer-to-peer based fashion. Bit-
Torrent [7] is the most heavily deployed: it implements
peer-to-peer network with centralized tracking of available
clients. However, this system has a low resilience to node
failures, and could be significantly improved in this direc-
tion. Among academic initiatives are Bullet [12] which uses
a self-organizing overlay mesh, and SplitStream [5] which
uses a collection of superimposed multicast trees resem-
bling ALM-FastReplica construction. SplitStream supports
the streaming media mode, and while trying to optimize the
streaming quality of delivered content, it does not attempt to
minimize the “download” time. The goal is quite different:
it attempts to support the streaming of live media in peer-to-
peer fashion.

While CDNs were originally intended for static web con-
tent, they have been applied for delivery of streaming me-



dia as well. Delivering streaming media over the Internet
is challenging due to a number of factors such as high bit
rates, delay and loss sensitivity. Most of the current work
in this direction concentrates on how to improve the media
delivery from the edge servers (or mirror servers) to the end
clients.

In order to improve streaming media quality, the latest
work in this direction [1, 13] proposes streaming video from
multiple edge servers (or mirror sites), and in particular,
by combining the benefits of multiple description coding
(MDC) with Internet path diversity. MDC codes a media
stream into multiple complementary descriptions. These de-
scriptions have the property that if either description is re-
ceived it can be used to decode the baseline quality video,
and multiple descriptions can be used to decode improved
quality video. One of the basic assumptions in the research
papers referred to above is that the original content is al-
ready replicated across the edge (mirror) servers. The goal
of our paper is to address the content distribution within this
infrastructure (and not to the clients of this infrastructure).
In our work, we propose a method to efficiently replicate the
content (represented by large files) from a single source to a
large number of servers in a scalable and reliable way. We
exploit ideas of partitioning the original file and using di-
verse Internet paths between the recipient nodes to speedup
the distribution of an original large file over Internet.

3 ALM-FastReplica

Let N0 be a node which has an original file F . and
letSize(F ) denote the size of file F in bytes. The prob-
lem consists in replicating file F across nodes N1, ...., Nn

while minimizing the overall (both average and maximum)
replication time.

Original FastReplica algorithm [6] works as follows. Let
k be a number of network connections chosen for concur-
rent transfers between a single node and multiple receiving
nodes. The original set of nodes is partitioned into replica-
tion groups, each consisting of k nodes. File F is divided
in k equal subsequent subfiles: F1, ...., Fk. The replication
process from N0 to a first replication group is called Fas-
tReplica in the Small, and it proceeds as follows.

• Step 1: Distribution Step. The originator node
N0 opens k concurrent network connections to nodes
N1, ..., Nk of the first replication group, and sends to each
recipient node Ni subfile Fi (1 ≤ i ≤ k).

• Step 2: Collection Step. After receiving file Fi, node
Ni opens k − 1 concurrent network connections to remain-
ing nodes in the group and sends subfile F i to them (i.e. a
file transfer is done via a store-and-forward mode). At this
step, each node Ni has the following set of connections:

• there are k − 1 outgoing connections from node N i:
one connection to each node Nj (j �= i) for sending

the corresponding subfile Fi to node Nj .

• there are k−1 incoming connections to node N i: one
connection from each node Nj (j �= i) for sending the
corresponding subfile Fj to node Ni.

At the end of the collection step, each node receives all sub-
files F1, ...., Fk comprising the entire original file F .

After that FastReplica in the small is applied iteratively,
using nodes N1, ..., Nk as the origin nodes to replicate file
F further to new groups of nodes.

Example. Let k = 10. In three algorithm iterations
(10 × 10 × 10), the original file can be replicated among
1000 nodes. At each iteration, the replication process fol-
lows FastReplica in the small, i.e. the iteration consists of
2 steps, each used for transferring the 1

k -th portion of the
original file F .

In this work, we propose to combine FastReplica schema
with application level multicast in the following way.

