

Support for Arbitrary Regions in XSL-FO♦

Fabio Giannetti, Ana Cristina Benso da Silva1, João Batista Souza de Oliveira1,
Felipe Rech Meneguzzi2, Leonardo Luceiro Meirelles3, Fernando Tarlá Matins Mano3,
Thiago Bueo da Silva3
Digital Media Systems Laboratory
HP Laboratories Bristol
HPL-2005-60
April 22, 2005*

XML, XSL-FO,
latex, SVG, digital
printing

This paper proposes an extension of the XSL-FO standard which allows
the specification of an unlimited number of arbitrarily shaped page
regions. These extensions are built on top of XSL-FO 1.1 to enable flow
content to be laid out into arbitrary shapes and allowing for page layouts
currently available only to desktop publishing software. Such a proposal
is expected to leverage XSL-FO towards usage as an enabling technology
in the generation of content intended for personalized printing.

* Internal Accession Date Only
♦WWW 2005, May 10-14, 2005, Chiba, Japan
1Pontificia Universidade Catolica do Rio Grande do Sul, CPSE/FACIN 6681, Ipiranga Avenue, Porto Alegre, Brasil
2R&D HP Brazil
3Pontificia Universidade Catolica do Rio Grande do Sul, CPSE 6681, Ipiranga Avenue, Porto Alegre, Brasil
 Approved for External Publication
© Copyright is held by the author/owner(s)

Support for Arbitrary Regions in XSL-FO

A proposal for extending XSL-FO semantics and processing model

Ana Cristina B. da Silva
Joao B. S. de Oliveira

-
-

CPSE/FACIN
6681, Ipiranga Avenue

Porto Alegre, Brazil

{benso,oliveira}
@inf.pucrs.br

Felipe R. Meneguzzi
Leonardo L. Meirelles
Fernando T. M. Mano

Thiago B. Silva
CPSE

6681, Ipiranga Avenue
Porto Alegre, Brazil

{felipe,meirelles,
fernando,bueno}
@cpts.pucrs.br

Fabio Giannetti
-
-
-

HP Labs
Filton Road, Stoke Gifford

BS34 8QZ, Bristol, UK

fabio.giannetti
@hp.com

ABSTRACT
This paper proposes an extension of the XSL-FO standard
which allows the specification of an unlimited number of
arbitrarily shaped page regions. These extensions are built
on top of XSL-FO 1.1 to enable flow content to be laid out
into arbitrary shapes and allowing for page layouts currently
available only to desktop publishing software. Such a pro-
posal is expected to leverage XSL-FO towards usage as an
enabling technology in the generation of content intended
for personalized printing.

Categories and Subject Descriptors
I.7 [Computing Methodologies]: Document and Text
Processing; I.7.2 [Document and Text Processing]: Doc-
ument Preparation—Desktop publishing, Format and nota-
tion, Markup languages, Photocomposition/typesetting

General Terms
Arbitrary Shapes, Typesetting, Digital Publishing

Keywords
XML, XSL-FO, LATEX, SVG, Digital Printing

1. INTRODUCTION
The XSL-FO standard [13] describes XML documents

separating content and layout information. This has led
it to be considered an interesting alternative for publishing
workflows [8]. One of the main advantages of using XSL-
FO in publishing lies in it being an open standard based on
XML. Moreover, the processing of a document based on this
standard can be logically broken down into multiple stages
that can be distributed among specialized service providers.
From a formatting point of view, the XSL-FO format pro-

vides constructs for specifying page layouts in which con-

Copyright is held by the author/owner(s).
WWW2005, May 10–14, 2005, Chiba, Japan.
.

tent flows can be positioned automatically. Such capability
is important as it eases the process of paginating complex
content. Nevertheless the current version of the standard
has limitations regarding the type of layout over which flow
content can be placed. In particular, XSL-FO version 1.0
[13] defines five possible regions within a page, of which
just one, can be used for the disposition of flow content.
Such limitation is overcome in version1 1.1 [15] through a
construct called fo:flow−map, which allows multiple content
flows to be mapped into specific regions within a page.
Despite such improvements in version 1.1, the current

page model allows only rectangular regions in which con-
tent is laid out. If XSL-FO is to be used as the base format
for a Digital Printing workflow, more flexibility in the defi-
nition of content holding regions is required. Therefore, we
propose to define regions using arbitrary shapes as a means
to allow for more flexible content layout within XSL-FO.
This article describes an extension of XSL-FO 1.1 [14]

that can also capture the definition of unlimited number of
page regions, each one having arbitrary geometric shape.
Such extension empowers the XSL-FO standard with capa-
bilities document typesetting with complex graphical com-
positions.
In the related work section we provide a brief overview

of the related work used in the conception of thus proposal;
Section 3 lays out the set of representational possibilities
intended for the arbitrary regions and define the new for-
matting objects that will be used to that end; Section 4
describes the extensions required by the area tree model to
accommodate the new rendering possibilities; in Section 5
we briefly describe an implementation of an XSL-FO ren-
dering engine that supports the proposed extensions, and
finally, Section 6 discusses the proposal and its implementa-
tion so as to provide the basis for its refinement and further
development.

2. RELATED WORK
In the following sections we discuss a series of document

1A W3C working draft at the time of this writing.

description languages, with a special emphasis on those that
decouple content and presentation details (Sections 2.1, 2.2,
2.3 and 2.4). Such languages are of particular interest in the
context of Digital Publishing and the production of high
quality personalized documents, as that separation allows
a seamless integration between user specific content, docu-
ment content templates and styling information.

