

Finding Similar Files in Large Document Repositories

George Forman, Kave Eshghi, Stephane Chiocchetti
Intelligent Enterprise Technologies Laboratory
HP Laboratories Palo Alto
HPL-2005-42(R.1)
June 15, 2005*

E-mail: george.forman@hp.com, kave.eshghi@hp.com, stephane.chiocchetti@hp.com

content
management,
document
management, near
duplicate detection,
similarity,
scalability

Hewlett-Packard has many millions of technical support documents in a
variety of collections. As part of content management, such collections
are periodically merged and groomed. In the process, it becomes
important to identify and weed out support documents that are largely
duplicates of newer versions. Doing so improves the quality of the
collection, eliminates chaff from search results, and improves customer
satisfaction.

The technical challenge is that through workflow and human processes,
the knowledge of which documents are related is often lost. We required
a method that could identify similar documents based on their content
alone, without relying on metadata, which may be corrupt or missing.

We present an approach for finding similar files that scales up to large
document repositories. It is based on chunking the byte stream to find
unique signatures that may be shared in multiple files. An analysis of the
file-chunk graph yields clusters of related files. An optional bipartite
graph partitioning algorithm can be applied to greatly increase scalability.

* Internal Accession Date Only
To be published in and presented at the 11th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD’05), 21-25 August 2005, Chicago, IL, USA
 Approved for External Publication
 Copyright 2005 ACM

Finding Similar Files in Large Document Repositories

George Forman
Hewlett-Packard Labs

1501 Page Mill Rd. MS 1143
Palo Alto, CA 94304 USA

george.forman@hp.com

Kave Eshghi
Hewlett-Packard Labs

1501 Page Mill Rd. MS 1143
Palo Alto, CA 94304 USA
kave.eshghi@hp.com

Stephane Chiocchetti
Hewlett-Packard France

1 ave Du Canada, MS U215
91947 Courtaboeuf, France

stephane.chiocchetti@hp.com

ABSTRACT
Hewlett-Packard has many millions of technical support doc-
uments in a variety of collections. As part of content man-
agement, such collections are periodically merged and groom-
ed. In the process, it becomes important to identify and
weed out support documents that are largely duplicates of
newer versions. Doing so improves the quality of the col-
lection, eliminates chaff from search results, and improves
customer satisfaction.

The technical challenge is that through workflow and hu-
man processes, the knowledge of which documents are re-
lated is often lost. We required a method that could iden-
tify similar documents based on their content alone, without
relying on metadata, which may be corrupt or missing.

We present an approach for finding similar files that scales
up to large document repositories. It is based on chunk-
ing the byte stream to find unique signatures that may be
shared in multiple files. An analysis of the file-chunk graph
yields clusters of related files. An optional bipartite graph
partitioning algorithm can be applied to greatly increase
scalability.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; I.5 [Computing Methodologies]:
Pattern Recognition

General Terms
Algorithms, Documentation, Management, Performance

Keywords
content management, document management, near dupli-
cate detection, similarity, scalability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’05, August 21–24, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-135-X/05/0008 ...$5.00.

1. INTRODUCTION
A critical factor in the success of any large technology

business is having a high-quality repository of technical sup-
port knowledge. It is essential to have this knowledge record-
ed in documents and not just in the heads of the technical
support engineers. In electronic form, it can be searched and
shared much more effectively by the people who need it, in-
ternally and externally. At Hewlett-Packard (HP) we have
millions of technical support documents covering many dif-
ferent products, solutions, and phases of support. Building
such a body of knowledge comes both from having a culture
of sharing, and also from integrating external and acquired
content.

But adding in new documents and merging collections can
lead to a variety of problems that degrade the overall quality
of the repository, among them that content may be dupli-
cated. For example, if subsidiaries are acquired or compa-
nies merge that have previously integrated third-party con-
tent, then many duplicates arise. Sometimes authors prefer
to copy rather than link to content by reference, to avoid
the possibility of a dead pointer later. Furthermore, dupli-
cation may emerge as new documents are created that copy
portions of documents in separate collections that are later
merged. Metadata about which documents are related can
easily become corrupt or may be missing from the outset.