Let k be a number of network connections chosen for
concurrent transfers between a single node and multiple
receiving nodes. The original set of nodes is partitioned
into replication groups, each consisting of k nodes. Let
G1, ..., Gk1 be the corresponding replication groups.

Let m be a targeted number of groups comprising a mul-
ticast tree (accordingly to previous studies [9], a reasonable
value of m may vary in a range of several 10s).

Then replication groups G1, ..., Gk1 are arranged in the
special multicast trees M̂, M1, ..., Mm1 , each consisting of
m (or less) groups, where M̂ is called a primary multicast
tree, and M 1, ..., Mm1 are called the secondary multicast
trees. To achieve the best performance results, the values m
and m1 should be similar: this will lead to well-balanced
multicast trees 1.

File F is divided in k equal subsequent subfiles:

F1, ...., Fk

where Size(Fi) =
Size(F )

k
bytes for each 1 ≤ i ≤ k.

A high-level schema of ALM-FastReplica is shown in
Figure 1. First, ALM-FastReplica algorithm replicates file F
via the primary multicast tree M̂ . Once groups Ĝ1, ..., Ĝm1 ,
comprising the primary multicast tree M̂ , receive subfiles
F1, ...., Fk completely they initiate (independently from
each other) transfers of subfiles F1, ...., Fk to the secondary
multicast trees M 1, ..., Mm1 .

Now, we describe ALM-FastReplica in more detail.
1). Starting the primary multicast tree M̂ .

Let groups Ĝ1, ..., Ĝm comprise the primary multicast tree
M̂ . Let Ĝi = {N i

1, ..., N
i
k}, 1 ≤ i ≤ m.

• Distribution step. Originator node N0 opens k con-
current network connections to nodes N 1

1 , ...., N1
k of

1Depending on the number of nodes in the original replication set, ALM-FastReplica may oper-
ate by using only a primary multicast tree, or may require to employ two-level schema as described
in the paper.
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Figure 1: ALM-FastReplica: a high-level, overall schema.

group Ĝ1, and starts sending subfile Fi to the corre-
sponding recipient node N 1

i (1 ≤ i ≤ k). This step is
represented by box Ĝ1(distr) in Figure 1.

• Collection step. In group Ĝ1, each node N 1
i after re-

ceiving first packet of file Fi, immediately starts send-
ing the file Fi to the rest of the nodes in group Ĝ1 (i.e.
a file transfer is done via a fast-forward mode). In
this way, each node in group Ĝ1 will be receiving all
subfiles F1, ...., Fk of original file F . This step is rep-
resented by box Ĝ1(coll) in Figure 1.

• Group communication step. Communication among
groups Ĝ1 and Ĝ2 follows a different file exchange
protocol defining another typical communication pat-
tern actively used in the ALM-FastReplica algorithm.
We denote this step as a group communication step.
Each node N 1

i of group Ĝ1 after receiving first packet
of file Fi, immediately starts sending the file Fi to
node N 2

i of group Ĝ2. After that nodes of group Ĝ2

perform the collection step described above, i.e. each
node N 2

i opens k−1 concurrent network connections
to the rest of the nodes of group Ĝ2 for transferring
its subfile Fi. In this way, each node of group Ĝ2 will
be receiving all subfiles F1, ...., Fk of the original file
F . The communications among the nodes in groups
Ĝ1 and Ĝ2 are shown in more detail in Figure 2.

Similarly, group Ĝ2 starts communications with group Ĝ3

using group communication step immediately after any node
N2

i receives the first packet of the corresponding file F i.
This replication procedure continues unrolling through the
set of corresponding groups in multicast tree M̂ shown in
Figure 3.

In fact, as it is shown in Figure 3, the multicast tree M̂
is a collection of k multicast sub-trees M̂F1 , M̂F2 , ..., M̂Fk

,
where each such sub-tree M̂Fi is replicating the correspond-
ing subfile Fi. At the same time, nodes from these differ-
ent multicast sub-trees use additional cross-connections be-
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tween their nodes (as shown in Figure 3) to exchange their
complementary subfiles.