2.1 XSL and Formatting Objects
Extensible Stylesheet Language (XSL) is a standard main-

tained by the World Wide Web Consortium (W3C) whose
main purpose is to provide a means through which XML
data can be formatted for presentation in multiple media
types [13]. The standard itself is divided into two XML
vocabularies: XSL itself, and the XSL-Formatting Objects
(XSL-FO). Each one of these vocabularies is associated with
a distinct process during the conversion of XML data into
a presentation in the output media.
The stylesheet language included in the standard is in-

tended to provide a mechanism to modify an arbitrary XML
tree into one described in terms of elements within the
XSL-FO namespace. Such a process is performed by an
XSL processor and is called Tree Transformation. The re-
sulting XSL-FO tree represents non-paginated content with
formatting instructions, which can be formatted into a spe-
cific presentation format and media (e.g. PDF [3], PS [2],
. . .), following the formatting semantics described in XSL-
FO. The specification of a document using FO directives is
composed of three top-level sections (Figure 1):

• An fo:layout−master−set element holding the geomet-
ric definitions of the FO regions used throughout the
document as well as contexts in which these definitions
are used;

• An fo:declarations element holding global declarations
for the document, and;

• An fo:page−sequence element holding the specification
of sequences of content that will be distributed in
pages within a document. Content for these page se-
quences is specified as either fo:static−content for con-
tent that is not intended to be broken down into mul-
tiple pages or fo:flow elements for content that spans
across multiple pages.

2.2 TEX, LATEX and LATEX 2ε

TEX [7] (and its variants) is a typesetting system devel-
oped by Donald Knuth aiming at the production of high-
quality documents for press printing. TEX document pro-
duction is driven by a document class which specifies the
general document structure as well as presentation details.
Coupled with a content file, it generates a formatted version
of such content according to the instructions of the docu-
ment class. Thus, TEX decouples formatting from content,
facilitating the production of a large volume of consistent
high-quality output.
With regards to document layout specification, TEX uses

a set of imperative primitives to define rectangular areas in
which content is laid out. Commands for specifying complex
layouts are defined in terms of the low-level primitives in-
cluded in the native TEX implementation and incorporated
into a given document through macro packages.

fo:root

fo:layout−master−set
fo:simple−page−master

fo:region−before

fo:region−body

fo:region−start

fo:region−after

fo:region−end

fo:page−sequence−master

fo:single−page−master−reference

fo:repeatable−page−master−reference

fo:repeatable−page−master−alternatives

fo:conditional−page−master−reference

fo:declarations

fo:color−profile

fo:page−sequence

fo:title

fo:static−content

fo:flow

Figure 1: Sections of an XSL-FO Document.

Considering that the native layout model is based in rect-
angular areas, the inclusion of complete arbitrary shapes
processing capabilities cannot be easily included using its
original layout primitives. In particular, TEX low-level com-
mands can be used in the creation of arbitrarily shaped
paragraphs or even pages for the layout of a single flow of
content, but this is not a trivial task and would push TEX
interpreter model to its limits. In this respect, a set of
macros called shapepar [12] partially provides such a func-
tionality enabling the layout of single-paragraphs within a
given shape. Nevertheless, such macros do not allow flowing
text to be laid out throughout multiple pages, or the specifi-
cation of multiple arbitrary content regions within the same
page. Moreover, TEX also includes a parshape command,
which given a set of constraints to line indentation, size
and number, can generate shaped paragraphs. Again, such
command requires the involved constraints to be calculated
outside TEX in a non-trivial process.

2.3 Scalable Vector Graphics (SVG)
Scalable Vector Graphics (SVG) is a language for describ-

ing two-dimensional graphics in XML [16] developed jointly
by the W3C, Adobe and Canon, and maintained by the
W3C. Version 1.1 of this standard specifies primitives for
drawing vector graphics, raster images and non-paginated
text. SVG is loosely related to PostScript in its graphi-
cal primitives, as their specification is very similar to such
language.
Even though the current SVG specification does not aim

to provide a complete document description and printing
language such as PostScript or PDF, the working draft of
SVG 1.2 [15] shows a clear tendency towards turning SVG
into a full-fledged printing vocabulary. Evidence of such
direction is the inclusion of primitives for the specification
of paginated content, as well as for flow content and line-
breaking capabilities. Moreover, SVG 1.2 text-handling ca-
pabilities will be extended to allow the rendering of text

paragraphs within arbitrary shapes.

2.4 Other
This section briefly discusses other related languages used

for document description, more specifically PostScript and
PDF. These languages are used extensively as output for-
mats for document generation, but their low-level graphi-
cal primitives prevents them to be useable as user-specified
document languages.

2.4.1 PostScript
The PostScript language is a programming language de-

signed to convey a description of virtually any desired page
to a printer [1]. As a programming language it must be in-
terpreted by an appropriate interpreter program which im-
plements the semantics for its execution environment, which
allows the use of variables and the combination of basic op-
erators into complex functions and procedures. Moreover, it
is essentially a low-level control language for usage directly
at the printer level as an automatically generated format.
Using the features of the language, it is nevertheless pos-
sible to describe shapes (using straight lines or parametric
curves, for example) and provide a set of PostScript proce-
dures to take such shapes and some text, filling the shape
with the text and positioning the text at the proper places.
However, solving the problem with this approach might be
both expensive (as PostScript processing is not as fast as
other languages) and complex (as one has to deal with nu-
merical computations that are sensitive to small differences
between seemingly similar shapes).

