

Short term performance forecasting in enterprise systems

Rob Powers1, Moises Goldszmidt, Ira Cohen
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2005-50
March 10, 2005*

E-mail: powers@cs.stanford.edu, moises.goldszmidt@hp.com, ira.cohen@hp.com

IT system
performance,
forecasting
algorithms, time
series analysis,
Bayesian networks

We use data mining and machine learning techniques to predict upcoming
periods of high utilization or poor performance in enterprise systems. The
objective is to automate assignment of resources to stabilize performance, (e.g.,
adding servers to a cluster) or opportunistic job scheduling (e.g., backups or
virus scans). Two factors make this problem suitable for data mining techniques.
First, there is abundant data given the state of current commercial monitoring
and data collection tools for enterprise systems. Second, the complexity of these
systems defies human characterization or static models. We formulate the
problem as classification: given current and past information about the system's
behavior, can we forecast whether the system will meet its performance targets
over the next hour? Using real data gathered from several enterprise systems in
Hewlett-Packard, we compare several approaches ranging from time series to
Bayesian networks for classification. Besides establishing the predictive power
of these approaches our study analyzes three dimensions that are important for
their application as a stand alone tool: First, it quantifies the gain in accuracy of
multivariate prediction methods over simple statistical univariate methods.
Second, it quantifies the variations in accuracy when using different classes of
system and workload features. This characterization is important for developing
online resource allocation methods, where transfer functions from workload to
system performance are desirable. Third, it establishes that models induced
using combined data from various systems generalize well and are applicable to
new systems, enabling accurate predictions on systems with insufficient data.

* Internal Accession Date Only
 1Computer Science Department, Stanford University, Stanford, CA 94305
 Approved for External Publication
© Copyright 2005 Hewlett-Packard Development Company, L.P.

Short term performance forecasting in enterprise systems

Rob Powers
∗

Computer Science
Department

Stanford University
Stanford, CA 94305

powers@cs.stanford.edu

Moises Goldszmidt
Hewlett Packard Research

Labs
1501 Page Mill Rd.
Palo Alto, CA, USA

moises.goldszmidt@hp.com

Ira Cohen
Hewlett Packard Research

Labs
1501 Page Mill Rd.
Palo Alto, CA, USA

ira.cohen@hp.com

ABSTRACT
We use data mining and machine learning techniques to
predict upcoming periods of high utilization or poor per-
formance in enterprise systems. The objective is to auto-
mate assignment of resources to stabilize performance, (e.g.,
adding servers to a cluster) or opportunistic job schedul-
ing (e.g., backups or virus scans). Two factors make this
problem suitable for data mining techniques. First, there is
abundant data given the state of current commercial moni-
toring and data collection tools for enterprise systems. Sec-
ond, the complexity of these systems defies human charac-
terization or static models. We formulate the problem as
classification: given current and past information about the
system’s behavior, can we forecast whether the system will
meet its performance targets over the next hour? Using real
data gathered from several enterprise systems in Hewlett-
Packard, we compare several approaches ranging from time
series to Bayesian networks for classification. Besides estab-
lishing the predictive power of these approaches our study
analyzes three dimensions that are important for their ap-
plication as a stand alone tool: First, it quantifies the gain
in accuracy of multivariate prediction methods over simple
statistical univariate methods. Second, it quantifies the vari-
ations in accuracy when using different classes of system and
workload features. This characterization is important for de-
veloping online resource allocation methods, where transfer
functions from workload to system performance are desir-
able. Third, it establishes that models induced using com-
bined data from various systems generalize well and are ap-
plicable to new systems, enabling accurate predictions on
systems with insufficient data.

1. INTRODUCTION
Networked computing systems continue to grow in scale

and in the complexity of their components and interactions.

∗This work was conducted during an internship with HP
Labs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Today’s large-scale network services exhibit complex behav-
iors stemming from the interaction of workload, software
structure, hardware, traffic conditions, and system goals. To
track performance (and availability) in these systems, there
are various monitoring tools, both commercial and freeware,
that provide measurements on the various components that
make up the enterprise systems [23, 12, 24, 6, 11, 13]. In par-
ticular, there are tools that provide measurements on the ap-
plication performance, such as average response time trans-
action counts, and transaction rates (throughput). Other
tools measure system utilization, such as CPU, memory,
disk and networking utilizations at regular intervals. Per-
vasive instrumentation and query capabilities are necessary
elements of the solution for managing complex systems. In
large installations, the number of features being measured
can number in the hundreds and thousands, depending on
the number of systems and level of detail defined by the user
(e.g., CPU utilization can be broken up into several features,
such as CPU utilization of every application or process run-
ning on the system), therefore manual inspection of all the
information for forecasting performance problems is imprac-
tical, if not impossible.

In fact, it is widely recognized that the complexity of de-
ployed systems surpasses the ability of humans to diagnose
and respond to problems rapidly and correctly [8, 15]. Yet,
there is large need for tools to accomplish this. As large
enterprises try to reduce their IT systems and infrastruc-
ture costs, they demand better tools to efficiently manage
their capacity and at the same time provide optimal quality
of service to their clients. The complexity of the systems,
preventing static models of behavior, and the availability of
monitored data, has inspired researchers to apply statisti-
cal learning techniques to induce the models automatically.
These approaches assume little or no domain knowledge;
they are therefore generic and have potential to apply to a
wide range of systems and to adapt to changes in the system
and its environment. For example, there has been much re-
cent progress on the use of statistical analysis tools to infer
component relationships from histories of interaction pat-
terns (e.g., from packet traces) [4, 1, 5] (further examples
and comparisons to the work in this paper are explored in
detail in Section 5).

