
                                              

       
Policy-based Resource Topology Design for Enterprise Grids 
 
Sven Graupner, Akhil Sahai 
Internet Systems and Storage Laboratory  
HP Laboratories Palo Alto 
HPL-2005-59 
March 14, 2005* 
 
E-mail: {sven.graupner,akhil.sahai}@hp.com 
 
 
enterprise, Grid, 
design tool, policy, 
system 
management, 
model-based 
automation 

One of the challenges Grid technology faces today is the adoption in
other domains than scientific computing, where it originated. However, in
order to be usable and useful into other domains, it needs to be adapted 
and extended to fit the needs of the domain and yet maintains the
standards defined by OGSA [1] and WSRF [27]. We focus on the domain
of Enterprise Grids [2], which are comprised of the interconnected data
centers as they exist in commercial enterprises forming large pools of
geographically distributed IT resources that are shared among numerous
IT applications. In this paper, we compare the commonalities and
differences between compute Grids [15] and Enterprise Grids. We then
introduce the concept of Resource Topologies which is important for 
Enterprise Grids. A design tool is presented for designing Resource
Topologies. In the second part of the paper we introduce the problem of
Resource Composition and present a solution for exploring a space of 
possible resource compositions for meeting application requirements
using a policy-based constraint satisfaction method. 

 

* Internal Accession Date Only 
© Copyright IEEE.  To be published in and presented at CCGrid 2005, 9-12 May 2005, Cardiff, United Kingdom 
                                  Approved for External Publication 
  



Policy-based Resource Topology Design 
for Enterprise Grids 

Sven Graupner, Akhil Sahai 

Hewlett-Packard Laboratories 
1501 Page Mill Road, Palo Alto, CA 94304 

{sven.graupner,akhil.sahai}@hp.com 

Abstract 
One of the challenges Grid technology faces today is the adoption in other domains than scientific computing, where 
it originated. However, in order to be usable and useful into other domains, it needs to be adapted and extended to fit 
the needs of the domain and yet maintains the standards defined by OGSA [1] and WSRF [27]. We focus on the 
domain of Enterprise Grids [2], which are comprised of the interconnected data centers as they exist in commercial 
enterprises forming large pools of geographically distributed IT resources that are shared among numerous IT 
applications. In this paper, we compare the commonalities and differences between compute Grids [15] and 
Enterprise Grids. We then introduce the concept of Resource Topologies which is important for Enterprise Grids. A 
design tool is presented for designing Resource Topologies. In the second part of the paper we introduce the 
problem of Resource Composition and present a solution for exploring a space of possible resource compositions for 
meeting application requirements using a policy-based constraint satisfaction method. 

Introduction 
Collaboration across locations and organizations, 
sharing of resources, security and service-orientation 
are general goals associated with Grids today [1]. 
These goals do not only apply to the typical Grid 
domain of scientific computing, they also apply to 
other domains such as the commercial enterprise IT 
environment [2]. This environment is characterized 
by data centers providing large pools of resources in 
which enterprise applications and services are hosted. 
Hewlett-Packard, for example, operates 120 data 
centers world wide that are hosting in the order of 
7,000 applications for supporting its own business 
operations. This infrastructure forms a large 
Enterprise Grid of distributed, interconnected pools 
of resources located in data centers. Besides the 
similarities between the typical scientific compute 
Grids and Enterprise Grids, there are substantial 
differences leading to gaps in existing Grid 
technology that need to be filled. 
This paper addresses one of those gaps, the design 
and selection of resource sets for commercial 
enterprise applications based on notions of resource 
topology and policy-based resource composition. 
The paper is organized as follows. First, the 
enterprise IT environment is briefly characterized 
before the problem is defined by describing the 
specific conditions in regard to resource management 
in enterprise data centers and the requirements 
enterprise applications have for resource management 
functions. Second, the concept of a resource topology 
is introduced. Third, a tool for designing resource 

topologies is presented. And finally, the process of 
policy-based resource composition is described. 