2.4.2 Portable Document Format
The Adobe Portable Document Format (PDF) is a file

format for representing documents in a manner indepen-
dent of the application software, hardware, and operating
system used to create them and of the output device on
which they are to be displayed or printed [3]. PDF docu-
ments are described in terms of a stream of objects, be they
static printable content or other kind of electronic content
or metadata. It is generally used as a container for other
content specification formats such as PostScript, raster im-
ages, audio, or other interactive content. Notwithstanding
its extended functionality over lower level formats, it is still
a generally low-level description language employed mainly
as automatically-generated output format, and suffers from
the very same limitations as PostScript as far as arbitrary
content layout representation is concerned.

3. ARBITRARILY-SHAPED FORMATTING
OBJECTS

In this section we describe an extension to the XSL-FO
standard that allows the specification of any number of page
regions within arbitrarily-shaped page regions. We there-
fore propose a conservative extension to XSL-FO 1.1 [14],
i.e. a valid XSL-FO document is also a valid document
within our extended semantics. Thus, the relevant aspects
of XSL-FO 1.1 are described in Section 3.1. A modified
page model is described in Section 3.2, whereas the elements
comprising our extension and their associated attributes are
described in Section 3.3. As we describe the new elements,
examples will be provided and the associated attributes will

be introduced as well as their semantics and association to
the geometrical structure of the document.

3.1 XSL-FO Basics
In XSL-FO version 1.0 [13] the only page region in which

flow content could be positioned is the fo:region−body, thus
the content placed on all the other regions was limited to
static headers, footers or similarly constant material. As
a consequence, the number of pages of a given sequence
was dictated by the amount of flow content included within
the body region of such page sequence. Such association
of flow content only to the fo:region−body is expected to be
overcome in version 1.1 of the XSL-FO standard [14]. In
the current working draft the fo:layout−master−set element
is augmented with a construct called fo:flow−map. Such
construct describes a mapping between named page regions
and named content flows. In order to maintain compatibil-
ity, a mapping representing the region to flow organization
of XSL-FO 1.0 is assumed as default in case no flow map
is supplied. A flow map example representing the default
mapping is described in Figure 2.

<fo:flow−map flow−map−name="default−mapping">
<fo:flow−assignment>
<fo:flow−source−list>
<fo:flow−name−specifier
flow−name−reference="xsl−flow−start"/>
<fo:flow−name−specifier
flow−name−reference="xsl−flow−body"/>

</fo:flow−source−list>
<fo:flow−target−list>
<fo:region−name−specifier
region−name−reference="xsl−region−start"/>
<fo:region−name−specifier
region−name−reference="xsl−region−body"/>

</fo:flow−target−list>
</fo:flow−assignment>
</fo:flow−map>

Figure 2: Flow map within XSL-FO 1.1.

Using a flow map, it is possible to attach content flows
to any one of the XSL-FO page regions. The possibility
of mapping multiple content flows in a page sequence into
multiple page regions represents the possibility of not deter-
mining the definition of the total number of pages by any
particular flow. Thus, depending on the amount of con-
tent within a flow and the size of its encasing page region a
given flow may or may not command the number of pages
generated by a given page sequence.

3.2 Page Model
The new page model for the proposed extensions allows

the specification of any number of content-bearing page re-
gions as well as the five regions specified in XSL-FO 1.1.
These additional regions may possess an arbitrarily com-
plex geometric specification, limited only by the language
chosen for its description. Furthermore, our departure from
the original XSL-FO page-region organization implies that
overlapping of arbitrary portions of multiple adjoining re-
gions is possible. An example of such layout is shown in
Figure 3.
In order to cope with the new possibilities, the proposed

representation allows regions to have depth values so as to

+
Region

me
C, D

in

Flow

Region

non
A, B

in

Flow

=

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

em em me
emememem

mememememe
eeememem
eeeemeem

mmeme
emme

eem
em

em
m

emee
e em me
em em me
memememe
mm emmeme
me em mm me
mem em em
mememem
mememe
meme
eme
me

onono no onoonono ono no
ono nonoononono on oo

no no ono no ono on
nono ono no o n

em

ononono
ono

nononononnon

ono
nonono

nono no o

non no noo no noo
nonono nono on oonnon

non ononon ononon onno

m

onno no no

emem
eemme

mmeme

C D

B

A

Figure 3: Possible page layout in extended XSL-FO.

allow region areas to be prioritized. A region can also have
a specific behavior associated to it which is considered when
overlapping with other regions occur, thus allowing a user
to control the interaction among overlapping regions.

3.3 New Formatting Objects
The description of arbitrary page regions in the extended

XSL-FO specification is accomplished adopting two mecha-
nisms similar to the currently supported pagination model.
As previously seen there are two ways of mapping a flow
inside a page region, a direct one using the region-name
as referencing attribute and an indirect one using the flow
mapping. The proposed approach accomplishes a similar ef-
fect regarding the association of shapes to regions enabling
the direct embedding of a shape description within a new
region-arbitrary element as well as a region mapping.

3.3.1 Direct Mapping throughfo:region−arbitrary
In the direct mapping approach, an fo:region−arbitrary

element, declared as a child of the fo:simple−page−master
element is introduced. Unlike its XSL-FO 1.1 siblings,

any number of different fo:region−arbitrary elements can be
declared within a given fo:simple−page−master as long as
they are uniquely named. The geometric outline of an ar-
bitrary region is specified using an external vector format.
Such specification is included as a child element of the arbi-
trary region element, in case the format is XML-based or as
CDATA otherwise (e.g. PostScript). Within our proposal
the chosen format is SVG [16] due to its XML nature and
consequent easier adaptation of an XSL-FO parser to cope
with it. For example, an SVG-specified arbitrary region
named Region1 in Figure 4.

