

72 Hours to DonutLab: A PlanetLab with No Center

Marc Stiegler, Mark S. Miller1, Terry Stanley2
Mobile and Media Systems Laboratory
HP Laboratories Palo Alto
HPL-2005-5
January 6, 2005*

security,
distributed
computing,
PlanetLab, Agoric
Computing

PlanetLab [Peterson02] has been developed as a platform for
experimenting with globally distributed computing systems. The
DonutLab is a conceptual descendant of PlanetLab, intended to share
many of PlanetLab's merits while incorporating a number of significant
enhancements for security, ease of use, reliability, and persistence.
DonutLab was built using the Promise Pipelining Object-Capability
(PPOC) programming language E. The primary goal was not merely to
demonstrate a direction of evolution for PlanetLab; rather, it was to
demonstrate the power of PPOC for building secure distributed systems.
To showcase this power, DonutLab was built over a 3-day weekend, in
72 hours. Here we investigate the successes and failures of the 72-hour
effort, the nature of the DonutLab, and the features of PPOC that enable
the high-speed construction of such easy to use yet secure systems.

* Internal Accession Date Only
 1Affiliated with Johns Hopkins University and Hewlett-Packard Laboratories
 2Cocoon.com Consulting Approved for External Publication
 Copyright Hewlett-Packard Company 2005

 DonutLab/1

Abstract
PlanetLab [Peterson02] has been developed as a
platform for experimenting with globally
distributed computing systems. The DonutLab is
a conceptual descendant of PlanetLab, intended
to share many of PlanetLab’s merits while
incorporating a number of significant
enhancements for security, ease of use,
reliability, and persistence. DonutLab was built
using the Promise Pipelining Object-Capability
(PPOC) programming language E. The primary
goal was not merely to demonstrate a direction
of evolution for PlanetLab; rather, it was to
demonstrate the power of PPOC for building
secure distributed systems. To showcase this
power, DonutLab was built over a 3-day
weekend, in 72 hours. Here we investigate the
successes and failures of the 72-hour effort, the
nature of the DonutLab, and the features of
PPOC that enable the high-speed construction of
such easy to use yet secure systems.

Introduction
The tactical goal of DonutLab was to build a
PlanetLab-like distributed system that could be
used by researchers to build and test distributed
systems, with the following properties that go
beyond the current PlanetLab implementation:

• Full Decentralization: “PlanetLab Central”

is a single point of failure that impacts
reliability, security, and scalability.
DonutLab has no center.

• Agoric (market-based) Resource
Allocation: By using agoric resource
allocation [Miller88, Stonebraker94], we
eliminate the risk that the DonutLab could
be used as a weapon for Distributed Denial
of Service (DDOS) attacks. PlanetLab
currently has over 500 computers with high-
bandwidth connections, a most attractive
attack vehicle for those individuals
interested in building a DDOS arsenal
[Adams03, Pai].

• Persistence: On DonutLab, what goes down
will, in general, come back up. Persistence
can be particularly difficult in the presence
of strong security guarantees: the time of
restart can be fraught with significant
vulnerabilities. DonutLab uses the
persistence system in E that was designed
specifically to enable revival in the presence
of complex mutually suspicious trust
relationships.

• Secure Cooperation: DonutLab servers can
be run inside the firewall with minimal risk
to any of the assets protected by the firewall.
Furthermore, the compromise of any one
object in the DonutLab cannot cascade into
a large, possibly disastrous, system breach.

• Ease of Use: DonutLab, by using an
authorization-based paradigm (object-
capabilities [Dennis66]), avoids the pitfalls
inherent in ID-authentication-based
approaches to security. DonutLab has no
passwords, certificates, or other obstacles to
human action that are usually considered a
necessary tradeoff to achieve secure
operations.

• Deadlock-free operation that maximizes
performance in the face of latency: As
computers become more powerful, and
bandwidth increases, the limiting factor
increasingly becomes latency. Promise
Pipelining minimizes the impact of latency
while guaranteeing that deadlock cannot
occur (datalock, a loss-of-liveness bug
similar in some ways to deadlock, is still
possible, but it occurs less often and more
deterministically).

DonutLab Structure
The basic DonutLab includes the following
elements:

• Mints: These are the services that issue

currency.
• SliverServers: In PlanetLab, the researcher

acquires a “sliver” on each machine. This
sliver is a virtual machine in which the
researcher can run any code he desires. The
SliverServer fulfills the same function. The
SliverServer charges for clock time on the
machine and for messages sent. Clock time,
not CPU time, is the basis for charging
simply because this was easy to do in 72
hours.

• Kiosks: These advertising services enable
programs to locate other services in the
Donut. The two types of services currently
listed are kiosks themselves and
SliverServers. Asking the kiosk for a list of
servers is free, while posting an
advertisement for a service requires a
nominal fee. Service providers can supply
more money for a better location in the list
of servers delivered to potential buyers.