The work in this paper addresses the capability to fore-
cast periods of high utilization or poor performance in order
to allow these enterprises to dynamically add or remove re-
sources in response to surges in demand, to better schedule
lower urgency items (backups, virus scan) and preventive

maintenance, and to better utilize their excess capacity (e.g.,
test or backup servers). Specifically we study and character-
ize algorithms for the short-term forecasting of the resource
needs of a networked computing system. We want to predict
periods of high utilization or poor performance in order to
enable the rational reallocation of computing resources in
an enterprise. We take a feature such as CPU utilization, or
end-to-end average response time to represent a target uti-
lization or performance criteria. The task is then to predict
whether it is likely that there would be many violations of
these targets in the next hour. It is important to be able
to predict both the occurrence and the intensity of these
events, so that the tradeoffs involved in performing a re-
source reallocation (such as adding a new cpu — which may
imply denying the extra computing power for other task)
may be evaluated.

We formulate the problem as a classification one: given
current and past information about the system’s behavior,
can we forecast whether the system will meet its target per-
formance levels over the next hour? We compare several ap-
proaches ranging from time series to Bayesian networks for
classification. We ran these experiments on real data gath-
ered from several enterprise systems in Hewlett-Packard,
that handle both e-commerce applications and administra-
tive workloads. We analyzed over 60,000 runs to character-
ize the different approaches in terms of three dimensions that
are relevant for their use as parts of standalone tools: First,
it quantifies the gain in accuracy of multivariate prediction
methods over statistical univariate methods. This not only
ratifies the intuition that fusing information from several
sources is beneficial but it also justifies the extra effort in
dealing with the complexity of having multiple features (es-
pecially on methods related to traditional time series analy-
sis). Second, it quantifies the variations in accuracy relative
to the use of different classes of features sets, including those
coming from the workload, those coming from the system,
and those available to application providers. This is im-
portant for the development of online resource allocation
methods. These methods have to be able to both add and
retract resources. By relying only on features related to the
workload we are able to compute the needs of the system
regarding the actual amount of resources in place. That
is, given the current workload, could the performance level
be maintained with only one CPU? The inclusion of sys-
tem features complicates the modelling. As new resources
are added, such as a CPU, the features for the forecasting
change. Third, our study establishes that models induced
by using the combined data from various systems generalize
well and are applicable to new systems, enabling accurate
predictions on systems with insufficient data. To the best of
our knowledge this is the first time research with such wide
characterization of forecasting in the context of enterprise
IT systems, and using production data, has been published.

The rest of the paper is organized as follows: Section 2
describes in further detail the context of enterprise systems
performance management for the purposes of this paper.
Section 3 describes the approaches we compared in the ex-
periments, including feature selection. Section 4.6 presents
our analysis and results. Section 5 goes through the relevant
existing literature, and Section 6 presents our conclusions
and describes future work.

2. MANAGING PERFORMANCE IN ENTER-
PRISE SYSTEMS

The management of enterprise systems focuses on ensur-
ing the availability and high performance of the enterprise
applications. In this work, we concentrate only on the per-
formance of the applications running on the enterprise sys-
tem. This performance is defined so as to meet business
objectives or service level objectives (SLO), often specified
in service level agreements (SLA). A typical service level ob-
jective in e-commerce sites is a threshold on the maximum
transactions average response time, as the response time for
transactions have a direct link to customer satisfaction (e.g.,
studies showed that response time higher than 10 seconds
can lead to abandonment of the website by consumers). The
ability of forecasting whether the average response time will
meet an objective is crucial for management because of var-
ious reasons: first, it enables preventive maintenance and
updates. Second, it enables optimal scheduling with respect
to backups and/or virus scanning programs. Finally it alerts
operators of incoming crises.

Another example of SLOs are thresholds on the utiliza-
tion of particular resources. Prime examples are storage,
CPU, and network bandwidth. In addition to the benefits
listed above, thresholds on particular resources enable the
managing of these resources effectively. A violation on the
level of CPU utilization is an indication that more of that
resource may be needed soon.

In order to be effective, these predictions must comply
with two requirements: One, they must be done with enough
lead time to enable the appropriate scheduling, software
transfer, and conditioning of new resources. Second, they
must include some indication of the intensity of the viola-
tion, in order to perform the appropriate tradeoffs. Thus for
example, if there is a spike in the CPU utilization that lasts
five minutes over the next two hours, but to bring a CPU
from another application would take 15 minutes, we may be
better off letting the violation pass by.

After examining the requirements for both adding and re-
moving resources such as CPUs we estimated that an hour
is enough lead time for execution, and that one third of that
hour with poor performance will constitute a crises.1 Based
on this, we focuss on the following classification problem:
can we determine whether one third of the next hour will
have SLO violations? Of course the parameters of lead time
and the portion of the period that will exhibit violations
(a proxy for determining the intensity of the crisis) can be
changed. However, since they meet the basic requirements
to enable the actions discussed above, we maintain them as
constant for the purposes of this paper, and rather concen-
trate on answering the following questions:

1. Is multivariate analysis necessary? This is important
for the number of datapaths that must be enabled and
also the complexity of the forecasting algorithms.

2. Are features characterizing the demand in the system
and those directly measuring utilization equally valu-
able? The relevance of this question is in the ability to
add and remove resources. If we depend on the mea-
surement of utilization, we may need to change the
induced models each time the number of resources in-

1Joe Fitszgerald and Tom Hennessy of Hewelett-Packard
Radia helped in determining these precise numbers.

creases or decreases. This will not be the case if our
models depend on features extracted from the demand
on the system.

3. Are the models transferable? This is crucial when
jump starting the management system or in cases where
there aren’t enough violations.