2). Starting the secondary multicast trees M 1, ..., Mm1 .

• When node N i
j of Ĝi receives the entire subfile Fj in

the primary multicast tree M̂ , then it starts transfer-
ring file Fj to group Gi

j of the secondary tree M i us-
ing the group communication step. Thus, each group
Ĝi(1≤ i≤ m1) of the primary multicast tree M̂ ini-
tiates the replication process of subfiles F1, ...., Fk to
the next, secondary multicast tree Mi ={Gi

1, ..., G
i
m}

(see Figure 1). These transfers are asynchronous
within the group Ĝi ={N i

1, ..., N
i
k}.

This completes the description of ALM-FastReplica.



4 ALM-FastReplica and MDC

Multiple Description Coding (MDC) is source coding for
multiple channels such that a decoder which receives an ar-
bitrary subset of the channels may produce a useful recon-
struction [18, 10, 15].

MDC codes a media stream into multiple complemen-
tary descriptions. These descriptions have the property that
if either description is received it can be used to decode
the baseline quality video, and multiple descriptions can be
used to decode improved quality video. This is in contrast
to conventional video coders (e.g. MPEG-1/2/4, H.261/3,
Microsofts’ and Real Network’s proprietary coders)., which
produce a single stream that does not have these MD proper-
ties; we refer to these methods as single description coding
(SDC).

MDC refers to a form of compression where a signal is
coded into a number of separated bit streams, where the
multiple bitstreams are referred to as multiple descriptions
(MD). These multiple descriptions provide two important
properties. First, each description can be decoded indepen-
dently to give a usable reproduction of the original signal.
Second, the multiple descriptions contain complementary

information so that the quality of the decoded signal im-
proved with the number of descriptions that are correctly
received.

An important point is that each description or MD
bitstream is independent of each other and is typically
of roughly equal importance. Layered or scalable ap-
proaches [17] essentially prioritize data and thereby support
intelligent discarding of the data (the enhancement data can
be lost or discarded while still maintaining usable video).
However the base-layer bitstream is critically important –
if it is lost then the other bitstream(s) are useless. MD cod-
ing overcomes this problem by allowing useful reproduction
of the signal when any description is received, and with in-
creasing quality when more descriptions are received.

In order to improve streaming media quality, the lat-
est work in this direction proposes streaming video from
multiple edge servers (or mirror sites), and in particular,
by combining the benefits of multiple description coding
(MDC) [1] with Internet path diversity. Under this approach,
the different descriptions are explicitly sent over different
routes to a client. Path diversity exploits the fact that while
any network limk may suffer from packet loss, there is a
much smaller chance that two (or more) network paths may
suffer simultaneously from losses.

In the original ALM-FastReplica algorithm, we partition
the original file in n equal subsequent subfiles and apply
ALM-FastReplica to replicate them. This part of the al-
gorithm can be modified accordingly to the nature of the
file. For example, for a media file encoded with MDC,
different descriptions can be treated as subfiles, and ALM-
FastReplica can be applied to replicate them. This will sig-

nificantly improve the replication time. Taking into account
the nature of MDC (i.e. that either description received by
the recipient node can be used to decode the baseline quality
video), the edge servers in CDN may start serving the corre-
sponding media file once any of its descriptions is received.

5 Reliable ALM-FastReplica

In this Section, we extend the ALM-FastReplica algorithm
to be able to deal with node failures. Basic algorithm pre-
sented in Section 3 is sensitive to node failures. Under the
fast-forward model, a single node failure in a multicast tree
during the file distribution may impact the file delivery to
a significant number of nodes. For example, if node N 1

1

(from group Ĝ1 in M̂ ) fails during the either distribution or
collection steps described in Section 3 then this event may
impact all nodes N 1

2 , ..., N1
k in the group Ĝ1 because each

node depends on node N 1
1 to replicate subfile F1. A similar

situation occurs if a failure of node N 1
i happens during the

group communication step between groups Ĝ1 and Ĝ2: this
failure may impact all the nodes in the dependent subtree
because the nodes in this subtree should receive subfile F i

from node N 1
i .