• Doughbot Sample Application: The
Doughbot is a DDOS attack weapon

 DonutLab/2

designed to destroy the DonutLab. It creates
slivers on all the SliverServers, and uses
them to attack the kiosks. The goal is to
prevent any other applications from using
the Donut. Of course, given the Donut’s
agoric resource allocation, this DDOS attack
achieves a rather different result than that
intended by the attackers, as discussed later.

A typical operating scenario would involve the
following steps:

• The researcher receives 2 secure references,

one to an account on a mint, the other to a
kiosk. This pair of references, typically
embodied as a pair of files, can be sent via
PGP mail or any other transport method that
meets the security goals of the participants:
in extreme cases, such references have been
sent by reading the text characters from the
file over the telephone. Membership in
DonutLab consists of having these two
references: you need a kiosk to find services,
and a mint account to use them. Kiosk and
account references are unguessable: you
must explicitly receive them in order to
communicate with the services they
authorize.

• The researcher launches his program, giving
the program the references to the account
and the kiosk.

• The program goes to the kiosk and requests
a list of SliverServers that are currently
active.

• The program sends his mobile sliver code to
each SliverServer along with payment for
the service of executing the code and
sending messages on the code’s behalf.

• The slivers begin execution in the secure
distributed DonutLab context.

Each of the basic components described above is
embodied in 3-5 pages of source: typically 1
page of setup and configuration code, 2 pages of
code for the actual service, and another page of
documentation. All of the code is open source
and available for download from
www.erights.org starting in E 0.8.27.

Development Highlights
The first milestone in development of the
DonutLab was completion of the mint. We had
started work at 8AM on Saturday; the mint was

complete at 11AM. So it took about 3 hours to
build a financial system.

Since most financial systems take somewhat
longer than 3 hours to build, this deserves some
explanation. First of all, we did not implement
any policy in those 3 hours. This lack of policy
simplified the problem considerably, but it is not
a complete explanation. 2 other reasons for our
speed were:

• A powerful, compact object-capability

financial protocol: The DonutLab mint
implements the Waterken IOU protocol
[Close04]. This protocol is the culmination
of over 20 years of effort [Hardy81,
ERTP99, Miller03a] by the object-capability
community to build ever more flexible,
reliable, and secure electronic rights transfer
systems. Since the key to building such
systems is to make the system small and
simple, the IOU protocol is quite compact
despite its expressive power.

• A true productivity transformation: An
analogy seems appropriate. In 1990, with the
C programming language on MS-DOS, it
took months to build programs comparable
to the Notepad text editor. Today, with
memory-safe, garbage-collected, object-
oriented languages like Java, a Notepad-like
text editor takes only hours. Distributed
object capabilities deliver the same kind of
productivity transformation for electronic
rights transfer that OO delivered for
Notepad-like applications. There are several
reasons why object-capabilities enable such
development speed. The simplest to explain
is the built-in
encryption/authentication/authorization of
the objects distributed across the system. In
E, all communications are encrypted all the
time, transparently to both programmers and
users. Public keys, private keys, single keys,
and object authentication are handled inside
the language [Miller00]. As a result, the
programmer can manipulate remote object
references with the same confidence that he
has when he receives an object inside a
single process: if object A sends to object B
a reference to object C in a single process,
there is no worry about man-in-the-middle
attacks, no concern about DNS spoofing, or
fear that the object C received by B is
different from the object sent by A.
Similarly, the single-process sequential OO
programmer does not worry about

 DonutLab/3

synchronization, deadlock, or inconsistency
because a variable may be modified in the
middle of an operation. With PPOC, these
reliability and security guarantees are
extended over the network.

Another major milestone was the security review
for the SliverServer. To meet our goals, it was
crucial that the code executing as a sliver, which
was written by someone whom the SliverServer
owner should not trust, not have any authorities
that could harm the SliverServer owner or any of
his assets, including other computers behind his
firewall. Yet the sliver cannot be sandboxed in
the style of the Java applet: the operator of the
sliver must be able to dynamically confer
additional authorities of his own to the sliver. In
the Doughbot, for example, the Doughbot owner
must be able to confer to the sliver authority to
communicate with a kiosk, which immediately
breaks the confinement demands of the Java
applet sandbox.