3. MACHINE LEARNING APPROACHES
Our objective is to find methods that accurately predict

whether the number of SLO violations in the next hour will
exceed a specified threshold. We applied and compared a
number of methods from the machine learning and statis-
tics communities with some variations to fit this setting.
In particular, we tested the use of auto-regressive methods
from the time series analysis literature [3], multivariate re-
gression methods [19], and several instantiations of Bayesian
network classifiers [9]. As a baseline and sanity check for the
accuracy of any of our models, we also include the simplest
possible model, which we will refer to as the ‘present rule’.
The ‘present rule’ predicts for the next hour the current
(known) state. In the rest of this section, we will describe
how we applied each of these methods to our problem before
presenting empirical results.

Auto-regressive methods. We estimate the coefficients
of an AR filter and use those to predict the value of the series
in the next time, y[n+1] = a0y[n]+a1y[n−1]+...+apy[n−p].
In our setting, we have two choices for choosing y. We could
set y to be the feature on which the SLO is defined, such as
average response time, and use its predicted value and the
SLO threshold to determine the state in the next hour. An
alternative, which we found worked much better in practice,
is to set y to be the actual number of violations occurring
in an hour. We used the Levinson-Durbin algorithm [17]
for estimating the AR coefficients given an autocorrelation
sequence derived from the sets of consecutive training data.
We also experimented with several other methods includ-
ing the Yule-Walker algorithm, and methods minimizing for-
ward or backward prediction error, but found no substantive
difference in performance in any of our experiments. We did
find that both the choice of filter length, p, and the level of
aggregation in the data (e.g. 5 minute averages versus 15
minute averages) had a major impact on the accuracy. In
order to select the proper parameter we calculated a range of
values and selected the model with the values that attained
the highest accuracy on the training data.

Multivariate regression methods. While we can hope
that the AR methods can find patterns in the history of vi-
olations, this approach ignores the large volume of other
information about the application and system state that is
available when making predictions. The first method we
tested for using this multivariate information was multivari-
ate linear regression methods [19], using a least squares fit
for transforming the feature space into a prediction of the
number of violations in the next hour.

Bayesian network classifiers. The third class of meth-
ods we considered was building Bayesian network models
of the feature space for performing classification. Bayesian
network classifiers model the joint distribution of the class
and the features, P (C, ~F), representing independencies and
causal relationships among the variables graphically [20].
We focus on a restricted set of Bayesian network classifiers,
Naive Bayes (NB) and Tree-augmented naive Bayes (TAN)

classifiers [9], both used extensively in many domains. In
the Naive Bayes classifier, features are assumed to be inde-
pendent of each other given the class variable. While this
assumption is often unrealistic, the NB classifier has never-
theless been applied successfully in many settings and is the
subject of numerous studies explaining its success (e.g., [7]).
The TAN [9] classifier extends the Naive Bayes model by
relaxing the independence assumption so that the features
are connected to each other as a tree.

Feature selection methods. Unfortunately, the large
number of features, well over 100 for several problems, is
now a liability, as any of our multivariate models (regres-
sion, NB and TAN) are likely to overfit peculiarities of the
training data. In order to compensate for this we performed
an additional feature selection step using one of two greedy
methods for selecting features. The first is a forward greedy
search, in which we first test all models using a single fea-
ture and select the one with the best training accuracy and
then iteratively add individual features that maximally in-
crease the training accuracy. We also tested a modification
of this procedure that additionally considers removing a sin-
gle feature at each step instead of adding one, known as the
forward-backward algorithm [16]. As a practical observa-
tion we found that if we determine the final set of features
by selecting the set that achieves the highest cross-validation
accuracy for the training data, we avoided overfitting to the
data without taking a high computational performance hit
(as would happen if cross validation was done during ev-
ery stage of the search). Selecting a subset of the features
also offers practical advantages by reducing the size of the
models and decreasing the memory and processing resources
required to implement the models on a running system.

Data transformations. With the ability to handle large
numbers of features, we also derived models using multi-
ple periods of data to predict the number of violations and
transformations of the data. These other periods and trans-
formations were then added to the set of features prior to
the selection process. In particular, we noticed that for some
features we would often achieve better models by training on
the logarithms of the data values or by removing the outliers
by constraining all values to lie in the 5th to 95th percentiles
of the data. Finally, we also considered adding a feature
capturing the trend for each feature by using the slope from
the linear model that was the least squares fit for the fea-
ture’s values over the last k time steps. In addition, some
methods, notably the auto-regressive ones, performed bet-
ter when using aggregated versions of the data as features.
For example, using 15 minute averages of the features may
produce better predictions than using the original 1 minute
averages available in some settings.

In our experiments we tested all three methods with differ-
ent settings; varying feature selection methods, data trans-
formations, and algorithm dependent parameters. In the
next section we report on the observations and results from
these tests.

4. EXPERIMENTS
In this section we will focus on addressing each of the

three questions posed in section 2 in turn. In the course of
this investigation we implemented and ran a vast number of
experiments, varying both the parameters of the algorithms
and the SLO violation definitions for some of the individual
settings. As discussed earlier, each of the methods we’ve de-

scribed can be parameterized by up to four independent set-
tings: the level of aggregation of the input data, the number
of periods of data to use when training, the transformations
that are applied to the training data (logs, clipped values,
and trends), and the feature selection method. Combined
with the large scale of some of the production systems we
investigated, this yielded a database of well over 60,000 sep-
arate runs after consuming several thousand hours of CPU
time. After briefly describing the different experimental set-
tings, we will draw on the results of individual experiments
from this reservoir in order to address each of the three
questions. At the end of the section we will conclude with
a brief overview of additional findings from our experiments
and some comments on ongoing work.

4.1 Experiment Settings
We test the methods using data collected from different

systems running different applications for which there are
different performance target goals. We describe the three
categories of data below.