<fo:region−arbitrary region−name="Region1" ...>
<svg ...>

...
</svg>

</fo:region−arbitrary>
Figure 4: Arbitrary Region SVG specification.

3.3.2 Indirect Mapping throughfo:shape−map

The support for indirect mapping adds flexibility to the
shape reuse across multiple pages and page sequences. Each
shape will be defined inside an fo:shape element as part of
the layout master set definition. Figure 5 shows the markup
example.
This mapping can be applied over legacy regions to sup-

port non-rectangular shapes in the "border" layout, already

<fo:shape−map shape−map−name="document−regions">
<fo:shape−assignment>

<fo:shape−source shape−name−reference="poly1"/>
<fo:region−target region−name−reference="left"/>

</fo:shape−assignment>
<fo:shape−assignment>

<fo:shape−source shape−name−reference="poly2"/>
<fo:region−target region−name−reference="body"/>

</fo:shape−assignment>
</fo:shape−map>

Figure 5: Shape Map specification.

available in XSL-FO 1.1, or in combination with the
fo:region−arbitrary to achieve a "free-form" layout.

3.3.3 Free-from layout versus Border Layout
In the original XSL-FO model only four regions can be

described (roughly corresponding to the header, footer and
both margins of a page) and all that is not included in one
of these regions comprises the body of the page. A simi-
lar effect can be immediately achieved through the use of
four shapes. Figure 6 shows three page models that could
be obtained through the use of arbitrary shapes. The first
model imitates the standard XSL-FO model, with only four
rectangular regions and the text body being defined as ev-
erything that is not included in those regions. In the sec-
ond page there are two non-rectangular margins and the
remaining area forming the body of the page is shaped as
a Z. In the third page a non-rectangular header frames two
other shapes that can be used as text columns. In this case
the true body of the page is the remaining area around the
columns, and will not have any content.

Page 1 Page 3Page 2

Figure 6: Simple arbitrary shapes.

For all practical purposes, it is important that the speci-
fied shape is composed solely of closed curves, that is, having
inside and outside regions, possibly having self-intersections.
Figure 8 shows two different shapes and their bounding
boxes; the first shape is composed by a single primitive
whereas the second one by three. Accordingly, the descrip-
tion of the first shape in Figure 8 in SVG would be given
by the specification of Figure 7.
The representation of an unbounded number of page re-

gions whose enclosing area is defined by any kind of closed
curve represents a major departure from the original XSL-
FO model of area overlapping semantics. More precisely,
XSL-FO defines four border page regions, each of which
specified in terms of an extent perpendicularly measured
from the corresponding page border, as well as a body page
region occupying the remainder of the space taken up by

<fo:region−arbitrary region−name="Object1" ...>
<svg width="11.7in" height="8.3in" viewBox="

0 0 20157 13858">
<g style="stroke−width:.025in; stroke:black; fill:none ">
<!−− Polygon −−>
<path d="M 3307,1653 2834,1181 2362,1181 2362,944 1889

,944 1889,1181 1417,1181 944,1653 1417,1653 1653
,2125 1417,2362 1417,2834 1653,2598 2598,2598 2834
,2834 2834,2362 2598,2125 2834,1653 3307,1653" />

</g>
</svg>
</fo:region−arbitrary>

Figure 7: Specification of Shape 1 in Figure 8.

Shape 1 Shape 2

Figure 8: Two different shapes composed by a different num-
ber of primitives.

the border regions. As a result, the four border regions
have clearly defined overlapping combinations, i.e. each
border region can overlap one of its two adjacent borders
(Figure 9).

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Start EndBody

Before

After

Figure 9: Overlapping regions in XSL-FO 1.0 denoted in
dashed areas.

On the other hand, an unlimited number of possibly over-
lapping page regions entails that an unlimited of region
overlapping combinations may take place. Moreover, the
possibly non-rectangular shape of the overlapping areas im-
plies that when such an overlapping occurs, the clipping of
areas must be performed through constructive area geome-
try instead of simply adjusting the dimensions of a rectan-
gle, as is currently done in XSL-FO. We therefore propose
two additional attributes for the arbitrary region element,
which should enable the proper specification of overlapping
behavior for non-rectangular areas. These attributes are
described in Sections 3.3.4 and 3.3.5.

3.3.4 Thelayer attribute
In order to deal with the problem of resolving region-

to-region interaction when overlapping occurs, we propose
a layering approach specified through a mandatory layer
attribute, and associated to the region element. The rules

associated to layer are:

• The layer is a positive integer and provides the or-
der for placing the region contents on a printed page.
Content with the largest layer is placed first, the sec-
ond largest layer is placed on top of the first, and so
forth;

• Every region has a different integer associated to layer
. If a number of disconnected shapes are required to
be at the same layer on a page, they can all be placed
within a single geometric description as in the second
shape of Figure 8 above.

1

2

3

Figure 10: Three different shapes with overlapping regions.

Figure 10 contains an example composed of three regions
placed on a page according to their layer . The number
within each region represents the layer associated to it, but
from that figure it is not clear how the three regions should
interact in the overlapping areas. Figure 11 shows two dif-
ferent ways of resolving the same situation. The main dif-
ference is that the document designer could wish that over-
lapped regions should recede and render their content in
the remaining visible area as in 11(a) or that their content
is to be overlapped as in 11(b). A combination of inter-
actions could also be desirable, with the right vertical bar
receding and the left one being overlapped. To handle such
situations, a second attribute is associated to a region, in-
forming whether that region will recede or not.