Thus, it is important to design an algorithm which is able
to deal with node failures. It is a non-trivial task because
each node in the multicast tree has a wide fan-out (10 or
more connections out). Using a naive approach where the
tree below the failed node Nfailed is reconnected to its pre-
decessor Nprev will not be a well performing solution. Un-
der such a solution, Nprev becomes a severe bottleneck in
the whole system since it needs to handle the doubled num-
ber of connections.

Reliable ALM-FastReplica proposed below efficiently
deals with node failures by making the local repair deci-
sion within the particular group of nodes. It keeps the main
structure of the ALM-FastReplica algorithm practically un-
changed while adding the desired property of resilience to
node failures.

Let us call group Ĝ1 an initial group. We will pay a
special attention to group Ĝ1 and node failures in it, be-
cause it is the most vulnerable and crucial group of nodes.
Nodes of Ĝ1 are called initial nodes. We will call the rest of
the groups subsequent groups, and their nodes - subsequent
nodes.

There are several communication patterns in which node
N j

i might be involved at moment of its failure:

• If node N j
i is an initial node, i.e. N j

i = N1
i , it may

fail:

– during the distribution step, when node N0 is
transferring file Fi to N1

i . Only node N0 has
subfile file Fi at this point. Since node N 1

i is
failed during the file transfer from N0 to N1

i ,
node N0 is aware of node N 1

i failure.



– during the collection step, when node N 1
i has re-

ceived first packet of file Fi and started to trans-
fer it to the remaining nodes in group Ĝ1.

– during the group communication step in the first
multicast tree M̂ , i.e. when node N 1

i is transfer-
ring file Fi to the nodes of group Ĝ2.

– during the group communication step to the next
multicast tree M 1, i.e. when node N 1

i is trans-
ferring file Fi to the nodes of group G1

1 as shown
in Figure 1. The crucial difference of the node
failure at this step is that any node in group Ĝ1

already has received subfile Fi.

• If node N j
i is a subsequent node, it may fail during the

group communication step when node N j
i of group

Gj is transferring file Fi to the nodes of the next group
Gj+1.

In the reliable ALM-FastReplica algorithm, node N j
i of

group Gj sends heart-beat messages to node N j−1
i of group

Gj−1. These heart-beat messages are augmented with addi-
tional information on the corresponding algorithm step and
the current replication list of nodes corresponding to this
step. This information is necessary because of the asyn-
chronous nature of the ALM-FastReplica algorithm. For ex-
ample, while some of the nodes of group Ĝ1 can perform a
file transfer in the primary multicast tree M̂ (i.e. they are
still replicating their subfiles to the corresponding nodes of
group Ĝ1), some “faster” nodes of the same group Ĝ1 might
already have started a file transfer to the next multicast tree
M1 (i.e. they are replicating their subfiles to the correspond-
ing nodes of group G1

1 as shown in Figure 1).
Thus in case of node failure, it is important to know:

• which particular node in the group has failed;

• whether the node is initial or not;

• whether the corresponding step of the algorithm is the
distribution, collection, or group communication step;

• which multicast tree, group and set of receiving nodes
are impacted as a result of this failure.

There are different repair procedures depending on the cir-
cumstances under which the node failure occurred:

• The initial node N 1
i of group Ĝ1 fails during distribu-

tion, collection, or group communication step in the
primary multicast tree M̂ .

In this case, node N0 is either aware of the node
N1

i failure or receives a message about this from the
heartbeat group Ĝ1. Since node N0 is the root of the
overall replication procedure, to avoid a single point
of failure it has a buddy-node N̂0 with mirrored in-
formation and data. Node N0 sends a message to N̂0

to open k − 1 network connections to the rest of the

nodes in group Ĝ1 for sending the missing file Fi to
each node in the group.