4.1.1 HP IT systems
The first set of data was collected from 20 HP-UX sys-

tems running a variety of internal HP applications. For
each server, we collected 30 days of system data, taken at
five minute intervals, describing the utilization of resources
such as CPU, memory, disk and network, among others. For
these machines, we used each of the methods to train models
for predicting when the machine will experience a sustained
period of high resource utilization. There were four system
resources for which non-acceptable utilization were defined
(SLOs): CPU, memory, IO and network. These were de-
fined by the system administrator in order to categorize past
performance problems and identify which servers should be
targeted for hardware upgrades. We adapted those SLO
definitions in our experiments.

To be concrete, all four violations are defined as occurring
during the next hour if the individual thresholds given below
are exceeded in more than 10% of the time intervals:

• A CPU violation is defined as occurring when average
CPU utilization exceeds 75%.

• An IO violation occurs when the average disk utiliza-
tion exceeds 75%.

• A NET violation occurs when the total incoming and
outgoing packets exceed 3750 in a five minute period.

• The MEM violation is the most complex and rare of
the four and occurs when either of the following hold:

• An application is swapped out of memory and 12
or more page faults occur in a five minute period.

• Memory utilization exceeds 95%, the number of
page requests exceeds 40, the number of page
faults exceeds 8, and there exist processes waiting
in the memory queue.

Additionally, the four definitions are further subdivided
into two levels of severity. High severity (Red) violations
occur if 50% of the time periods over the next hour exceed
the thresholds given above. Severe (Yellow) violations are
defined as described above.

The frequency of the different classes of errors across all
machines in each setting (including the two introduced next)
is shown in table 1.

4.1.2 HP support application

Setting Violations SevereViolations
HP-IT CPU 28.9% 24.1%

HP-IT IO 16.1% 10.4%
HP-IT NET 16.5% 9.8%

HP-IT MEM 2.0% 0.05%
HP Support 3.5%

Testbed 37.3% 19.9%

Table 1: Percent violations by setting

The second set of data was collected from the produc-
tion environment of an HP support application. As an im-
portant support application, it has availability targets and
service level objectives (SLOs) for different transactions, de-
fined in a service level agreement contract with the appli-
cation owner. We obtained a month of data collected at
four servers hosting the application, serving requests at dif-
ferent regions of the world. The data was collected by the
HP OpenView Performance agent tool, which aggregates all
raw data to five minute intervals. The data consisted of both
system-level utilization features (CPU, memory, paging, IO,
etc.) and application-level features, including average trans-
actions response times, number of transactions and number
of transactions violating their SLOs. There were overall 49
measurements describing both the system utilization and
the application-level demand and state.

We used a single application-level service level objective
by thresholding the percentage of transactions that are in
violation of their SLO during the five minute time interval.

4.1.3 Petstore: experimental testbed running an e-
commerce application

Finally, our third set of data was collected from an exper-
imental three-tier testbed hosting an e-commerce applica-
tion. Such a three-tier system is the most common configu-
ration for medium and large Internet services. The first tier
is the Apache 2.0.48 Web server, the second tier is the appli-
cation itself, and the third tier is an Oracle 9iR2 database.
The application tier runs PetStore, an e-commerce appli-
cation freely available from The Middleware Company (we
used Petstore version 2.0). This application is provided as
an example of how to build applications for the Java 2 Enter-
prise Edition (J2EE) application environment. J2EE appli-
cations must run on middleware called an application server;
we use WebLogic 7.0 SP4 from BEA Systems, one of the
more popular commercial J2EE servers, with Java 2 SDK
1.3.1 from Sun.

Each tier (Web, J2EE, database) runs on a separate HP
NetServer LPr server (500 MHz Pentium II, 512 MB RAM,
9 GB disk, 100 Mbps network cards, Windows 2000 Server
SP4) connected by a switched 100 Mbps full-duplex network.
Each machine is instrumented with HP OpenView Opera-
tions Agent 7.2 to collect system-level features at 15-second
intervals, which we aggregate to one minute intervals. Over-
all we collect 124 features from all three systems. A load
generator called httperf [18] offers load to the service over a
sequence of execution intervals.

Our workloads simulated the day to day operation of a
large online web application. We applied stresses to the
system with the workload generator and tested the ability
of the various models to correctly identify periods of SLO
violations. In these experiments we categorize each minute

50%

55%

60%

65%

70%

75%

80%

85%

HPIT-CPU HPIT-IO HPIT-NET HPIT-MEM HP Support Testbed

Auto-Regression Multivariate Regression Naïve Bayes
Bayesian - TAN Present Rule

Figure 1: Average balanced accuracy obtained by a selection of machine learning methods when forecasting

violations in each production environment.

with a mean response time above 100ms as a violation. The
prediction task is then to determine at any point in time
whether the subsequent hour will contain 20 or more minutes
of violations.

The advantages of using the testbed are that it gives us ac-
cess to a wider spectrum of features about the system (more
features than in the first two sets of data) and it allows us
to exercise control over the workload in order to test differ-
ent aspects of the problem. The other two production data
sources verify that results obtained on the testbed generalize
to production systems.

4.2 Methodology
For each of these settings we have a series of features span-

ning a period of time and binary labels indicating whether
the system will exceed its SLO threshold in the coming
hour. We evaluate each method by dividing the data into
five equal-sized temporally contiguous regions and testing
on each of these regions in turn using the data from the
remaining four to train the model. We then aggregate the
performance on each region to get an overall measure of ac-
curacy. In all of our graphs we have chosen to plot balanced
accuracy instead of straight prediction accuracy. Prediction
accuracy is less informative in settings in which one of the
target classes is rare. For example, if only 5% of the time pe-
riods exceed the threshold for a violation, the method that
never predicts a violation would achieve 95% accuracy but
we would be hesitant to judge it a good predictive model.
The balanced accuracy metric weights the performance of
the model on each of the two classes equally, regardless of
their size. In practice each of our implementations allows us
to adjust this metric to match the actual costs incurred by
positive and negative errors and therefore strive to minimize
the overall cost of mispredictions. In deployed systems, fail-

ing to detect violations may be substantially more expensive
than generating false alarms, since the former may result in
lost customers or contractual penalties.