Applying Grid Technology in the 
Enterprise Environment 
HP and the IT industry have agreed to leverage 
concepts, standards and technologies developed for 
Grids for commercial enterprise environments. 
As an enterprise IT environment is understood the 
entirety of IT systems performing information 
processing functions in an enterprise including 
services comprised of applications, hard- and 
software resources as well as associated management 
functions. 
Examples of enterprise applications are infrastructure 
applications such as email or business applications 
such as supply-chain applications. Those application 
systems can be large and can be comprised of a 
multitude of components which are themselves 
applications (e.g. databases). The concept of services 
has been introduced unifying the diversity of 
applications and resources in enterprise IT 
environments. 
Grid standards, initially defined by GGF and now 
continued in OASIS, such as Web-Services Resource 
Framework (WS-RF) [27] and Web-Services 
Distributed Management (WS-DM) [28] are provide 
the standardized web-services-based middleware 
layer for integrating enterprise applications as well as 
their associated management systems. 
Implementations of those standards exist in form of 
the Globus Toolkit [4] and the WS-RF/WS-DM 
Reference Implementation developed by HP. Initial 



management interfaces have been built based on 
Web-Services standards [5,6]. 
The concepts of the Open Grid Services Architecture 
(OGSA) [1] and the Service-Oriented Architecture 
(SOA) are also reflected in the strategies IT vendors 
have articulated for their product roadmaps. 
The main motivators for adopting these technologies 
in enterprise environments are goals of lowering 
operational costs by increasing automation and of 
improving agility of IT systems in their ability to 
adapt faster to changes occurring in the businesses 
they drive. 
One of the main enablers of these goals is the better 
integration between enterprise systems and their 
management systems replacing proprietary 
integration points with standards-based interfaces that 
would allow “plug-and-play” connectivity among 
application systems and management systems, both 
rendered as services. Substantial problems have to be 
solved along the journey towards service-oriented 
systems in enterprise IT environments. Grid 
technology is seen as an enabler for those systems. 

Enterprise Grid 
The following discussion explains differences 
between typical compute Grids and Enterprise Grids, 
which lead to the mentioned gaps when it is tried to 
simply use Grid technology as it exists today in other 
domains without adaptation to those domains. 
Resource pools in enterprise data centers are large 
heterogeneous resource sets. For instance, different 
kinds of servers exist in an enterprise data center with 
different processors, architectures, resource proper-
ties, operating systems, etc. Different kinds of storage 
resource exist. Multiple interconnect fabrics exist that 
are important resources and sometimes bottlenecks 
for connecting machines (via LAN) to machines and 
for connecting storage to machines (via SAN). 
Specialized devices such as firewalls or load 
balancers are important resources as well that need to 
be assigned and configured for enterprise 
applications. 
Enterprise resources provide substantially more 
capabilities that must be configured. Networks can 
be “programmed” as well as storage associations to 
machines. Different configurations can be applied to 
machines and devices depending on application 
requirements. 
Enterprise applications are composed of heteroge-
neous components that themselves are applications 
requiring resources. Enterprise application 
components requires different resource sets and 
different configurations (such as for the web tier, the 
application server tier, and the database backend). 