2

3
1

2

(a) (b)

3
1

Figure 11: Two possible interactions between overlapping
regions. In (a), the overlapped regions recede and text is
not rendered in the overlapped areas. In (b) there is true
overlapping.

The semantics of the layer attribute is very similar to
that of the z−index attribute, which is already in the XSL-
FO standard. Therefore, modifying the semantics of z−index
and using it instead of layer is also an option.

3.3.5 Therecede attribute
It is also necessary to provide a way of describing whether

a region will recede in case some other region at a higher
layer overlaps it. To store that information, a boolean recede
attribute is also associated to a shape, with the following
semantics:

• recede = false means that its associated region will keep
its original geometry and not be affected by any other
region on a layer above it. In this case, its content will
be rendered in the original area.

• recede = true means that the current region will recede
if overlapped by any other region on a layer above it.
In this case, as much of its content as possible will be
rendered in the remaining area, if any.

It is important to point out that the recede attribute only
has meaning with respect to regions placed above the cur-
rent region. As this attribute is not mandatory, an ap-
propriate default value would be recede = false when such
attribute is not declared.

3.3.6 Other Attributes
Beyond the additional attributes described in the pre-

vious sections, some of the attributes currently associated
to region elements within a page master must have their
semantics adapted in order to cope with the notion of ar-
bitrary shapes introduced in this proposal. Therefore we
also provide a set of semantic modifications for the existing
attributes in order to cope with the introduced concepts.
Common Border, Padding and Background -When

a background-image is defined for an arbitrarily-shaped re-
gion, the background-attachment property is always treated
as if being defined as “fixed” as there is no defined method
for scrolling arbitrarily-shaped areas. A tiled background
will be positioned and distributed regarding the virtual rect-
angular area in which the arbitrary shape is inscribed, start-
ing at the before-start corner of the area, and following the
specified reference-orientation and writing-mode, and then
subsequently clipped to the arbitrary shape. When verti-
cal and/or horizontal position of a background is specified,
it will always be calculated relative to the virtual rectan-
gular area in which the arbitrary shape is inscribed, and
the background will be subsequently clipped to the arbi-
trary area (Figure 12). Border color, style and width prop-
erties for specific edges (e.g. before, end, . . .) have no
effect when specified for an arbitrary area. Instead, border-
color/style/width properties are used to specify the same
border behavior for all the edges of arbitrarily-shaped ar-
eas. Padding properties will have no effect for arbitrary
areas, being always considered zero.

Figure 12: Background in Shape 2 of Figure 8.

Layout-related Properties - The clip property is auto-
matically set to auto for regions defined as arbitrary shapes
with a recede property set to true. These attributes remain
unchanged otherwise.

Pagination and Layout Properties - When the over-
flow property is defined for an arbitrarily-shaped region, the
“scroll” value has no effect, as there is no defined semantics
for scrolling such regions. The “visible” and “auto” values
defer region clipping behavior to the recede and layer prop-
erties for arbitrary areas. The “hidden” value automatically
sets the recede property to false for arbitrary areas in case
such property has not been defined, otherwise it has no ef-
fect.

3.4 Modified Layout Process
Considering the modifications introduced by our extended

XSL-FO model, a number of aspects associated to the lay-
out process described in the standard [13, 16] require adap-
tation. In particular, the process of generating the view-
port/reference pairs for the arbitrary regions defined by
the proposed extensions is modified into a generic model
that also contemplates the standard page regions defined
by the original standard [13]. Furthermore, the processing
of arbitrary areas require different methods than the ones
currently used to handle rectangular geometric constructs,
in particular we chose to use primitives from Constructive
Area Geometry (CAG) [10] to perform such handling.

3.4.1 Region Interaction
The introduction of arbitrary shapes in the description of

page regions led to the region-to-region interaction model
described in Section 3.3. Such interaction model requires
a different process for the definition of the resulting ar-
eas, in particular one that handles the unboundedness of
region overlapping situations while conforming to the lay-
ering and overlapping strategy specified by the user. We
therefore propose Algorithm 1 as a reference for the han-
dling of region-to-region interaction.

Algorithm 1 Region interaction resolution.
Let Ri be a region with layer = i
Let Shi be the shape associated to region Ri

Let \ be the CAG difference operator
Let n be total number of regions within a page master
for i from n to 0 do
if recede = true in Ri then
for j from i-1 to 0 do

Shi = Shi \ Shj

end for
end if

end for

3.4.2 Conversion from standard regions
Besides handling the interaction among arbitrary regions,

the algorithm defined in Section 3.4.1 provides a generic
solution within which the standard XSL-FO rectangular
regions can be handled. Moreover, an implementation of
such standard would also take advantage of a unified region
model as it simplifies the mapping of regions in the FO tree
into elements within the area tree. We therefore define a
mapping from the five regions present in XSL-FO 1.0 into
the proposed arbitrary model.

Definition 1 (XSL-FO Page master). We define P =

〈Ph,Pw,Pmt,Pmb,Pml,Pmr〉 to be an fo:simple−page−master
such that:

• height = Ph and width = Pw;

• margin−top = Pmt and margin−bottom = Pmb;

• margin−left = Pml and margin−right = Pmr.