Rather than simply allowing duplicates to proliferate with
growth, HP has used an analysis process we developed to
identify and help weed out duplication. This and other data
mining efforts at HP are used to manage the content and
thereby improve customer satisfaction.

If our content were to consist of edited news articles, then
a reasonable approach might be to identify whole paragraphs
that appear in multiple articles. However, the domain of
technical support documents does not easily lend itself to
breaking into discrete paragraphs, and so our solution re-
lies on chunking technology to break up the documents into
paragraph-like pieces in a semantically unmotivated, but
consistent manner. By detecting collisions among the hash
signatures of these chunks, we efficiently determine which
files are related in a large repository.

In Section 2 we describe the methods we use. In Section 3
we discuss our implementation, performance, and a few of
our business-relevant results, including the value in what we
didn’t find. In Section 4 we discuss enhancements to address
practical issues that surfaced. In Section 5 we highlight
related work, and then we conclude with future work in
Section 6.

2. METHOD
There are three essential steps in the process of finding

similar files in a file collection. The first step is to break up
each file into a sequence of chunks using a content-based
chunking algorithm. The second step is to compute the
hash of each chunk. Thus each file is now represented by
a list of hashes. The third step is to find those files that
share chunk hashes, reporting only those whose intersection
is above some threshold.

Below we describe these steps in more detail, including key
embellishments and valuable implementation notes from our
experience.

2.1 Hashing Background
We use the ‘compare by hash’ method to compare chunks

occurring in different files [5]. Hash algorithms map long se-
quences of bytes, in our case the chunks, to short, fixed size
sequences in such a way that it is almost impossible to find
two chunks that have the same hash. We use the MD5 algo-
rithm, which generates 128-bit hashes. Using the hash for
comparison rather than the chunk itself has two advantages:
(1) comparison time is shorter, (2) hashes, being short and
fixed size, lend themselves to efficient data structures for
lookup and comparison.

2.2 Chunking
Content-based chunking, as introduced in [7], is a way

of breaking a file into a sequence of chunks so that chunk
boundaries are determined by the local contents of the file.
This is in contrast to using fixed size chunks, where chunk
boundaries are determined by the distance from the begin-
ning of the file; inserting a single byte at the beginning would
change every chunk.

The Basic Sliding Window Algorithm [7] is the prototypi-
cal content-based chunking algorithm. This algorithm works
as follows: There are a pair of pre-determined integers D
and r, r < D. A fixed width sliding window of width W
is moved across the file, and at every position k in the file,
the fingerprint, Fk, of the contents of this window is com-
puted. A special, highly efficient fingerprint algorithm, e.g.
Rabin’s fingerprint algorithm [8], is used for this purpose. k
is a chunk boundary if Fk mod D = r (see Figure 1).

FkmodD = r ?

k

no yes

k is a chunk boundaryk is not a chunk boundary

previous chunk Sliding Window

Figure 1: The Sliding Window Algorithm

2.3 Chunking and File Similarity
The rationale for using content-based chunking algorithms

to break the files is the following property of these algo-
rithms: When two sequences R and R′ share share a contigu-
ous sub-sequence larger than the average chunk size for the
algorithm, there is a good probability that there would be at
least one shared chunk falling within the shared sequences
(Figure 2). Thus, to detect shorter shared sequences, shorter
chunks are needed, implying more of them.

We use a chunking algorithm, TTTD (details in [3]), that
performs better than the basic sliding window algorithm in

shared sub-sequence

shared chunk

Figure 2: Shared Chunks in Shared Sub-Sequences

the following sense: for the same average chunk size, there
is a higher probability that a shared sub-sequence includes
a whole chunk. The use of this algorithm improves the ac-
curacy (recall) of our file detection algorithm.

Notice that, as shown in Figure 2, the total length of the
shared chunks only provides a lower bound on the length
of the shared sub-sequence. This is sufficient for detecting
pairs of similar files, and a post-processing comparison of
pairs of specific files may be used to determine the exact
amount and quality of the similarity.