• Node N j
i fails during the group communication step,

where node N j
i is either a subsequent node, or an ini-

tial node performing the group communication step to
secondary multicast tree.

Figure 4 depicts a failure of node N j
i in group Gj

while it was transferring file Fi to the rest of the nodes
in group Gj and further to node N j+1

i of group Gj+1

at the group communication step of the algorithm.
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Figure 4: Node N j
i failure during group communication step.

The repair procedure for node N j
i is shown in Fig-

ure 5. Once node N j−1
i realized that node N j

i has
failed, node N j−1

i conveys this information to the rest
of the nodes in group Gj−1. The nodes in group Gj−1

share the additional load of transferring file F i to the
nodes of group Gj \ N j

i as shown in Figure 5. Node
N j−1

i transfers file Fi to node N j+1
i of group Gj+1.
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Figure 5: Repair procedure for node Nj
i failed during group communi-

cation step.

The distribution lists are the same for all the nodes
of group Gj , and after the “repair” step, the ALM-
FastReplica algorithm proceeds in the usual way for
the entire subtree originated in group Gj . The nodes
in group Gj−1 continue to share the additional load



of transferring file Fi to the next, secondary multi-
cast tree originated at a group Gj or until node N j

i

is repaired. Since the load of failed node N j
i is

shared among k nodes of group Gj−1, the perfor-
mance degradation is gradual for the repaired portion
of the distribution tree.

6 Performance Evaluation

Let T imei(F ) denote the transfer time of file F from the
original node N0 to node Ni as measured at node Ni. We
use transfer time and replication time interchangeably in the
text. In our study, we consider the following two perfor-
mance metrics:

• Average replication time:

T imeaver =
1
n

n∑

i=1

T imei(F )

• Maximum replication time:

T imemax = max{T imei(F )}, i ∈ {1, · · · , n}

replication set receive a copy of the original file, and the
primary goal of ALM-FastReplica is to minimize the max-
imum replication time. However, we are also interested in
understanding the impact of ALM-FastReplica on the aver-
age replication time T imeaver.

To
demonstrate performance benefits of ALM-FastReplica, let
us consider a case with 1000 replication nodes, where each
node can open k = 10 concurrent connections, i.e. there are
100 groups, each consisting of k = 10 nodes.

Let Multiple Unicast denote a schema that works itera-
tively in the following way. First, it transfers the entire file
F from the original node to a first group of 10 nodes by
simultaneously opening k = 10 point-to-point concurrent
network connections. Then, it uses these 10 nodes (when
they receive the entire file F ) as the origin nodes and repeats
the same procedure to the new groups of nodes, etc.

The original FastReplica algorithm works iteratively too.
File F is divided in k = 10 equal subsequent subfiles and
is replicated to a first group of 10 nodes. Once they receive
all the subfiles, comprising file F , FastReplica uses these 10
nodes as the origin nodes with file F and repeats the same
procedure again, etc. Thus in three iterations, file F can be
replicated among 1000 nodes. Each iteration consists of 2
steps (distribution and collection), each used for transferring
the 1

10 -th portion of the original file F .
The ALM-FastReplica algorithm operates as described in

Section 3 using a primary multicast tree consisting of 10
replication groups, and 9 secondary multicast trees, each
also consisting of 10 replication groups.

Let BW denote a bandwidth matrix, where BW [i][j] re-
flects the available bandwidth of the path from node N i to
node Nj (as measured at some time T ), and let Var be the
ratio of maximum to minimum available bandwidth along
the paths participating in the file transfers. We call Var a
bandwidth variation.

In our analysis, we consider the bandwidth matrix BW
to be populated in the following way:

BW [i][j] = B × random(1,Var),

where function random(1,Var) returns a random integer
var: 1 ≤ var ≤ Var .