4.3 Is multi-variate analysis necessary?
Our experiments strongly suggest that multi-variate anal-

ysis is both necessary and sufficient for strong prediction re-
sults across a wide variety of environments. In the course of
this investigation we were forced to wrestle with the chal-
lenges of model selection in order to choose from among the
many possible parameter settings for each approach. We
found that we could find nearly optimal parameter settings
for the auto-regression method by selecting the settings with
the highest training accuracy. In contrast, the multi-variate
methods showed significant sensitivity to their parameter
settings and neither training accuracy nor cross-validation
training accuracy correlated well with performance on the
actual test data. Even without the ability to select the op-
timal parameters for each environment, the multi-variate
methods maintained a consistent advantage in performance.
Furthermore, we are encouraged that even the simple meth-
ods we’ve chosen to test can achieve good performance with-
out relying on any domain knowledge, allowing easy deploy-
ment to new environments.

Figure 1 shows the performance for each method across
our different production environments. Each point in the
graph reflects the balanced accuracy attained by the indi-
cated method averaged over all of the machines comprising
the environment. For example, in the test on the HP ma-
chines, the figure shows the average across 20 different ma-
chines for each of the four SLO definitions, and since each
test includes all thirty days of data, each point is the average
of over 100,000 separate predictions, giving strong statistical
significance to the results shown. The parameter settings for

the five methods shown are:

• Auto-Regression uses the Levinson-Durbin method of
order p on data aggregated to a period of t minutes,
where both p and t are selected by calculating the filter
for a large range of values and selecting the values with
the highest training accuracy.

• Multivariate Regression selects from a set of features
including the logarithms of all base features and the
base values clipped to lie within [5%,95%] of their
range for the most recent three periods of time. Fea-
ture selection uses the greedy forward search method.

• Naive Bayes uses the set of features including the most
recent three periods of base data, as well as three pe-
riods of the logarithms of the base data, and the three
period trend for each feature. Feature selection used
the greedy forward search method.

• Bayesian - TAN uses the same set of features as Naive
Bayes and greedy forward search feature selection.

• Present Rule assumes the next hour will be identical
to the most recent hour.

Throughout all of the experimental settings, the multi-
variate classifiers consistently exhibit the best average per-
formance. While the auto-regressive methods improve on
the baseline performance of the present rule, they ignore
the information available about the other features of the
system. In figure 1, both of the Bayesian methods and re-
gression all seem to fare comparably, but our first attempts
at forecasting in this environment painted a quite different
picture. In figure 2 we show the initial results using all of
the training data available from the four periods of time in
the training set. Notice that even though the multivariate
regression method incorporates additional features over the
auto-regressive methods it fares worse. In order to under-
stand a possible cause for this poor performance, let’s focus
on the HP support environment and consider the breakdown
of the accuracy into detection rate and false alarm rate as
shown in table 2.

50%

55%

60%

65%

70%

75%

80%

85%

CPU IO NET MEM Support Testbed

Auto-Regression
Multivariate Regression
Naïve Bayes
Bayesian - TAN
Present Rule

Figure 2: Initial forecasting results for each method

when using all training data.

Since the regression methods are optimizing an error func-
tion based on squared distance instead of balanced classifica-

Detection False Balanced
Rate Alarms Accuracy

Auto-Regression 41% 9% 66%
Regression 16% 1% 57%

Naive Bayes 59% 11% 74%
Bayesian - TAN 48% 10% 69%

Present Rule 33% 2% 65%

Table 2: Accuracy breakdown: HP support setting

tion accuracy, the preponderance of non-violations in most
settings results in very conservative predictions. This re-
sults in a very low incidence of false alarm rates, yielding a
straight prediction accuracy higher than any other method.
However this also yields a low balanced accuracy, since in
this environment the number of violations was about 3% of
the total time periods. The classification methods generate
more false alarms but are in turn able to achieve a much
higher detection rate. Notice that the regression method
has more comparable performance with the others in set-
tings with a larger number of violations, such as when fore-
casting CPU violations. We found that we can improve the
balanced accuracy of the regression methods by forcing the
training data to contain an equal number of positive and
negative instances. This was done by using only a subset
of the non-violation time periods, but could also be imple-
mented using all of the data and weighting the individual
instances in the error calculation. In figure 1 we saw that
when using this modification the regression methods achieve
similar accuracy to that of the two Bayesian classifiers with
a consistent gain over the auto-regressive method. For the
rest of the paper, we will only discuss results for the regres-
sion method using this balanced training modification.

4.3.1 The challenge of model selection
An additional challenge in this setting is the difficulty of

model selection. The results shown so far have been aver-
aged across many individual machines. When we look at
individual machines, we observe very high variance in accu-
racy depending on the exact choice for parameters such as
the number of periods of data to use or the types of trans-
formations to include. For the auto-regressive methods, we
found that by running a variety of parameter settings for
each machine and using the parameters with the best train-
ing accuracy we were able to consistently select models with
close to optimal performance. In figure 3, we compare the
results for this automatic parameter selection method with
the optimal performance attained by always choosing the pa-
rameters that maximize testing accuracy on each individual
machine. The third line shows the importance of dynami-
cally adjusting the parameters for each system, since it rep-
resents the best performance that could have been achieved
by using any single parameter setting throughout all of the
experiments.