Figure 3 shows an example pair of similar files discovered
in an actual analysis of the HP OpenView Engineering Doc-
uments and Notes repository. The three minor differences
are circled. The file on the right is an updated version, with
the missing word ‘you’ filled in. Sometimes authors update
a support document, but by mistake or limited authoriza-
tion, the previous version is not removed, and in many cases
the association between the files is lost.

For purposes of illustration, we ran our chunking algo-
rithm on the visible text of each of these files, and reveal
the individual chunks in Figure 4. Since the first difference
occurs early in the file, their first chunks do not match, de-
picted by the different colors and different chunk boundaries.
Starting near the end of the first line of the solution there
are three chunks in common, plus two more in common at
the end. (Note that if the chunks were instead based on
paragraph boundaries, this similarity would not have been
detected.) Based on these commonalities, the analysis de-
termines the lower bound for the bytes in common. In the
actual analysis, 58% of these two files were determined iden-
tical based on their chunks computed from the raw HTML
source files.

Next we enumerate the steps of the file similarity algo-
rithm:

File Similarity Algorithm
1. For each file in the repository, break its content into

chunks and for each chunk, record its byte length and
its hash code. The size of this metadata amounts to
a few percent of the original content, depending pri-
marily on the hash length and the average chunk size
parameters.

./OpenView/EngineeringDocs/file832.html

298 9E123814C58254D237F9E19B5D9C4E5A

184 33F3C217EBDFC714C8996D2559484D6F

142 DD275200C54CBF7262809BD4D134F215

103 804C3E31FB559E2A8289A9015624C392

152 B0E77C988953A1E0DDA5D2FBF262D07B

...

Figure 3: Comparison of two technical support documents that are near duplicates.

Figure 4: Illustration of example chunks for the two texts in Figure 3.

It is important that the bit-length of the hash code
be sufficiently long to avoid having many accidental
hash collisions among truly different chunks. Given a
b-bit hash code, one can expect about a 50% chance of

having one or more accidental collisions if there are 2
b
2

chunks from a random population [5]. For our 128-bit
MD5 hash, this exceeds 1019 chunks, which is overkill
for our application. Even a 64-bit hash is sufficient
for ∼4 billion chunks, and a few accidental collisions
are likely acceptable for the inexact nature of this data
mining work.

2. (Optional step for scalability) Prune and partition the
above metadata into independent sub-problems, each
small enough to fit in memory. The details of this step
are described in Section 2.5. The remaining steps are
applied to each partition of the problem.

3. Load the file-chunk metadata into memory, construct-
ing a bipartite graph with an edge between a file vertex
and a chunk vertex iff the chunk occurs in the file.1

The file nodes are annotated with their file length,
and the chunk nodes are annotated with their chunk
length.

4. Construct a separate file-file similarity graph as fol-
lows. For each file A:

(a) Look up the chunks AC that occur in file A.

(b) For each chunk in AC, look up the files it appears
in, accumulating the set of other files BS that
share any chunks with file A. (As an optimiza-
tion due to symmetry, we exclude files that have
previously been considered as file A in step 4.)

(c) For each file B in set BS, determine its chunks
in common with file A,2 and add A-B to the file-
file similarity graph if the total chunk bytes in
common exceeds some threshold, or percentage
of file length.

5. Output the file-file similarity pairs as desired. In our
implementation, we use the well-known union-find al-
gorithm to determine clusters of interconnected files.
We then output the clusters sorted by size, and with
each, the list of file-file similarities found, the total
number of files involved, the average similarity of the
links, etc. See the screen shot in Figure 5.

2.4 Handling Identical Files
A common special-case of similar files is having multiple

files with identical content. Although this can be handled
sufficiently by the process just described, the output is more
easily understood if this sort of duplication is recognized
and handled separately. For example, it can be a much
quicker decision to retain only a single copy of each docu-
ment, installing forwarding symbolic links where needed, or

1Although it is rare, should the same chunk occur more
than once in a single file, we record multiple forward edges
for that file-chunk pair.
2When determining the chunks in common between files A
and B, we sped up the inner loop of the analysis ∼2.5x by
using a merge-sort style comparison rather than a hash table
to count collisions.

Figure 5: Clusters of files with some duplication.