We held a security review of the SliverServer to
ensure that the SliverServer owner was safe
while the sliver operator was empowered. That
review was shorter than the following
explanation of why it was short. Because the
review was non-adversarial (the reviewer trusted
the developer to tell the truth about related
sections of the program, sections that would
exhibit dramatic bugs if accidentally coded
incorrectly), the review came down to a careful
analysis of the following line:

def bootSliver := sliverMaker <-
 runSliver(bootMakeSturdyRef,
 bootTimeMachine)

In an object-capability system, there is no
ambient authority, i.e., all authority is denied by
default. Objects are not born with access to the
file system, windowing system, or network. As a
consequence, in a security review you only have
to look for explicit lines of code granting
improper authority. The line of code above is the
line that constructs the new sliver. The only
authorities the sliver receives from the
SliverServer are the “bootMakeSturdyRef” and
the “bootTimeMachine”. Given an understanding
of sturdyRefs and timeMachines, one can
quickly draw a conclusion about their risks in the
context of the threat models and goals of the
participants. The speed and ease of object-
capability security reviews like this one has been
observed in earlier work [Wagner02].

The promise pipelining architecture served
principally to ensure no deadlock occurred. The
architecture did eliminate many latency-intense
round trips (for reasons similar to [Liskov88]),
but since DonutLab’s goals are generally
insensitive to latency this was not a sought-for
effect, but rather a side-effect of development in
a promise pipelining environment. As noted
earlier, datalocks are possible but rare, and none
occurred in the development of DonutLab. For a
simple example of promise pipelining in action,
let us analyze the following line of code. This is
the line executed by the Doughbot to pay the
SliverServer to create a new sliver that will run a
“doughBit”:

def doughBit := each <- makeSliver(code,
 account <- offer(payPerSliver))

The “<-“ symbol is the eventual send, used in E
to communicate across processes and machines.
The program does not wait for an answer to be
returned from an eventual send; rather, a promise
is immediately returned for the eventual answer.
The promise can be manipulated much like any
other object; notably, messages can be sent to the
promise using eventual sends, and when the
promise is fulfilled, those messages will be
delivered. Eventual sends to promises create
further promises, leading to chains of promises
that will be fulfilled as soon as possible, possibly
without any intervening round trips. If something
goes wrong, a promise is broken, and this
brokenness propagates to all dependent
promises. (Non-signaling NaNs are similarly
contagious, and similarly non-disruptive of
pipelining optimizations.)

In this example, the Doughbot tells the
SliverServer to make a sliver with a body of code
and a payment offer. The Doughbot is not
actually holding the payment, however. Rather,
the Doughbot sends to the SliverServer a
promise for the payment, which is constructed by
sending a message to the account to make an
offer. The SliverServer and the mint (which
owns the account) will set up a secure direct
connection and route the money straight to the
SliverServer (a wise SliverServer owner will
wait for the promise of money to resolve into
actual money before creating the new sliver, of
course, using the E when-catch clause). Once
these messages to the SliverServer and the
account are “in the air”, the Doughbot’s machine
could shut down, and the doughBit would still
come to life.

 DonutLab/4

The entire project was accelerated by the use of
Causeway, a prototype debugger specifically
designed for promise pipelining in the E
environment. Causeway exploits the
deterministic properties enabled by promise
pipelining to give the developer a message-based
view of the system. This contrasts markedly to
the process-based view offered by conventional
debugging systems. In Causeway, by following
the messages, the programmer may ignore the
division of the object graph into processes, and
follow chains of causality wherever they may go.

Limits of Success
The 72-hour DonutLab does not fulfill all the
requirements initially set out. Notably it is
neither fully decentralized nor fully persistent.
We did not have time to build the
DoughChanger, a financial exchange required to
enable multiple mints to cooperate in a single
DonutLab. A DoughChanger has since been
developed. It constitutes about four pages of
code, much like the other services: a page of
setup and configuration code, 2 pages of code for
the actual service, and a page of documentation.

Also the SliverServer is not fully persistent.
Specifically, it is unable to revive slivers after a
shutdown (or crash, after the loss of power) of
the server. So a Doughbot cannot pick up and
continue its attack after shutdown of its slivers.

Despite these shortfalls, we still feel that overall
the effort was a success. It seems likely to take
no more than another three day weekend to
fulfill all the original requirements, and to add
several additional desirable features identified
during development.

Future Work
The striking shortfall of DonutLab in comparison
with PlanetLab is its inflexible demands on
programming tools. PlanetLab, by using virtual
OS’s, allows the developer of an application to
use any tools that can be found on a Linux
platform. The current DonutLab requires that
applications be written in E. The most obvious
approach to overcoming this limitation is to
integrate a virtual machine or OS system with
the SliverServer. By building a virtual socket
manager for the virtual OS that was in close
communication with the SliverServer, one could
build a system with all the current security
properties (assuming the virtuality of the virtual

OS could not be breached). It seems possible that
this could be accomplished in a long weekend, if
a carefully selected team of PlanetLab and
DonutLab developers came together for the
mission.