In contrast, the model selection task proved much more
difficult for the methods that relied on feature selection. In
figure 4, we show the results for twelve different parameters
of the Bayesian classifiers on four machines in the HP sup-
port environment. No method is consistently better than
the others, and the methods selected by using the highest
training accuracy, shown by circles, have no noticeable ad-
vantage. We also considered using the 5-fold cross-validation
accuracy on the training data as a possible means to select

-5%

0%

5%

10%

15%

20%

CPU IO NET MEM HPS Testbed

Optimal dynamic parameter selection
Selection by training accuracy
Optimal fixed parameter setting

Figure 3: The effectiveness of using training accu-

racy to select the order and level of data aggregation

for auto-regressive methods. For easier visual com-

parison, points show the gain over the present rule.

55%

60%

65%

70%

75%

80%

Server1 Server2 Server3 Server4

Figure 4: The testing accuracy of a number of pa-

rameter settings for Bayesian classifiers in the HP

support environment. The models with the highest

training accuracy are indicated with circles, while

the asterisks show the models with the highest cross-

validation training accuracy.

parameter settings, indicated in the figure by squares. The
behavior in this figure is representative of what was observed
for many of the systems and also applied when selecting the
optimal set of transformations of the data to use with the
regression-based methods. In figure 5, we see that substan-
tial further gains could potentially be attained by a more
successful model selection algorithm. The ‘Bayes-Optimal’
line shows the best performance that could be attained if
we selected the best possible parameters for each individual
machine. The ‘Bayes-Fixed’ shows the best possible accu-
racy that could be obtained when using identical parameters
for all tests. The ‘Selected Parameters’ corresponds to the
results shown previously in 1 and were selected since they
had performed well in previous experiments not discussed
in this paper. As mentioned, neither of the two methods for
automatically selecting parameters result in improved per-
formance. It is important to point out that even though we
are unable to obtain the best model parameters for any given

60%

65%

70%

75%

80%

85%

90%

CPU IO NET MEM HPS Testbed

Bayes-Optimal Bayes-Training

Bayes-Training_CV Bayes-Best Fixed

Selected Parameters AR

Figure 5: A comparison of various methods of se-

lecting parameters for the Bayesian classifiers.

machine, the average performance is still significantly above
that of the AR methods. A more successful model selection
algorithm would allow us to improve this performance even
more significantly.

The question of how best to handle model selection for
this application seems an important focus for future work.
We had hoped that the addition of the forward-backward
method of feature selection might reduce this variance, but
failed to observe any noticeable or consistent impact. It is
particularly striking that the cross-validation training accu-
racy did not improve the selection. In fact, in many cases
the testing accuracy even seemed to be negatively correlated
with the cross-validation accuracy. The most likely cause for
this is the fact that our data is not truly a random selection
from our target function. Since we train and test on sepa-
rate time periods, it is quite possible that the behavior of the
system is qualitatively different in each of the two regions,
indicating concept drift. In order to address this we’re cur-
rently considering ways to use ensembles of models to make
more accurate predictions and also how to use feedback re-
ceived during the online use of a model to discover when a
given model no longer applies and a new model needs to be
induced[25].

4.4 What types of features are necessary for
good prediction?

A concern in actual systems is that we may not have ac-
cess to the full set of features we were able to acquire in
some of our environments. A natural question arises as to
whether there might exist some subset of the features that
are critical for making accurate predictions. We found that
this did not seem to be the case when we restricted the
sets of features the models were allowed to consider. Simi-
lar performance was attained using various subgroups of the
features. Focusing on our testbed environment for which we
have the largest set of available features, we show results
using three subsets of the features in figure 6. The ‘System’
set of features contains only information available about the
physical system, such as memory usage, cpu utilization or
network traffic. The ‘Workload+RTs’ set contains the infor-

60%

65%

70%

75%

80%

85%

90%

All System Workload+RTs Workload

Naïve Bayes TAN Regression

Figure 6: Results for the three-tier testbed using

different subsets of the features.

mation that would be available to users of the application,
namely a breakdown of types of requests made by users and
the response times of calls to different portions of the appli-
cation. The ‘Workload’ set uses only the breakdown by type
of the number of requests. Each of the two main categories
of features appear to contain sufficient information to main-
tain accuracies comparable to those attained using all of the
features. In addition to being more resilient to systems with
incomplete logging information, if we can make accurate pre-
dictions based on only the workload characteristics of an
application we would have the basis of a system that could
predict performance on hypothetical systems. This forms an
important component of an online system for dynamically
controlling the resources allocated to an application. When
determining resource allocation, we are not just interested
in whether violations would occur in the current configu-
ration but also whether violations would be likely to occur
in alternate configurations, such as when we wish to deter-
mine if we can safely reallocate computation resources of a
running system. While there is a noticeable drop in perfor-
mance when using only the workload features, we are able
to maintain overall accuracies near 70% with some of the
methods. Note that in this setting we receive no informa-
tion about the performance of the system we’re interested in
predicting during testing, preventing us from applying any
of the time series methods. Any performance above 50% is
a gain in information over our baseline in this case. While
these initial results seem promising, further experiments will
be needed on an actual system with the capability to reas-
sign resources in order to determine what level of prediction
is necessary. In addition, we are currently acquiring more
detailed workload information for the HP support setting in
order to test how predictive pure workload features are in a
deployed system.