Figure 6: Sets of filenames with identical content.

not merging any content that is already represented in the
master repository.

This may be provided for using the same metadata with
a small enhancement to the basic algorithm. While loading
the file-chunk data, we compute a hash over all the chunk
hashes, yielding a single hash that uniquely identifies files by
their content alone. During loading in step 3, we maintain
a hash table that references file nodes according to their
unique content hashes. If a file has already been loaded,
we note the duplicate filename and avoid duplicating the
chunk data in memory. In the output, multiple filenames
referring to identical content are listed out separately in a
report. (Figure 6 shows a screen shot of an example report.)
This significantly reduces the volume of output to examine:
each copy of a file would otherwise multiply the number of
similar links found for it. This is illustrated in Figure 7,
which shows two clusters of similar files in which each file
had a duplicate copy in another directory. With special
handling for identical files, we reduce the number of links in
this graph from 21 to 4.

2.5 Bipartite Partitioning for Scaling Up
The algorithm as described can easily process file sets with

tens of thousands of files comprising hundreds of megabytes.
However, to process larger repositories, we need a partition-
ing method to break the problem into pieces small enough
to fit in physical memory, or else virtual memory thrashing
will occur because of the essentially random access patterns
while examining the bipartite graph. Towards this end, we
present the partitioning algorithm we use, which is suited
especially for the large but sparse bipartite graphs typically
generated by these analyses.

Figure 7: Without special handling for identical
files, the number of similar file links multiplies.

1. Have the file-chunk metadata stored in a file format
that contains the chunk hash code and the filename
on each line. In practice, it is much more efficient to
refer to the filename and its long directory path via a
short index number into a separate table of filenames
stored in a database, for example:

298 9E123814C58254D237F9E19B5D9C4E5A file832

184 33F3C217EBDFC714C8996D2559484D6F file832

142 DD275200C54CBF7262809BD4D134F215 file832

103 804C3E31FB559E2A8289A9015624C392 file832

152 B0E77C988953A1E0DDA5D2FBF262D07B file832

...

2. Perform a disk-based sort on this data, as is commonly
available in UNIX ‘sort’ implementations. This is a
well-developed field of computer science, and can be
performed in parallel, etc., to perform an efficient sort
with minimal I/O. At the end of this step, all the
files that refer to a given chunk will be in adjacent
lines in the file. (Alternately, one could employ a disk-
based recursive hash-bucket partitioning, which yields
the same desired post-condition property, but without
having to achieve a global ordering. While this might
be more efficient, it is not as ubiquitously available as
UNIX ‘sort’.)

3. Perform the highly efficient union-find algorithm on a
graph where each file is represented by a vertex. For
each chunk encountered in the sorted input, all the
different files it appears in are unioned into the same
connected component. At the end of this process, the
connected components are identified by the union-find
data structure. Each of these represents a subset of
files which may be processed separately.

Because the file-chunk graph is bipartite and the chunks
are sorted, we do not need to represent the many chunk
vertices to partition the overall graph. Since there are
often two orders of magnitude more chunks than files,
this step is highly scalable. Our implementation scales
to 15 million files within 1GB RAM.

4. In practice, a majority of the connected components
contain only a single file, and these can be immedi-
ately discarded as not being similar to any other files,
requiring no further processing.

5. (Optional) A standard bin-packing algorithm can be
used to gather together multiple connected-components
that can fit in memory all at once. If there are many
small connected-components, then this reduces the num-
ber of separate files generated in the following step,
and the number of times the remaining steps in the
master algorithm must be run. While this is optional,
we found this greatly reduces process set-up and tear
down overhead.

6. Linearly scan the file-chunk metadata (either the sorted
file or the original unsorted version) and output its
lines into distinct sub-problem files by which partition
the file has been assigned by the connected-components
or optional bin-packing. Each of these files serves as
an independent input to the remainder of the master
algorithm.

Even for problems containing tens of thousands of files
that do not require partitioning, the heavy degree of prun-
ing achieved in step 4 alone greatly speeds up the file-chunk
graph analysis, so we generally include this optional parti-
tioning process.

