

Infrastructure Security Modelling for Utility Computing

Brian Monahan
Trusted Systems Laboratory
HP Laboratories Bristol
HPL-2005-4
January 17, 2005*

E-mail: brian.monahan@hp.com

utility computing,
reachability,
security modelling,
object oriented
logical models,
security properties,
risk analysis

In this paper we consider how logic-based object modelling techniques
may be used to help Utility Providers and their customers obtain insight
concerning the security characteristics of utility infrastructure and
networked systems. We briefly describe two modelling tool prototypes
that were built and the underlying technology they used.

Starting from an asset-management view of utility computing
infrastructure, we realised that the more interesting questions lie not
entirely with the infrastructure itself, but in the way that it is used and
deployed within organisations as part of a service-oriented delivery
framework. As a result, it is clearly necessary to represent the business
process structure and correlate this with the underlying utility
infrastructure and the people that interact with these services and
systems.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2005

 1

Infrastructure Security Modelling for Utility Compu ting

Brian Monahan (brian.monahan@hp.com)
Trusted Systems Laboratory

HP Laboratories
Filton Road, Bristol, BS34 8QZ, UK

24th December 2004

Abstract

In this paper we consider how logic-based object modelling techniques may be used to help
Utility Providers and their customers obtain insight concerning the security characteristics of
utility infrastructure and networked systems. We briefly describe two modelling tool prototypes
that were built and the underlying technology they used.

Starting from an asset-management view of utility computing infrastructure, we realised that the
more interesting questions lie not entirely with the infrastructure itself, but in the way that it is
used and deployed within organisations as part of a service-oriented delivery framework. As a
result, it is clearly necessary to represent the business process structure and correlate this with
the underlying utility infrastructure and the people that interact with these services and systems.

1. Introduction
Logic-based object modelling can be used to help people visualize and explore the
security properties of an IT infrastructure configuration. The idea is that the model co-
exists in real-time with the infrastructure so that the designers, architects, and utility
administrators can, based on the model, explore and see the consequences of their
actions. The goal of this work is to provide tools to support the paradigm of model
based security management and assurance.

We show that these broad, logic-based object modelling techniques (i.e. avoiding
representation of detailed behavioural characteristics) can be used to provide a tractable,
usable and effective abstraction that models the management of security properties in a
utility computing context.

Finally, we discuss and motivate the need for approaches to conducting broad risk
assessments of utility computing environments that can help bridge between
organisational structures on the one hand and utility systems and IT services on the
other.

 2

2. Adaptive Utility Computing
Business is constantly seeking ways and means to increase their return on investment in
IT systems. A promising way exploits the Utility Computing model, in which business
will contract third-party Utility Providers to provide IT services, typically within a
networked data centre environment. To do this economically, Utility Providers will
need to provide a computing environment with a high degree of automated support for
their IT services and processing.

However, there is a complication. The utility resources that are dynamically allocated by
a Utility Provider to their customers will typically need to access and compute over
highly-valued data and other IP assets owned by those customers. This potentially
represents a considerable risk of exposure and compromise to the significant IP assets of
any customer that tries to exploit utility computing in an effective way. Accordingly,
customers will need continual assurance that their data and other IP assets are being
adequately looked after and protected on their behalf. At the same time, utility
providers need to have the means to offer this assurance in a practical and effective
manner that could entice, attract and retain customers.

Adaptive utility computing aims to provide computing resources as services on the basis
of contractual outsourcing and rental. Such a capability enhances business agility since
it means that IT resources can be made dynamically available on a commercial basis to
corporate users, thus allowing IT resources to be rapidly and dynamically reallocated as
demand varies (i.e. “flexing”). Furthermore, standard commoditised IT infrastructure
(i.e. networking interfaces, server systems, and standard OS systems) will be used so
that the customer’s software configuration can be readily replicated over as many
different machines as required, subject to availability. Valued information assets and
services can be located at various points in these systems, with a variety of different
access paths and dependency links.