Definition 2 (Bottommost layer). Let A be the set
of all fo:region−arbitrary elements within a given page mas-
ter P, each of which containing a distinct layer = λ at-
tribute. We define Λ to be the bottommost value of λ.

Definition 3 (FO Regions → Arbitrary). Standard
XSL-FO region elements, i.e. fo:region−before, fo:region−after
, fo:region−start, fo:region−end and fo:region−body, within
a page master P, such that extent = ε and precedence = π
(for non-body regions) generate rectangular arbitrary regions
with recede, layer, x, y, width and height attributes according
to Table 1.

An important aspect concerning the definitions of the
start and end regions is that the value of the precedence at-
tribute is assumed to be previously validated with regards
to the precedence defined for the before and after regions.
Another aspect of the proposed mapping refers to the way

in which the body region is converted into a rectangular
area that spans the entire page. In our proposed mapping
we take full advantage of the semantics associated to the
layer and recede attributes to generate a region located at
the bottommost layer, and will recede its area in favor of
all the other regions within the page master.

4. AREA TREE MODEL FOR ARBITRARY
SHAPES

Besides specifying the syntax for formatting objects, XSL-
FO also contains a general area model (area tree) which
comprise the formatted result [14], as well as the interac-
tion among these areas. The model is intended to provide
an abstract framework which is used in describing the se-
mantics of formatting objects.

4.1 Arbitrary Areas
The main modification introduced into the area model is

the introduction of Arbitrary Areas as possible nodes within
the area tree. Arbitrary areas are hierarchically equivalent
to the Rectangular Areas defined in Section 4.2 of the XSL-
FO 1.1 specification. Like its rectangular counterparts, spe-
cialized arbitrary areas can be either block-level or inline-
level. Similarly, child elements of block-level arbitrary areas
are of any type, either rectangular or arbitrary, inline or
block-level, while arbitrary children of inline-level are only
inline-level. Unlike arbitrary areas, child elements of rect-
angular areas can only be rectangular.

4.1.1 Border, Padding and Content
An important set of concepts within the original area

tree model involve the abstract naming of rectangle edges
(i.e. start, end, before, after), which are used as basis for a
language-independent representation of areas. Association
of such naming to the edges of arbitrary areas is clearly not
feasible. We therefore use the minimal bounding box within

which an arbitrary area can be inscribed whenever the ab-
stract edges of a rectangular area are required for writing-
mode or coordinate orientation purposes (Figure 13).

Bounding Box

Arbitrary Area

Figure 13: A Bounding Box

Areas in the original XSL-FO area tree had a series of
optional enclosing rectangles referring to padding, border
and content. Arbitrary areas have no rectangle or other en-
closing shape defining padding space, whereas they enclose
a content shape which coincides with the outline of the area
outline itself. Furthermore, if an arbitrary area has a border
property the corresponding border shape is generated using
the same path outline as its enclosing arbitrary shape.
Nodes within the area tree have a set of associated traits,

which are either directly derived from formatting object
(FO) properties or indirectly derived by one or more of such
properties. Directly derived traits obey the same semantics
as their generating FO properties for arbitrary areas. The
majority of indirectly derived traits also keep their original
semantics with the exception of the is−reference−area and
is−viewport−area traits, and those specifying position and
offset modifications. More precisely:

• Arbitrary viewport areas can never be used for scrolling
content;

• Whenever an arbitrary area is also a reference area,
the coordinate system used by its children is defined
by its bounding box;

• Therefore, whenever child elements of arbitrary refer-
ence areas contain position or offset traits, these are
calculated relative to their parent’s bounding box;

• Arbitrary viewport/reference pairs are always coincid-
ing shapes.

Arbitrary areas containing traits that cause child areas to
have smaller rectangular bounds than its parent (e.g. start-
indent, end-indent . . .), generate a clipping rectangle de-
rived from its bounding box and resized accordingly, which
is then used to clip the resulting arbitrary area. An exam-
ple of such operation is the clipping of an arbitrary region
which exceeds the defined page margins (Figure 14).
Moreover allocating new block areas throughout the lay-

out of a page sequence also uses a similar approach. Namely,
the allocation rectangle used to specify the available space
for the line building algorithm is used as a clipping box and
intersected with the parent arbitrary area (Figure 15).

4.2 Line Building
As the formatter populates the area tree through the re-

finement of areas into more specialized block areas in order
to layout content, it reaches a point in which Line Areas

Region x y width height recede layer
π ¬π

fo:region-before Pml Pmt Pw − Pml − Pmr ε ¬π Λ + 1 Λ + 3
fo:region-after Pml Ph − ε− Pmb Pw − Pml − Pmr ε ¬π Λ + 1 Λ + 3
fo:region-start Pml Pmt ε Ph − Pmt − Pmb false Λ + 2 Λ + 2
fo:region-end Pw − ε + Pmr Pmt ε Ph − Pmt − Pmb false Λ + 2 Λ + 2
fo:region-body Pml Pmt Pw − Pml − Pmr Ph − Pmt − Pmb true Λ + 4 Λ + 4

Table 1: Region conversion table.

Page Margins

Region Body Resulting Area

Figure 14: Area Clipping.