We have run into a situation a couple times where the
graph could not be partitioned because of one or a few
chunks that represent a ubiquitous header in all the files,
such as the common practice of placing a copyright notice
at the top of all source code files. To combat this problem,
we ignore in step 3 chunks whose degree exceeds some large
threshold, such as half the total number of files.

2.6 Complexity Analysis
The chunking of the files is linear in the total size N of the

content. The bipartite partioning, implemented via sorting
as we have, takes O(C log C), where C is the number of
chunks in the repository, including duplicates. Since C is
linear in N, the partitioning step takes O(N log N). Finally,
the analysis of the file-chunk graph in step 4 of the main
algorithm is O(C log C). For this analysis, we assume that
as the total number of files grows, the average number of files
that are related to a given file does not grow substantially.

3. RESULTS
We implemented the chunking algorithm in C++ (∼1200

lines of code). We used Perl to implement the similarity
analysis algorithm (∼500 LOC), the bipartite partitioning
algorithm (∼250 LOC), and a shared union-find module
(∼300 LOC). We leveraged the HP-UX ‘sort’ utility, which
includes the ability to sort files larger than memory. We use
ASCII file formats for the intermediate data, and generate
our hierarchical reports in Microsoft Excel format, which
allows for hierarchical sorting and filtering of the clusters.
Clearly the implementation could be made more efficient if
need be, but run-time cycles and disk space were far cheaper
than programming effort and calendar time.

3.1 Performance
The performance on a given repository ranges widely de-

pending on the average chunk size, which is a controllable
parameter. In practice, we often start with a large chunk
size, e.g. 1000 bytes, to get a quick characterization of a
new repository. This analysis will completely miss pairs of
files that are similar due to shorter common sequences. We
then re-run the analysis with a smaller chunk size, e.g. 100
bytes, to get a more fine-grained comparison. Note that we
can independently set a minimum threshold of, say, 1000
bytes in common between two files for reporting purposes.
Thus, there is a tradeoff between computational effort and
the likelihood of missing a positive match.

A complete performance characterization is beyond the
scope of this paper and depends largely on the character-
istics of the dataset. Here we present an example run to
give some feel for its performance. We consider a partic-
ular repository of 52,125 technical support documents in
347 folders, comprising 327 MB of HTML content. These
measurements were performed on an HP Kayak XW with a
3 GHz Intel processor and 1 GB RAM: The chunking process
ran in just 4 MB RAM at ∼80% CPU utilization, indicat-
ing the intense file input bandwidth needed, and especially
the file system overhead for opening over fifty thousand in-
dividual files. With the target chunk size set to 5000 bytes,
the chunking process took 25 minutes and generated 88,510
chunks (targeting 100 byte chunks, it took 39 minutes and
generated 3.8 million chunks). The remaining similarity
analysis took 14 seconds at 100% CPU utilization and used
just 32 MB RAM. If we first run the bipartite partitioning
algorithm, taking 4 seconds and fitting in memory for this
problem, then the analysis phase takes less than 2 seconds—
an overall improvement due to pruning.) Again, these num-
bers are only suggestive, and vary substantially depending
on the dataset. The main point is that it is quite tractable.

3.2 Business Results
Due to the business nature, we can divulge only limited

information about the business impact. Our implementation
has been used successfully over a range of projects, and on
over a dozen different technical support repositories. The
run-time for the whole algorithm including the partitioning
phase on different projects ranges from 20 minutes to three
days on a single server.

In a project referred to earlier, we found ∼1000 pairs of
nearly duplicate documents in one of the HP OpenView
repositories containing over 40,000 documents. Domain ex-
perts used this information to perform cleaning on the con-
tent. This cleaning effort would be unthinkable without this
data mining technology.

In another project, what we did not find proved valuable.
We analyzed a series of repositories that were under con-
sideration for being integrated into a larger HP collection.
Based on not finding any substantial number of similar files,
the business decided to proceed with the migration, without
having to carefully prune duplicates.

In another project, the algorithm found a large number
of pairs of identical files (see Figure 6). It turned out that
two different subdirectories contained the same set of files.
On first blush this may sound easy to detect, but to better
appreciate the problem, consider having to migrate unfamil-
iar content in hundreds of nested subdirectories under time
pressure.