Applications have specific needs for resources in 
terms of resources they require at different times as 
well as in terms of specific configurations they 
assume on resources. 
Resources specifically need to be configured for 
enterprise application components. Examples are 
attaching specific disk images to servers, or creating 
and linking servers into specific networks. 
Resources need to be isolated when shared among 
different enterprise applications. Although this is a 
desirable goal for compute Grids as well, clusters 
typically do not provide application isolation due to 
lacking support in the infrastructure. A variety of 
techniques exist in enterprise data centers for 
isolating applications from each other. Virtualization 
is one important technique, ranging from using 
virtual LAN isolating IP address spaces to 
encapsulating applications in virtual machines. 
Application server containers are another example 
providing light-weight isolation among application 
components. 
Resource may need to be constructed and may be 
constructed in different ways for enterprise 
applications. For instance, an application component 
may require an “IA32 Linux PC”. This resource may 
simply be taken from a pool as a physical resource, or 
it may be constructed using a Virtual Machine. 
Choices for creating virtual machines may exist 
(VMWare VM or Virtual PC (Microsoft’s VM). 
Another option may be a user-level Linux partition. 
Choices for constructing resources must be explored. 
Resource constructions such as virtual machines are 
application processes themselves posing their own 
requirements onto resources. When a construction is 
chosen, the additional resource requirements of the 
constructions must be considered. Different costs can 
be associated with different construction choices in 
terms of resources constructions consume or licenses 
they require. 
Requested resource may not physically exist also 
for other reasons than constructions are being chosen. 
Resources may simply have not become part of the 
resource inventory in a data center yet, but are known 
to exist in future (e.g. when purchases are planned). 
Requests for Resources for enterprise environments 
are longer-term than Grid compute jobs 
(months/years vs. hours/days) leading to longer-term 
planning and allocation cycles for applications in 
enterprise data centers. Resource schedulers must 
accommodate long allocation cycles during which 
resource inventory may change. 
This also links to the consequence that resource 
requests may refer to resource inventory that does 
not currently exist, but is know to exist in future and 



hence can already be allocated. This case is important 
for enterprise environment facing continuous 
inventory replacement and turnover cycles. 

Resource Topology 
These differences and implied problems necessitate 
extending Grid technology from dealing with simple 
resource sets that currently exist to complex graph 
structures which include all the resource 
requirements in terms of resource elements, specific 
configurations and the different relationships among 
elements. Such a graph structure describing resource 
requirements from an application point of view is 
referred to as a Resource Topology. Nodes in the 
graph represent resources. Arcs (relationships) 
typically represent connections among resources 
(such as servers to networks, or storage to servers). 
Configuration information is derived from arcs which 
will create specified connections when applied to 
switches and routers. 
 
 
 
 
 
 
 
 
 

Figure 1: Example of a Resource Topology. 

Figure 1 shows an example of a resource topology 
consisting of a load balancer in front of a web server 
tier behind which a file server resides for serving 
static content as well as a database containing 
dynamic content. 
A Resource Topology encompasses the entirety of 
resources (the resource set) with types and quantities 
of types as well as their relationships of how they are 
connected. 

Problem Statement 
From the general problem space of extending and 
adapting Grid technology to other domains than 
scientific computing, one problem is selected and 
addressed in this paper. This problem is how resource 
requirements for enterprise applications can be 
formalized, described, and requested from data center 
resource pools taking different choices for resource 
constructions into account. 
In scientific Grids, requests for resources are 
specified in terms of quantities of compute nodes 
meeting certain constraints. Examples of constraints 

are: [CPU=IA32, MEM>512MB, DISK> 20GB, 
OS=Linux]. A grid request could include 128 nodes 
of this type. Grid’s early Resource Specification 
Language (RSL) [11] allowed to describe resource 
requirements in those terms.  
Resource requests in RSL could then be sent to a 
Grid Resource Allocation Manager (GRAM) for 
allocation from a pool. The GRAM evaluated the 
request and decided about acceptance. A variety of 
GRAM implementations exist in form of Grid 
schedulers such as PBS [7] and Maui [29]. 
Co-allocation allowed exchanging resource request 
matching across GRAM’s (with or without broker), 
each GRAM representing multiple resource pools for 
identifying a pool in a Grid that would support the set 
of requested resources [8]. 
More recent work extends match-making between 
resource requests and available resources using the 
semantic web framework [25]. 
Described techniques in Grids are not sufficient for 
enterprise environments for following reasons: 
- Heterogeneous sets of resources must be made 

available for request as entirety accommodating 
the entire enterprise application. 

- Resource requirements requested for applications 
must be separated from realizations allowing for 
considering choices of resource constructions. 

- Choices that exist for realizing required 
resources must be evaluated in terms of conflicts 
that may exist, in terms of cost associated with 
constructions, and in terms of overall impact 
constructions have on the application system. 

- Further requirements may need to be obeyed in 
terms of isolation and the overall resource 
assignment in the data center. 