4.5 Are the models transferable?
In the systems we observed, many categories of violations

were quite rare, occurring less than 2% of the time in a
large number of individual machines. In these situations the
month of training data we had for the HP-IT machines envi-
ronment was insufficient to develop robust models. Unfortu-
nately for our methods, this is likely to be a common situa-
tion in a smoothly operating system. We ideally want mod-
els that will achieve reasonable accuracy on a new machine

50%

55%

60%

65%

70%

75%

80%

85%

CPU-Y IO-Y NET-Y MEM-Y CPU-R IO-R NET-R MEM-R

Present Rule Same Machine
Other Machines

Figure 7: A balanced accuracy comparison of TAN

models trained on data from the same machine with

models trained using only data from other machines.

without requiring long periods of observation first. One pos-
sibility is to transfer models trained on similar systems to a
new machine with the hope that the learned models general-
ize across different systems. In order to test this hypothesis,
we trained models to predict violations on a machine while
only receiving training data from different machines. In fig-
ure 7 we compare the average balanced accuracy for the two
types of training for both levels of severity in the HP-IT
machines environment. While the new models don’t fare as
well as the models that are able to observe training data
when there are numerous violations, they perform well in
the settings with rare violations. In figure 8, we can see the
same comparison for individual machines for the task of pre-
dicting memory violations. The machines have been sorted
from left to right in decreasing order of the frequency of vio-
lations. We can see that training of other machines tends to
help on the machines with the fewest violations. We are cur-
rently investigating how best to develop hybrid models that
adapt a default model formed from data from other systems
with the available training data for a given machine. It is
also important to note that in the HP-IT machines environ-
ment the machines are actually running a variety of different
applications and therefore the generalization task requires
predicting performance for new applications and hardware
configurations, not just different periods of time.

4.6 Additional Remarks on Experiments
In addition to the work we discussed above, we are con-

tinuing to glean new insights from our experimental results
and to experiment both with new methods for increasing the
accuracy of our predictions and with new settings utilizing
different SLO definitions.

In addition to a straight least squares regression approach
we also tried using robust regression with a number of differ-
ent weighting functions. We noticed that for each function
we considered, the robust regression fared consistently worse
than the unweighted regression model in almost all settings.
This is likely due to the fact that the weighting functions as-
sign lower weight to points that are anomalous with respect
to the majority. However, when actual violations are rare,

40%

50%

60%

70%

80%

90%

100%

13
.8% 8.

5%
5.

8%
3.

5%
3.

0%
2.

2%
1.

4%
0.

9%
0.

9%
0.

6%
0.

1%

Present Rule

Same Machine

Other Machines

Figure 8: A comparison of balanced accuracy for

TAN models trained on training data from the same

machine with models trained using only data from

other machines. Each point along the x-axis repre-

sents a different machine, in decreasing order by the

number of violations occurring during the month.

it is these anomalous points that are often most indicative
of a failure. In experiments with more aggressive SLO def-
initions resulting in more frequent performance violations,
we observed increased performance for the robust regression
method, eventually surpassing that of regular regression by
small margins in some settings.

We have also conducted additional experiments for the
case of multi-class classification, where we wish to predict
more performance detail than just whether a violation will
occur or not. While the regression methods are by their
nature well-suited to this task since they predict the actual
number of violations, we have also observed encouraging re-
sults when using a series of binary Bayesian classifiers to
predict within a fixed set of ranges on what percentage of
the next hour will be in violation.

In additional to the Naive Bayes and TAN models dis-
cussed here we also conducted preliminary investigations
into using dynamical Bayes networks in order to constrain
the models to include the temporal influence of a feature at
one time on its future values when using multiple periods
of data. The initial results seem to indicate a slight im-
provement on average over the unconstrained network, but
further testing will be required to determine how much this
type of knowledge can aid the process of model generation.

5. RELATED WORK
A recent spate of promising initial results has fuelled inter-

est in applying data mining and machine learning methods
to forecast, identify and localize system failures and per-
formance problems [10, 21, 14, 2, 4, 1, 5]. Probabilistic
and machine-learning-based models have been successfully
used in diagnosis and planning tasks, such as performance
debugging [2, 1], capacity planning, system tuning [22], at-
tributing performance problems to specific low-level system
features [5], among others.

There have been fewer works concentrating on forecasting
of system resource utilizations and performance. Among
these works, Hellerstein et al. [10] use time series analysis

to forecast normal workloads in web servers and then use
change point detection as a way to detect possible problems.
In another work, Sahoo et al. [21] apply time series models
and Bayesian networks to predict system utilization (such
as CPU) and Bayesian networks to forecast rare events (ex-
tracted from system error logs) on a large IT system using
system instrumentation data and event logs.

Our work differs from the above in various ways. First, we
forecast events (SLO violations) that are defined by applica-
tion owners or system administrators, thus they provide the
system/application administrators information they need to
maintain their system/application at the desired performance
targets. Second, we forecast durations of performance prob-
lems, with time scales that relate to the ability to take reme-
dial actions using current tools. Third, our extensive analy-
sis, including data from numerous IT-systems, characterize
the different approaches in terms of the three dimensions
that are relevant for their use as a tool for system manage-
ment: univariate vs. multivariate methods for forecasting,
forecasting with different subset of features (demand and
system utilization features), and the transferability of fore-
casting models between different setups.

6. CONCLUSIONS
The short term forecasting of periods of high-low utiliza-

tion and performance is crucial for the efficient management
of resources in current IT enterprise systems. This capa-
bility will enable the dynamic reallocation of resources for
meeting surges in demand, the effective scheduling of low
priority items and preventive maintenance, and the opti-
mal utilization of the excess capacity. The complexity of
these systems challenges the creation of pre-built models
based on mathematical closed-form formulation of the sys-
tem’s behavior. This and the fact that there are many
commercial systems available for monitoring and collect-
ing several features about the performance of these systems,
points to a more empirical-based approach such as one based
on data mining, machine learning, and pattern recognition
techniques. In this paper we have reported on the applica-
tion of such techniques to the problem of short-term fore-
casting of an impending performance problem, and its inten-
sity. The intensity of the problem, as expressed for example
in terms of duration, is important in order to establish what
is the best possible course of action.