4. DISCUSSION
The great majority of the computation is in determining

the chunks of the source files, which may be done in a parallel
or distributed fashion. Furthermore, separate repositories
that do not share storage or administrative domains can still
collaborate in efficient duplicate detection, so long as they
use the same chunking method. Only the file-chunk meta-
data need be shared, which typically amounts to only 1–3%
of the total file volume in our system. This is a great benefit
if the repositories are geographically distributed in a world-
wide company like HP, or belong to different companies that
pool their technical support knowledge.

In practical use, the output can often include clusters of
files that are similar simply because they contain a large
template in common. For example, there was a collection
of HTML files generated by a common process that in-
serts a long JavaScript pre-amble. All of these appeared
in a single large clique. Given the many different processes
for capturing and processing technical documentation, there
can be many such templates. A similar problem can arise
with large boilerplate texts regarding licensing or copyright
terms, which may be present in many of the files. Such fre-
quent ‘false alarms’ are a serious impediment to practical
use of the output, and can mask true duplication of content
in different templates.

In order to disband such clusters, the analyst can mark
them as being due to template similarity. The software can
then record that the chunks in common represent a tem-
plate, e.g., of the 185 documents in the cluster, there may
be 17 chunks that are shared in all of them. These chunks
are to be ignored on future runs, effectively reducing the
file sizes to their non-template payload. Occasionally this
process must be repeated more than once, but generally a
single iteration is sufficient. Note that the files do not need
to be re-chunked for each iteration.

5. RELATED WORK
Broadly related work in determining file similarity in-

cludes pair-wise file comparison, such as UNIX ‘diff’, and
identical file detection, such as the Windows NTFS Single
Instance Store technology. These are related, but are not
designed for finding only partly similar files in a large repos-
itory.

Brin et al. [1] propose to have a large indexed database
of existing documents, and offer a way to detect whether a
given new document contains material that already exists
in the database. Note that their method is a 1-vs-N docu-
ments method, whereas ours is all-to-all. If one were to use
their 1-vs-N method repeatedly, and add a new document
to the database after each test, the execution time of this
method would be untenable. By contrast, ours is designed
to scale up to very large document collections by processing
the whole batch at once. Also, note that using their method
in this way would yield an algorithm that is sensitive to the
order that documents are added to the database, whereas
ours is not sensitive. Finally, their paper only describes
mathematical abstractions, which if implemented directly,
yield performance that does not scale beyond the memory
capacity of one machine; whereas our method is explicitly
designed for scalability beyond memory capacity.

Furthermore, in their method chunk boundaries are based
on the hash of ‘text units,’ which can be paragraphs, sen-

tences, etc. When the input file is not prose text (e.g., tech-
nical documentation with file listings or program output)
their notion of a unit does not apply in a natural fashion.
Our approach, using the enhanced TTTD chunking algo-
rithm that uses a sliding window to determine the chunk
boundary, leads to chunk sizes of any desired average length
and can be applied to text as well as non-text data. It also
overcomes the problems of the simple sliding window algo-
rithm with respect to repetitive text (e.g. long strings of the
same character).

In the AltaVista shingle method by Broder et al. [2], in-
stead of chunking up the files and storing the hashes of the
chunks, the shingles of each file are stored and used for com-
parison. A shingle is the fingerprint of a fixed size window
in the file whose fingerprint mod a pre-determined number
is another pre-determined number. To find the shingles, a
fixed size window is slid across the file and the fingerprint
is calculated at each position (in a manner similar to that
used for finding chunk boundaries). Each fingerprint whose
value satisfies the mod criterion is included among the shin-
gles. The many shingles generated for a file are then sorted
and the largest 10 (a parameter) are recorded for the file
(this reduces storage and later computation, but it reduces
the probability of detecting a match). The intuition be-
hind the shingle method is that two files which share a shin-
gle probably share the window of text that the shingle is
a fingerprint of. The more such shared shingles, the more
similar the two files are. Shingle comparison is coarser in
terms of accuracy than chunk comparison. For example, if
the chunks of two files are identical and in the same order,
then the two files are identical; if the shingles of the two
files are identical and in the same order, the two files may
still be different in the areas that are outside the boundaries
of the shared shingles. Also, using chunks it is possible to
compute the size of the shared areas by adding the sizes of
shared chunks. With shingles this is not possible, since a)
shingles may overlap and b) shingles do not cover the areas
between shingles. Thus, to achieve the same accuracy as our
method, one would need a lot more shingle hashes.