Is DonutLab “just a toy”? It is certainly very
small. And it is certainly, after 72 hours,
incomplete. But smallness is not in itself a proof
of unsuitability. As stated by C.A.R. Hoare, “The
unavoidable price of reliability is simplicity.”
For reliability and security, large systems are the
real toys: true success can only be achieved in
the small.

Whether DonutLab is “just a toy” or not depends
on your goals. Even in its current state, it seems
better suited as a platform for some current
experiments than PlanetLab itself. Because of its
usability, it seems possible that DonutLab would
encourage a whole new wave of researchers to
become involved. Because of its security, it
seems possible that DonutLab could encourage a
whole new wave of corporate sponsors to
become involved.

Whether to enhance PlanetLab with Donut
features, or to enhance DonutLab with PlanetLab
features, is the quicker and more effective path to
the future, seems a lively and appropriate debate
to undertake.

Conclusions
Secure distributed system development need not
be distinctively and uniquely painful. A set of
proper tools, such as promise pipelined object
capabilities, can enable both clear
conceptualization and straightforward
implementation of such systems. PPOC is the
natural extension of object-oriented concepts to
the distributed world. It extends across the
network all the security and reliability
characteristics that OO techniques bring so
effectively to bear in single-machine single-
process development.

DonutLab also demonstrates how an operating
environment can encourage “good” behavior in
the participants in a system. The Doughbot was
designed as a destroyer of systems. In PlanetLab,
the Doughbot would succeed. However, inside
the Donut, the effort to attack critical services is
transformed into an algorithm for giving away
money as fast as possible. The Destroyer

 DonutLab/5

becomes Santa Claus. It makes a stark contrast to
the state of the current Internet.

References
[Adams03] Robert Adams, Distributed System
Management: PlanetLab Incidents and
Management Tools. PlanetLab Consortium PDN-03-
015

[Close04] Tyler Close, Waterken IOU Design.
www.waterken.com/dev/IOU/Design/

[Dennis66] J.B. Dennis, E.C. Van Horn.
“Programming Semantics for Multiprogrammed
Computations” Communications of the ACM,
9(3):143–155, March 1966.

[Hardy81] Norm Hardy, et al..., Space Banks
{Getting New Pages and Nodes}. Gnosis Manual,
Agorics 1981,
www.agorics.com/Library/KeyKos/Gnosis/62.html

[ERTP99] Mark S. Miller; "ERTP: The Electronic
Rights Transfer Protocol". www.erights.org/smart-
contracts/#ERTP; 1999.

[Liskov88] Barbara Liskov, Liuba Shrira: Promises:
Linguistic Support for Efficient Asynchronous
Procedure Calls in Distributed Systems. PLDI
1988: 260-267

[Miller88] Mark S. Miller, K. Eric Drexler Markets
and Computation: Agoric Open Systems. The
Ecology of Computation, Bernardo Huberman (ed.)
Elsevier Science Publishers/North-Holland, 1988.

[Miller00] Mark S. Miller, Chip Morningstar, Bill
Frantz; "Capability-based Financial Instruments".
Proceedings of Financial Cryptography 2000,
Springer Verlag.

[Miller03a] Mark S. Miller, Marc Stiegler; "The
Digital Path: Smart Contracts and the Third
World"; Markets, Information and Communication.
Austrian Perspectives on the Internet Economy;
Routledge 2003.

[Miller03b] Mark S. Miller, Jonathan S. Shapiro
Paradigm Regained: Abstraction Mechanisms
for Access Control. Proceedings of Eighth
Asian Computing Science Conference
Tata Institute of Fundamental Research, Mumbai
India, edited by Vijay Saraswat. Springer Verlag

[Pai] Vivek S. Pai, Limin Wang, KyoungSoo Park,
Ruoming Pang, Larry Peterson, The Dark Side of the
Web: An Open Proxy’s View

[Peterson02] Larry Peterson, Tom Anderson, David
Culler, and Timothy Roscoe, A Blueprint for
Introducing Disruptive Technology into the
Internet. Proceedings of ACM HotNets-I Workshop,
Princeton, New Jersey, USA, October 2002

[Stonebraker94] Michael Stonebraker, Robert
Devine†, Marcel Kornacker, Witold Litwin°, Avi
Pfeffer, Adam Sah, and Carl Staelin, An Economic
Paradigm for Query Processing and Data
Migration in Mariposa. Proceedings of 3rd
International Conference on Parallel and Distributed
Information Systems, Austin, TX, USA, 28-30 Sept.
1994. Los Alamitos, CA, USA: IEEE Comput. Soc.
Press, 1994. p. 58-67.

[Wagner02] David Wagner & Dean Tribble, A
Security Analysis of the Combex DarpaBrowser
Architecure. www.combex.com/papers/darpa-
review/index.html.