The first problem addressed in this paper refers to 
tool support for designing resource topologies, which 
may be complex. Section “Resource Topology 
Designer” presents a graphical design tool for 
designing resource topologies. 
The second problem refers to making choices for 
selecting and constructing the resources needed in a 
resource topology. This is discussed in section 
“Policy-based Resource Composition”. The presented 
policy-based resource composition technique is 
accepts a resource topology design which includes 
application-oriented components as requirements, 
evaluates them against possible combinations 
(choices) of constructions or elementary resources 
(resource atoms) that exist in a data center. 
This method of policy-based resource construction is 
also a technique for realizing the concept of Resource 
Grounding or RSL Specialization in [16]. This 



concept allows formulation of resource requests in 
higher terms than properties of physical resource 
inventory, such as [IA32 Linux] server, and 
translating those requirements into physical machine 
properties that can be matched against in the server 
pool. We extend this concept to the notion of 
resource topologies and extend the translation from 
higher into physical properties to also evaluate 
combinations and choices of resource constructions. 

Resource Topology Designer 
Graphical design tools are needed for creating and 
specifying requirement for resource topologies for 
enterprise IT environments. Similar design tools have 
long been in use in other domains such as circuit 
design or general engineering. It is surprising that 
design tools have not emerged for the design of IT 
solutions and resource environments yet, mainly due 
to the lack of formalism used in today’s practice of 
creating IT solutions. We developed a Resource 
Topology Designer prototype that can be used for 
graphically designing resource topologies required 
for enterprise IT applications. 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 2: Designer with resource topology. 

Figure 2 shows the screen of the Resource Topology 
Designer. An IT solutions architect can design the 
resource topology required for supporting a desired 
IT application, a simple three-tier application in the 
shown case. The design tool provides a palette of 
possible resource types on the left-hand side that can 
be dragged into the drawing panel, where further 
requirements can be specified by clicking on the icon 
opening the configuration window for the resource. 
Resources can then be connected creating the 
topology. Connection information is used later for 
programming network and SAN switches establish-
ing the desired connectivity among resources. This 
process leads to the graphical design of a resource 
topology as shown in the figure. From the graphical 
design, the tool generates a formal description of the 

request specification, which is shown in the text 
panel on the right-hand side. Resource topology 
specifications currently can be generated in three 
formats: FML [10], RSL [11], and SmartFrog [13]. 
The prototype design tool is based on Visio, a 
standard graphical drawing and design environment 
from Microsoft. Code generation is implemented 
within Visio in VB. Generated textual representations 
of resource topology designs can be stored as files 
and also submitted into allocation tools using an 
OGSI/GT3 [3] gateway (upgrade to WS-RF/GT4 
[27] is indented when GT4 is available and stable). 
This way, the design tool allows designing resource 
topologies for enterprise applications off-line and 
independently from a specific resource pool or 
resource management system. 

Resource Request Submission and Flow. 
After the textual description for a resource topology 
has been created, the <submit> button will initiate 
sending the description from the design tool to a 
specified Grid address (GSH – Grid Service Handle, 
similar like a URL) via GT3 middleware. 
The destination of a resource topology design may be 
a resource allocation service (implemented as a Grid 
service) of a specific data center resource pool (such 
as shown in [14]); or the destination may be a broker 
service proposing choices of target data centers 
offering required resources. 

 
Figure 3: Resource topology design/request flow. 

Figure 3 shows the workflow for resource topology 
information. The figure shows a scenario where a 
“non-grounded” resource topology will be routed to a 
Resource Composition Engine (presented in the 
following section) that performs the process of 
resource composition. After this, the final resource 



topology is either forwarded directly to a resource 
allocation service or to a broker for allocation. 
The novelty of this approach is that an application 
engineer can design the resource environment for the 
application in terms of application-oriented properties 
as an iterative process potentially going through 
multiple design and redesign stages. 
Design templates can be created for commonly used 
applications for typical resource topologies. For 
instance, an SAP procurement application with all its 
components can be sized on different sets of 
machines for supporting various capacities, e.g. 
defined by the numbers of supported users (such as 
100, 500, or 10.000 users). Resulting resource 
topologies are stored as templates and selected based 
on the requirement provided by the application 
engineer when constructing a specific solution. The 
template search in this case would require input for 
the kind of application (SAP procurement) and a 
desired capacity (for 300 users) matching the 500 
users template, which is returned to the Resource 
Topology Designer for final configuration (indicated 
as design cycle by the back arrow from the Resource 
Composition Engine to the Topology Designer). The 
composition engine performs the matching, resolves 
conflicts and binds configuration parameters. 