Allocation Rectangle

C
on

te
nt

 H
ei

gh
t

A
va

ila
bl

e
H

ei
gh

t

Resulting Intersection

Figure 15: Area Allocation.

are generated. These areas will provide the line building
algorithm with information regarding contiguous inline pro-
gression space. Such information is used by the formatter to
determine the amount of content that will be placed within
each line of a given document, and drive the actual layout
process.
Arbitrary Line Areas generate inline areas using the same

strategy proposed by SVG 1.2 to calculate text spans [15].
More precisely, line areas are generated as would any other
block-level areas, as described in Section 4.1.1, resulting in
zero or more closed shapes within which content is to be
laid out. Following this process, the layout algorithm must

determine which shapes are actually within the parent line
area. To accomplish that, the algorithm described in [15] is
used, with the following modifications:

• The areas that would generate text regions within
SVG flowing text layout will generate content-bearing
inline child elements;

• All the remaining SVG spans will generate inline spaces
within an arbitrary line area.

The Extensible Markup Language (XML)

is a subset of SGML that is completely de−

scribed in this document. Its goal is to enable

generic SGML to be served, received and pro−

cessed on the Web in the way that is now possible

with HTML. XML has been designed for ease of im−

plementation and for interoperability with both SGML

and HTML. For further information go to normal.pdf.

Line Area Indentation

Line Areas

Figure 16: Line Areas and Indentation.

Some traits within the resulting areas are modified ac-
cording to the alignment and spacing traits defined for its
parent areas. Considering a line area L contained within a
block area B, an inline area I is modified as follows:

• Start indentation for the first I generated for L is mod-
ified by the addition of the space from the start-edge
of content allocation rectangle for B to the start edge
of L;

• End indentation for the last I generated for L is mod-
ified by the addition of the space from the end-edge of
content allocation rectangle for B to the end edge of
L;

• The spacing introduced to enforce a justified align-
ment for a given line area is generated individually for
each inline element I generated for L instead of for
every inline element of L.

An example of the additional start indentation is shown
in Figure 16.

5. IMPLEMENTATION
Laying out content in multiple arbitrary regions is by no

means a computationally trivial operation. One of the main
concerns regarding the proposed extensions is the feasibility
of handling multiple arbitrary areas in the source XSL-FO,

as well subsequently breaking down these areas in order
to generate the appropriate sub-areas. A solution to such
question can be provided through an implementation of an
arbitrary shape processor for XSL-FO.
Implementing a full-fledged Formatting Objects Proces-

sor is, nevertheless, a complex task to the point that there is
no open-source implementation of the entire XSL-FO stan-
dard. Furthermore, implementing a limited subset of the
standard plus our extensions would also be a very demand-
ing implementation effort. We therefore chose to modify an
existing implementation to include our extensions, namely
Apache Formatting Objects Processor (FOP) [5]. These ex-
tensions are summarized in Section 5.1, while examples of
extended FO documents and the associated results using
the proposed implementation are described in Section 5.2.

5.1 Extended Formatting Objects Processor
Apache FOP is generally recognized as the leading open-

source implementation of the XSL-FO Standard [6, 9], and
was therefore chosen as the basis for the prototype imple-
mentation. Despite of the prototype being developed using
a specific implementation as its starting point, we will at-
tempt to describe the required modifications as generically
as possible, in order to allow the requirements to be used in
the extension of other XSL-FO implementations.
Considering the usage of features from XSL-FO 1.1 and

the new XML elements used by the extension, a 1.0-compliant
processor has to have its parser module modified to include
handling of the following elements:

• fo:flow−map - to handle the mapping of content-flows
into its destination regions, as well as its child element
fo:flow−assignment, and its associated flow−map−name
attribute. Also, the fo:page−sequence element will
have to be augmented with the flow−map−reference at-
tribute to allow a page sequence to select which flow
map it will use in the layout process;

• fo:flow−assignment - which holds the association of flows
to regions;

• fo:flow−source−list - which specifies a list of flows that
are associated to regions in the current simple page
master;

• fo:flow−name−specifier - and its associated
flow−name−reference attribute;

• fo:flow−target−list- which specifies the list of corre-
sponding regions into which the flows specified in the
fo:flow−source−list will be laid out;

• fo:region−name−specifier - and its associated
region−name−reference attribute;

• fo:region−arbitrary - to describe the new arbitrary re-
gions that can be used in a document layout, as well
as its associated recede and layer attributes.

These new elements also require their corresponding class
encoding to handle their associated semantics, according to
the XSL-FO 1.1 specification, or to Section 3 for arbitrary
regions. Furthermore, the possibility of laying out multi-
ple content flows in the same page sequence requires the

layout process to be modified to handle the page-by-page
distribution of parallel content flows.
The usage of a non-rectangular area representation entails

the usage of an encoding capable of keeping track of all the
edges of arbitrary areas. Therefore, the encoding of geo-
metric descriptions within an implementation of arbitrary
shapes is greatly improved when decoupled from the repre-
sentation of area tree objects, in order to allow the Inline or
Block-level behavior to be handled separately from the ge-
ometric calculations. The prototype thus uses Java2D Area
[11] objects to store the geometric definitions for any given
element in the area tree. Such an encoding also allows the
prototype to take advantage of Java constructive geometry
API. In addition to these facilities, the selected object repre-
sentation can be generated from the SVG shape description
in a very straightforward manner using the Apache Batik
[4] toolkit.
Finally, the modified area tree elements must be rendered

into an assortment of target formats and medias, which en-
tails modifications into the XSL rendering process. The
usage of Java2D objects is also advantageous in this sit-
uation, as many Java-based XSL rendering APIs rely on
instances of the Graphics2D class, for which many special-
ized implementations intended target formats such as PDF,
PostScript, SVG or JPEG are available.