Our experiments and analysis go beyond comparing the
accuracy of different approaches. They aim at character-
izing other aspects of the problem for their application, as
stand alone tools, into real systems. The first issue we in-
vestigated relates to quantifying the benefits (in terms of
accuracy) of using approaches based on multivariate analy-
sis. What is the gain in accuracy for fusing the information
of other signals besides the one being forecasted. Our exper-
iments support the conclusion that methods such as those
based on Bayesian network classifiers and multivariate re-
gression perform better (on average) on a variety of tasks
over auto-regression methods (based on univariate analysis).
The second issue we report on is again on the quantification
of the loss of using only features that relate to the demand
on the system (workload). Ideally, for purposes of dynamic
resource allocation, such as adding new CPUs to the sys-
tem, we would like a sort of transfer function from workload
to performance. This transfer function is easier to main-
tain across changes in the system since its features, the ones

characterizing the workload, is constant across changes. Our
results indicate that indeed there is a loss in accuracy when
relying only on the features from the workload for the pre-
diction. This quantification will enable the tradeoff between
more complex models (using different features as the system
changes). Finally, we quantified the generalization power of
the models induced from data aggregated from groups of
machines in terms of the application to different machines
in the system. This is important because it will enable the
bootstrapping in systems where data about SLO violations
is scarce. To the best of our knowledge this is the first time
that these issues are investigated (over 60,000 runs mostly
on data from production systems) in this setting.

There are several open issues for future research. As dis-
cussed in Section 4.3.1 better methods for model selection
brings the promise of further improvements in the accuracy
of the Bayesian networks based classifiers. One approach
we would like to investigate is the one described in [25],
which is based on maintaining an ensemble of models. Fi-
nally, we would like to extend the forecasting objective of
the algorithms to include the resource that will be scarce
as a consequence of the performance problem. Our first ap-
proach will consist of combining the approach in this paper
with the approaches described in [5, 25].

7. ACKNOWLEDGEMENTS
Many thanks to Joe Fitszgerald and Tom Henessy for nu-

merous discussions on the application of these techniques
to resource allocation and capacity management. George
Forman provided comments on a previous version of this
paper.

8. REFERENCES
[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener,

P. Reynolds, and A. Muthitacharoen. Performance
debugging for distributed systems of black boxes. In
Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), Bolton Landing, NY, Oct.
2003.

[2] P. Barham, R. Isaacs, and R. Mortier. Using magpie
for request extraction and workload modeling. In 6th
Symposium on Operating Systems Design and
Implementation (OSDI’04), Dec. 2004.

[3] G. Box, G. Jenkins, and G. Reinsel. Time Series
Analysis: Forecasting and Control (3rd Edition).
Prentice-Hall Engineering, 1994.

[4] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and
E. Brewer. Pinpoint: Problem determination in large,
dynamic systems. In Proc. 2002 Intl. Conf. on
Dependable Systems and Networks, pages 595–604,
Washington, DC, June 2002.

[5] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and
J. Chase. Correlating instrumentation data to system
states: A building block for automated diagnosis and
control. In 6th Symposium on Operating Systems
Design and Implementation (OSDI’04), Dec. 2004.

[6] K. Czajkowski, S. Fitzgerald, I. Foster, and
C. Kesselman. Grid information services for
distributed resource sharing. In Proceedings of the
Tenth IEEE International Symposium on
High-Performance Distributed Computing (HPDC),
August 2001.

[7] P. Domingos, M. Pazzani, and G. Provan. On the
optimality of the simple Bayesian classifier under
zero-one loss. Machine Learning, 29(2/3):103–130,
1997.

[8] A. Fox and D. Patterson. Self-repairing computers.
Scientific American, June 2003.

[9] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian
network classifiers. Machine Learning, 29:131–163,
1997.

[10] J. Hellerstein, F. ZHang, and P. Shahabuddin.
Characterizing normal operation of a web server:
application to workload forecasting and proble
detection. In Proceedings of the computer
measurement group, 1998.

[11] Hewlett-Packard Company. HP OpenView
Management software.
http://www.managementsoftware.hp.com/products/.

[12] R. Huebsch, J. M. Hellerstein, N. L. Boon, T. Loo,
S. Shenker, and I. Stoica. Querying the Internet with
PIER. In Proceedings of 19th International Conference
on Very Large Databases (VLDB), Sept. 2003.

[13] IBM. IBM Tivoli management software.
http://www-306.ibm.com/software/tivoli/.

[14] T. Ide and H. Kashima. Eigenspace-based anomaly
detection in computer systems. In KDD, 2004.

[15] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. Computer, 36(1):41–50, 2003.

[16] R. Kohavi and G. H. John. Wrappers for feature
subset selection. Artificial Intelligence,
97(1-2):273–324, 1997.

[17] L. Ljung. System Identification: Theory for the User.
Prentice-Hall, 1987.

[18] D. Mosberger and T. Jin. httperf: A tool for
measuring Web server performance. In First
Workshop on Internet Server Performance (WISP).
HP Labs report HPL-98-61, June 1998.

[19] J. Neter, M. Kutner, C. Nachtshein, and
W. Wasserman. Applied Linear Statistical Models.
McGraw-Hill, 1996.

[20] J. Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann, 1988.

[21] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E.
Moreira, and S. Ma. Critical event prediction for
proactive management in large-scale computer
clusters. In KDD, 2003.

[22] D. Sullivan. Using probabilistic reasoning to automate
software tuning. PhD thesis, Harvard University, 2003.

[23] R. van Renesse, K. Birman, and W. Vogels. Astrolabe:
A robust and scalable technology for distributed
system monitoring, management, and data mining.
ACM Transactions on Computer Systems,
21(2):164–206, May 2003.

[24] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia:
An information plane for networked systems. In
Proceedings of ACM HotNets-II, November 2003.

[25] S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, and
A. Fox. Ensembles of models for automated diagnosis
of system performance problems. accepted for
publication at DSN 2005, HP-Labs Tech report
HPL-2005-3.