Policy-based Resource Composition 
Resource composition is the process of identifying 
resources from a pool in a data center based on their 
primary specifications and the ability to built 
constructions of resources upon them incorporating 
all possible combinations. Possible combinations are 
ones that are not prevented by constraints. 
Grid resource grounding as a simple one-way 
translation from a “higher” specification into a set of 
properties that can be matched is not sufficient here 
because of the problem of choices that exist for 
providing resources and the need to exploring 
choices. A decision space must be traversed for 
possible solutions meeting all constraints. The 
decision space can be loosely constraint such that 
multiple valid solutions exist and simply one of them 
is chosen. The decision space can also be strictly 
constraint such that only one or no solution exists. If 
no solution exists, the solver will report it. 

Policy-based model for resource construction. 
When resources are combined to form other higher-
level resources, a variety of constraints need to be 
obeyed. For example, when operating systems are 
loaded on a host, it is necessary to validate that the 
processor architecture assumed in the operating 
system is indeed the architecture on the host. 
Similarly, when an application tier is composed from 

a group of servers, it may be necessary to ensure that 
all network interfaces are configured to be on the 
same subnet or that the same version of the 
application is loaded on all machines in the tier. 
We map the problem into a goal satisfaction problem 
that can be addressed using a constraint satisfaction 
formulation. A constraint solver is used for 
evaluating solutions [17]. 
Constraints form the core of the policy specification 
and are defined using expressions that use policy 
attributes as variables. Constraints contain first order 
predicates, arithmetic and logical operators, data 
types and quantifiers (for-all, exist, etc.) and other 
structural constructs such as let in, if then else etc.). 
 
 
 
 
 
 
 
 

Figure 4: Elements of construction policy. 

Expressions that can be used in policy specifications 
support the following primitives: 
Data types: Data types may be imposed on attributes 
as constraints that have to be satisfied by the 
corresponding attribute, e.g. constraints can specify if 
a particular attribute should be a String, integer, float 
etc. This allows validation of data types when 
different underlying components are used to provide 
similar functionality. 
Constants: Numeric or string constants define the 
values or thresholds for attribute values. 
Quantifiers: Quantifiers are often used in constraints, 
e.g.  (for all),  (there exists), etc.  
Operators: A number of operators can be used to 
combine attributes in defining constraints. These 
operators fall in the following categories: 
- Arithmetic operators (+, -, *, /): These operators 

can be used for constructing arithmetic 
expressions on literals of the allowed data types. 

- Comparison operators (<, >, <= , >=, =, !=): 
Comparison operators can be used to compare 
other expressions, and result in a boolean value. 

- Boolean Operators (&&, ||, ! (unary not)): 
Provide logical expressions in constraints. 

- Implication Operators (=> (logical implication), 
<= (reverse implication), <=> (equivalence, or 
if-and-only-if)): These operators allow 



expression of dependencies between attributes, 
e.,g. (name = Solaris) => version \in {5.7,5.8}; 

- The instanceOf Operator: The <: operator is used 
to denote "an instance of" relationship. This 
allows constraints to be created that enforce data 
types on components or their attributes, e.g., // 
ensure that component "server" is an instance of 
type Appserver server <: AppServer; 

- Set Operator: \in operator is used to constrain 
values of an attribute to be always in a set. 