Finally, we consider the sif system by Manber [6], which is
also a N-vs-N document comparison method. Like AltaVista
shingles, his ‘fingerprint’ hashes only consider a few bytes
at the boundary of a chunk, whereas we compute the hash
code of the entire chunk. Thus, his system is also blind to
any differences in the file between these fingerprints. Also,
because our system keeps track of the length of each chunk,
when a shared chunk is found, we can state something about
the lower bound of how many bytes are held in common. In
his system, each common fingerprint is only a probabilistic
clue that the files contain some similarity. His fingerprint
algorithm suffered drawbacks that TTTD does not have, as
described previously.

Manber stated, “It turns out that providing a good way to
view the output is one of the major difficulties.” We agree,
and have partly addressed this by setting aside identical
files in a separate report, by clustering the results and by
providing a means for sorting and filtering these clusters in-
teractively after the analysis. Moreover, we have addressed
the issue of getting past template similarity to get to more
meaningful results.

6. CONCLUSIONS
Large corporations, such as Hewlett-Packard, have a va-

riety of content repositories for capturing knowledge. In the
process of managing these through incremental growth, ac-
quisitions, mergers, and integration efforts, it is inevitable
that some duplication of content will ensue. To counter this
natural entropy, HP employs a process that mines the repos-
itory for partially duplicated material, helping to maintain
the quality control of the content. To identify pieces that
may have been duplicated, the solution relies on chunking
technology rather than paragraph boundary detection, be-
cause of the nature of technical support documentation.

Though the overall process is adequately efficient with
computer resources, we find that in practical use the bottle-
neck is in human attention to consider the many results.
Towards this end, we provide special handling for exact
duplicates, and a way to reduce a frequent source of false
alarms—template similarity. Future work may profitably
focus on further reducing false alarms and missed detec-
tions, and making the human review process as productive
as possible, rather than conserving computer resources.

This technology may also prove useful for other business
purposes, such as regulatory compliance. For example, it
could be used to help enforce the purging of data that has
reached its end-of-life and must be deleted, despite having
been copied into other documents without linking metadata.

7. REFERENCES
[1] S. Brin, J. Davis, and H. Garcia-Molina. Copy

detection mechanisms for digital documents. In
Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, pages 398–409,
San Jose, CA, 1995.

[2] A.Z. Broder, S.C. Glassman, M.S. Manasse, G. Zweig.
Syntactic Clustering of the Web. Computer Networks
and ISDN Systems, 29(8-13):1157–1166, 1997.

[3] K. Eshghi and H.K. Tang . A Framework for
Analyzing and Improving Content-Based Chunking
Algorithms. Hewlett-Packard Labs Technical Report
TR 2005-30

[4] R.A. Finkel, A. Zaslavsky, K. Monostori, and H.
Schmidt. Signature extraction for overlap detection in
documents. In Proceedings of the 25th Australasian
Conference on Computer Science, v4, pages 59–64,
Melbourne, Australia, 2002.

[5] V. Henson and R. Henderson. Guidelines for Using
Compare-by-Hash. Forthcoming, 2005.
http://infohost.nmt.edu/~val/review/hash2.html

[6] U. Manber. Finding similar files in a large file system.
In Proceedings of the Winter 1994 USENIX Technical
Conference, San Francisco, CA, January 1994.

[7] A. Muthitacharoen, B. Chen, and D. Mazieres. A
low-bandwidth network file system. In Proceedings of
the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01), pages 174–187, Banff, Canada,
October 2001.

[8] M.O. Rabin. Fingerprinting by Random Polynomials.
Tech. Rep. TR-15-81, Center for Research in
Computing Technology, Harvard Univ., Cambridge,
Mass., 1981.