5.2 Results and Limitations
One of the main new capabilities included in the proto-

type is the possibility to define an arbitrarily-shaped area
for the body region within a page layout. This allows flow
content to be laid out within this arbitrary shape across
multiple pages. The shapes associated to the body region
are currently specified using SVG [16]. The specified SVG
is read by the parser contained in FOP, and the outline of
the resulting picture defines the boundaries for the arbi-
trary area. The prototype uses the latest Batik library to
parse such SVG and convert it into Java2D objects, which
are then used to derive the area shape. For example, the
following XSL-FO definition within a simple page master,
would generate pages looking like Figure 18.

6. CONCLUDING REMARKS
This paper describes a proposal for the extension of the

XSL-FO standard to be able to layout content into multiple
arbitrarily shaped page regions. The extension is intended
to leverage the XSL standard for usage in the typesetting of
complex document layouts usually found only in expensive
desktop publishing applications. The concretization of the
idea enables the generation of personalized documents in
layouts only available in "high touch" graphic presentations.
The proposed extensions reuse many concepts from the

SVG standard, as well as concepts currently being proposed
for its upcoming version. Such reuse is not incidental, as
ensuing implementations of the arbitrary layout algorithms
and shape encoding schemes will be able to share many com-
mon components. At some level this sharing of components
is currently being done in the implementation of FOP, as
well as in the extended prototype described in Section 5.

6.1 Future Directions
The next step in the development of the arbitrary shapes

extensions of XSL-FO is its analysis by the community.

<fo:region−arbitrary
region−name="xsl−region−body" content−type="image/

svg+xml"
layer="2" recede="true">
<svg:svg

xmlns:svg="http://www.w3.org/2000/svg"
xmlns="http://www.w3.org/2000/svg"
width="297mm"
height="210mm">
<rect

width="900.36218"
height="330.824524"
x="11.426407"
y="3.3729248"
style="font−size:12; fill: #C0C0C0;" />

</svg:svg>
</fo:region−arbitrary>
<fo:region−arbitrary

region−name="w3c" content−type="image/svg+xml"
layer="1">
<svg:svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink

="http://www.w3.org/1999/xlink" x="0" y="0"
width="1200"height="800">
<text x="20" y="300" font−size="300pt" style="

stroke: black; stroke−width: 1.0; font−family:
helvetica;

font−weight: bold;">
W3C

</text>
</svg:svg>

</fo:region−arbitrary>
Figure 17: Region specification for Figure 18.

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
17 2 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
19 6 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
235 236 237 238 239 240 241 242 243 244 245 246 247 248
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
328 329 330 331 3 32 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
433 434 43 5 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
458 459 4 60 461 46 2 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
601 602 603 604 605 606 607 608 609 610 611 61 2 613 614 615 616
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900

Figure 18: Content laid out over a rectangle receding space
to the W3C shape.

Such an analysis should uncover potential flaws in the spec-
ification or point out improvements, and potentially lead
to its incorporation into a future version of the XSL-FO
standard.

7. REFERENCES
[1] Adobe® Systems. Postscript language tutorial and

cookbook. Addison-Wesley, 1985.

[2] Adobe® Systems. PostScript™ Language Reference
Manual, 2nd ed. Adobe Systems Incorporated, 1990.

[3] Adobe® Systems. PDF Reference, 4th ed. Adobe
Systems Incorporated, 2003.

[4] Apache Software Foundation. Batik SVG
Toolkit. Web Page, September 2004. Extracted from
http://xml.apache.org/batik/.

[5] Apache Software Foundation. Formatting
Objects Processor. Web Page, September 2004.
Extracted from http://xml.apache.org/fop/.

[6] Canfora, G., and Cerulo, L. A visual approach
to define xml to fo transformations. In Proceedings of
the 14th international conference on Software
engineering and knowledge engineering (2002), ACM
Press, pp. 563–570.

[7] Knuth, D. E. The TEXbook, vol. A of Computers &
Typesetting. Addison-Wesley, 1986.

[8] Kreulich, K. Publishing Workflows with XSL-FO.
In XML Europe 2003 (London, England, 2003),
International Digital Enterprise Alliance, pp. 1–6.

[9] Pawson, D. XSL-FO: Making XML Look Good in
Print. O’Reilly, United States, 2002.

[10] Shirley, P. Fundamentals of Computer Graphics. A.
K. Peters, Ltd., 2002.

[11] Sun Microsystems Inc. JavaTM 2 platform,
standard edition, v 1.4.2 API specification. Website,
September 2004. Extracted from
http://java.sun.com/j2se/1.4.2/docs/api/index.html.

[12] TEX Users Group. Comprehensive TEX Archive
Network (CTAN). Extracted from
http://www.tug.org/ctan.html, 2004.

[13] W3C, World Wide Web Consortium. Extensible
Stylesheet Language (XSL) Version 1.0. Web, October
2001. Extracted from http://www.w3.org/TR/xsl/.

[14] W3C, World Wide Web Consortium. Extensible
Stylesheet Language (XSL) Version 1.1. W3C
Working Draft, December 2003. Extracted from
http://www.w3.org/TR/2003/WD-xsl11-20031217/.

[15] W3C, World Wide Web Consortium. Scalable
Vector Graphics (SVG) 1.2. W3C Working Draft,
May 2004. Extracted from
http://www.w3.org/TR/SVG12/.

[16] W3C,World Wide Web Consortium . Scalable
Vector Graphics (SVG) 1.1 Specification. W3C
Recommendation, January 2003. Extracted from
http://www.w3.org/TR/SVG11/.