Structural Constructs: Other structural constructs 
(e.g., let in, if then else etc.) are used mostly for 
syntactic convenience. These familiar programming 
constructs simplify the task of the constraint writer 
when complex constraints have to be expressed in 
policy. This model allows constraints to be specified 
in a distributed and hierarchical manner 

Example for Resource Composition. 
When composing higher-level resources from other 
resources (such as the SAP procurement application 
from servers), a variety of resources may need to be 
put together. However not all possible combinations 
are valid. Policies can be attached to component 
types to ensure that the resulting construction is valid. 
To illustrate this principle, let us assume that we are 
trying to create servers. A server is simply defined as 
a computer system with an operating system on it. In 
order to create servers we need to select a computer 
and install an operating system image on it. A Server 
resource entity is thus constructed out of an 
underlying Computer resource and an 
OperatingSystem resource. However, not all 
computer types may be available in the resource pool, 
and not all operating system images would work on a 
given computer. Thus we need to define constraints 
that identify which computer and operating system 
image combinations are valid for Server construction. 
In Figure 5, a resource composition is shown (as a 
model in UML notation) with all the components and 
all the constraints that are imposed on components. 
The example shows the composition of a specific 
resource Server. A Server in this example is a 
resource type that is composed from two other 
resource types: a Computer, and an OperatingSystem. 
A Computer has an attribute processor while an 
OperatingSystem has an attribute called osType. A 
policy associated with the Computer type states that 
the attribute processor can only take values in the set 
{IA32, IA64, SPARC, and PA-RISC}. Note that this 
constraint is specified by the system operator 
(perhaps because only these instances are available in 
the resource pool). Similarly, the construction policy 
associated with the OperatingSystem resource type 
states that the attribute osType can only take values 

in the set {Linux, HP-UX, Solaris, and Windows}. 
Again, the set is defined by the operator based on 
available operating systems within the utility. When 
the Server resource type is created, the type definition 
includes policy constraints that specify which osType 
can exist with which processor architecture. 
Suppose a request specifies that it needs a resource of 
type Server with the additional constraint that 
Server.Computer.processor = PA-RISC. From the 
constraints specified as part of the Server, the policy 
system determines that the only valid value for 
OperatingSystem.osType = HP-UX. 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5: Example of a Server composition. 

This example shows a number of aspects of 
constraint-based construction policies: 
- By associating policy constraints with the 

individual component types, construction using 
those types can be controlled. By changing the 
allowed policy constraints, valid (or available) 
configurations can be maintained by the 
operators, and easily changed as needs change 
without extensive modifications about how the 
new types are handled. 

- Policy constraints for a resource type depend 
only on the attributes of that type, or the 
attributes of the underlying resource types. This 
simplifies hierarchical specification of types, 
because such dependencies can usually be 
localized in the type hierarchy. The designer of a 
new type only has to deal with the preceding 
types it is using and the corresponding 
constraints on them. The policy system 
automatically accounts for dependencies that are 
created through transitional relationships. 

- The policy system checks all constraints for 
validity when handling resource requests. 
Because it can locate constraints that are being 



violated, the request specification can be checked 
for "correctness" with respect to those 
constraints. Similarly, during the instantiation of 
new resource types, the policy system can aid the 
designer by validating that at least one valid 
instance of the new type can be created. 

- The system can also fill in attribute values based 
on correctness of constraints. This means that the 
requestor has the freedom to only specify the 
attributes that are meaningful, and let the system 
fill in the gaps. This simplifies the requests. 

- The requestor can add additional constraints for 
the policy system as part of the request. Because 
the policy system forms the union of all 
constraints when constructing the system, 
request-specific policy can be easily incorporated 
during construction. 

Many additional constraints can be added to this 
simple example to account for items such as licenses, 
software versions, or other attributes such as memory 
and CPU speed. In addition, higher level resources 
can be constructed in a similar manner. For example, 
a Server may take the role of a webServer, an 
applicationServer, or a databaseServer if the 
corresponding images are installed on it. 
Furthermore, by adding topology constraints (e.g. 
web server tier precedes an app server tier which in 
turn precedes a data base tier), one can construct 
much more complex resource types like a three-tier 
architecture or a highly available server and treat 
them as higher-level resources. These complex re-
source types may then be instantiated and deployed. 
Component Selection. 