While it is a simplistic model, it helps to reflect a real-
istic situation, where the available bandwidth of different
links can be significantly different. We will call this model
a uniform-random model.

To perform a sensitivity analysis of how ALM-
FastReplica performance depends on a bandwidth variation
of participating paths, we experimented with a range of dif-
ferent values for Var between 1 and 10. When Var = 1, it
is an idealistic setting, where all of the paths are homoge-
neous and have the same bandwidth B (i.e. no variation in
bandwidth). When Var = 10, the network paths between
the nodes have highly variable available bandwidth with a
possible difference of up to 10 times.

Using the uniform-random model and its bandwidth ma-
trix BW , we computed the average and maximum file repli-
cation times under Multiple Unicast, FastReplica, ALM-
FastReplica for 1000 nodes in the replication set. After that,
we derived the relative speedup of the file replication time
under ALM-FastReplica compared to the replication time
under the Multiple Unicast and FastReplica strategies. Rel-
ative speedup of average file replication time is shown in
Figure 6.
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Figure 6: Uniform-random model: speedup in average file replication

time under ALM-FastReplica.

For Var=1, there is no variation in bandwidth, and all
the paths have the same bandwidth B. Under this idealistic
setting, ALM-FastReplica outperforms FastReplica – three



times, and Multiple Unicast – fifteen times as shown in Fig-
ure 6. It can be explained in the following way.

The ALM-FastReplica replication process consists of two
steps: 1) primary multicast tree and 2) secondary multicast
trees, each used for transferring the 1

10 -th portion of the orig-
inal file F .

The FastReplica replication process consists of three it-
erations. At each iteration, the replication process follows
FastReplica in the small, i.e. the iteration consists of 2 steps,
each used for transferring the 1

10 -th portion of the original
file F . Thus overall FastReplica performs 6 steps, each used
for transferring the 1

10 -th portion of the original file F . Thus,
the replication time under ALM-FastReplica is 3 times better
than under FastReplica: 6

10 / 2
10 = 3.

Finally, the Multiple Unicast replication process consists
of three iterations, each used for transferring the entire file
F . Thus, the replication time under ALM-FastReplica is 15
times better than under Multiple Unicast: 3 / 2

10 = 15.
While the performance benefits of ALM-FastReplica are

decreasing for higher variation of bandwidth of participat-
ing paths, it still remains very efficient, outperforming Fas-
tReplica – more than two times, and Multiple Unicast –
more than five times in average replication time under band-
width variation of 10.

Maximum replication time under ALM-FastReplica is
three times better than under FastReplica, and fifteen times
better than under Multiple Unicast independent of the values
of bandwidth variation (intuitively, these are improvements
of the worst path in uniform-random model, and the com-
parison of replication time for a worst case scenario under
different strategies is similar to idealistic setting case).

7 Conclusion

Streaming media over the Internet can be significantly im-
proved with specially designed content distribution tech-
niques and architectures. In recent years, the Internet ser-
vices has moved from an architecture where data objects are
located at a single origin server to the architecture where
objects are replicated across multiple, geographically dis-
tributed servers. Client requests for content are redirected to
a best-suited replica rather than the origin server. For large
media files, the replication process across this distributed
network of servers is a challenging, resource-intensive prob-
lem on its own.

In this work, we propose a new algorithm, called ALM-
FastReplica, for an efficient and reliable replication of me-
dia files in the Internet environment. This algorithm com-
bines the original FastReplica ideas with ALM approach for
significantly reducing the replication time of the large files
within CDN. We augment ALM-FastReplica with an effi-
cient reliability mechanism, that can deal with node failures
by making local repair decisions within a particular replica-

tion group of nodes. Proposed reliability algorithm is con-
structed in such a way, that in the repaired portion of the dis-
tribution tree, the performance degradation is gradual, since
the load of the failed node is shared among the nodes of the
“preceding” replication group.
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