In a resource utility, multiple components that offer 
the same base capability are often available in the 
resource pool. Examples may be different types of 
servers, firewalls, or network switches. However, 
these components frequently differ in the capabilities 
(e.g., security, availability, throughput) offered by 
them. Such capabilities can be captured by the 
attributes of the components, and depending upon the 
capabilities desired by the requestor, the appropriate 
components can be selected to meet the users' 
requests. In this section, we provide four examples to 
highlight how policies can be used to provide 
construction choices for components. 

Advertising Resource Constructions 
One of the issues remaining is how “possible 
construction capabilities” can be advertised. Possible 
combinations may be large. In Grids, resources are 
described by their property sets, which are registered 
in a directory service or a registry, from where 
descriptions can be retrieved by co-allocators for 

making decisions where resource requests can be 
deployed. However, in enterprise environments 
resource constructions must be addressed opening a 
theoretical unbound space of possible combinations 
that cannot all be registered or advertised. 
One approach addressing the issue is advertising only 
the base resources (resource atoms) and leaving 
possible constructions to the requestor. Some 
constructions may depend on the availability of 
certain resources such as virtual machine software or 
licenses and associated cost. For advertising those 
capabilities, construction enabler resources (e.g. VM 
software and licenses) can be registered along with 
their dependencies on resource atoms. 
A third choice is to register capabilities rather than 
resources. Resource atoms such as hardware servers 
would be registered as capabilities, as resource 
constructions would be registered as capabilities, 
along with a set of dependent capabilities (as sets of 
AND or OR constraints), which recursively can be 
traversed generating the tree. 

Related Work 
Introducing constraints in UML specification of 
systems for configuration purposes is discussed in 
[18]. They define a set of construction rules at one 
place termed a domain. In that sense the approach is 
similar to expert systems. In our approach, we embed 
constraints hierarchically thus distributing constraints 
on to various resource types, and taking into account 
these constraints as the construction happens as 
opposed to creating a large number of constraints 
(rules) a priori. Our approach enables flexibility and 
extensibility in specification of constraint and in 
automatic construction depending on the user 
requirements. The differing user requirements may 
result in one construction being different from 
another. We have also applied the concept to CIM 
[12], which is de-facto standard for management of 
IT infrastructure in the industry. 
The ClassAds MatchMaking work [19] assumes that 
the match-maker matches the requestor entity’s 
request against the provider entity’s ClassAds (which 
are specifications in a semi-structured language). The 
assumption is that all the resources (like machines) 
exist a-priori and have been advertised. In a resource-
utility environment however, some of the resource 
instances may not even exist a-priori (as is the case 
with transient/virtual resources) or may be logically 
constructed resources that have to be instantiated on-
demand (e.g. appserver/tier/farm/e-commerce site). 
This causes a problem for approaches that undertake 
match-making only on instances. We enable 
construction on-the-fly by embedding constraints 
hierarchically in the resource types as described in 



this paper. The same concepts are extensible to 
resource instances as well. It is also not clear whether 
the ClassAds language supports first-order logic and 
linear arithmetic. As we have shown in the examples, 
it is important to have notions of quantifiers, 
implications, equivalences and other first order-logic 
expressions for reasoning.  
There is lot of work that has been done in terms of 
specifying, and associating events, conditions and 
actions for policies, namely IETF [20], CIM [21], 
PARLAY [22], PONDER [26] etc. Additional work 
relates to using policy for SLA management [23]. 
These bodies of work, to the best of our knowledge, 
have not looked at incorporating first-order logic and 
linear arithmetic based constraints in resource types 
for automatic constructions of resources and have not 
used a constraint satisfaction approach for arriving at 
a constructed resource specification. The WS-Policy 
[24] work at OASIS has focused on generic schemas 
for specifying arbitrary policy assertions on web 
services. The constraints as specified in this article 
may be embedded inside these assertions. 
 

References: 
[1] Ian Foster, Carl Kesselman, Jeff Nick, Steve Tuecke: 

The Physiology of the Grid – An Open Grid Services 
Architecture for Distributed System Integration, 
http://www.globus.org/ogsa, June 2002. 

[2] Shane Robison: Grids for the Enterprise, 
Grid.Middleware Spectra, 3rd Edition, Spring 2004. 

[3] GGF: Open Grid Services Infrastructure (OGSI), 
http://www.gridforum.org/ogsi-wg, February 2003. 

[4] Globus: The Globus Toolkit, http://www.globus.org. 
[5] Sven Graupner, Nigel Cook, Jean-Marc Chevrot: HP 

Adaptive Control Specification v1.1, October 2003. 
[6] Hewlett-Packard: Utility Data Center,. 
[7] Portable Batch System, http://www.openpbs.org. 
[8] Condor, http://www.cs.wisc.edu/condor. 
[9] Platform: Load Sharing Facility (LSF), 

http://www.platform.com/products/LSF/. 
[10] Hewlett-Packard: Farm Markup Language FML, 

internal specification, 2002. 
[11] Globus: The Globus Resource Specification Language 

RSL, http://www.globus.org/gram/rsl_spec1.html. 
[12] DMTF: CIM Modeling, http://www.dmtf.org/ 

standards/standard_cim.php. 
[13] Hewlett-Packard: SmartFrog, 

http://www.smartfrog.org. 
[14] Pruyne, J., Machiraju, V.: Quartermaster: Grid 

Services for Data Center Resource Reservation, 
Global Grid Forum Workshop on Designing and 
Building Grid Services, Chicago, October 8, 2003. 

[15] Foster, I., Kesselman C.: The GRID – Blueprint for a 
New Computing Infrastructure, Chapter 11.2 Resource 

Management, pages 262-265, Morgan Kaufman 
Publishers, 1999. 

[16] Singhal, S., et.al: Quartermaster – A Resource Utility, 
HP Tech Con, 2004. 

[17] Sahai, A., Singhal, S., Machiraju, V., Joshi, R.: 
Automated Policy-Based Resource Construction in 
Utility Computing Environments, to appear in 
IEEE/IFIP Network Operations and Management 
Symposium (NOMS), Seoul, Korea, April 2004. 

[18] Felfernig A, Friedrich G. E et al. UML as a domain 
specific knowledge for the construction of knowledge 
based configuration systems. In the Proceedings of 
SEKE'99 Eleventh International Conference on 
Software Engineering and Knowledge Engineering, 
1999. 

[19] Raman R, Livny M, Solomon M. MatchMaking: 
Distributed Resource Management for High 
Throughput Computing. In the proceedings of HPDC 
98.  

[20] IETF Policy. http://www.ietf.org/html.charters/policy-
charter.html 

[21] DMTF-CIM Policy http://www.dmtf.org/standards/ 
documents/CIM/CIM_Schema26/CIM_Policy26.pdf 

[22] PARLAY Policy Management, http://www.parlay.org/ 
specs 

[23] Sloman, M.J.: Policy Conflict Analysis in Distributed 
Systems, In the proceedings of Journal of 
Organizational Computing,, 1993 

[24] OASIS WS-Policy WG, http://www.oasis-open.org 
[25] Verma, D., Beigi, M., Jennings, R.: Policy based SLA 

Management in Enterprise Networks, Workshop on 
Policy, POLICY 2001. 

[26] Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The 
Ponder Policy Specification Language, 18-38, 
POLICY 2001. 

[27] OASIS TC and Global Grid Forum, The Web Services 
Resource Framework (WSRF), April 2004, 
http://www.globus.org/wsrf. 

[28] OASIS, WSDM: Management Using Web Services 
(MUWS 1.0), Working Draft September 29 2004. 

[29] Maui Scheduler, http://www.supercluster.org/maui. 
[30] Sahai, A., Graupner, S.,: Web Services in the 

Enterprise: Concepts, Standards, Solutions and 
Management, Network and Systems Management 
Series, 310 p., ISBN 0-387-23374-1, Springer Verlag, 
2004. 

 