For our purposes here, Utility Computing is about creating a flexible infrastructure that
is shared between distrusting customers, whilst allowing customers to increase or
decrease the amount of resources they are using as their demand varies. We assume a
utility provider whose job it is to provide a secure, highly instrumented and trustworthy
environment for their customers. Customers will be segmented into virtual
infrastructures (farms), and there will be utility management machines responsible for
allocating and provisioning resources (i.e. CPU and storage) into and out of these farms
in a secure manner.

The basic security property required is that customers should not be able to see each
other’s data, or even be aware of their presence in terms of networking and service
provision (e.g. network isolation). Customers should assume that several defensive
measures will be used in the architecture to provide defence-in-depth for the utility
itself. In particular, it should be very hard for customers to access or affect the back-
end Utility Management servers.

There are a number of techniques that can be used to isolate farms, varying from strong
physical separation (air-gapping), use of VLANs and encryption, through to
configuration of traditional infrastructure such as firewalls, identity management and
access control mechanisms. Customers should assume that the infrastructure will
already have been instrumented to the extent that that the provider will be able to gather

 3

standard statistics about resource usage, but lacking the ability to eavesdrop in detail
upon the customer’s activities.

Such flexibility of the IT infrastructure is likely to be attractive to Utility Providers,
Service Providers and End Customers alike, because:

• Utility Providers can make their infrastructure available on a dynamic basis to
different customers. The main advantage is that Utility Computing helps cut
down the costs of provisioning a customer’s configuration. This means that it
becomes possible to provide service to a wider range of customers.

• Service Providers and End Customers can obtain, under contract, out IT
resources from Utility Providers upon demand. They don’t need to concern
themselves about systems availability or the cost of running and maintaining all
of these systems; this is the responsibility of the Utility Provider.

There are several ways in which customers may choose to interact with the resources
put at their disposal. Here are two ways:

1. Customers have direct access to the computational resources they have rented
and utilise them directly on tasks of their own choosing. The software deployed
and the data resources used may be owned and provided by the customer.

2. Customers require a standard commodity service using standard infrastructure
and configurations. The customer therefore expects this environment to be
rolled out for them by the Utility Provider. The customer’s sole IP is likely to
reside entirely in the data that is used and generated by running the service
provided by the utility.

Typically, there is a specific mechanism provided for the customer to communicate with
the utility resources running on his behalf. In each case, the utility resources are
deployed according to some structured description.

Fig 1. A utility infrastructure consisting of network components running a rendering service.

 4

2.1. Why modelling utility infrastructure helps
There are several concerns for utility providers and their business customers alike.
Utility Providers are concerned that their systems are being as fully utilised as possible
On the other hand, Service Providers (i.e. Brokers who purely market and sell Utility
Services) and End-customers are concerned that they are getting the services that they
are being charged for according to contract, that their IP is being kept confidential and
that the appropriate computational services are well-managed.

• Provider asks: What happens to my utility systems if this worm attacks us?

Consider the following scenario: a Utility Provider is operating a large set of
networked systems in a data centre with resources fully allocated to a number of
their business customers. The Utility Provider learns that there are various kinds of
worm attacks (e.g. Sasser) are underway. Although patches will shortly be
available, there will be some time during which customers could be exposed:

Some questions are:

� What is the likely effect/impact of an outbreak within the data centre?

� In what order should my servers be patched to reduce the impact of these
attacks for my business customers?

� Given best-effort defence, we should accept that some systems will still be
vulnerable – at least until the official patches can be applied. In that case,
on what basis can I produce a reasonable estimate of the legitimate
computing and network activity that I should charge my unpatched
customers for? What is the trade off to be made here?

� Does this attack compromise customer data separation? If so, what could be
done about it?

• Customer asks: How is my confidential data protected?

Consider the following scenario: a corporate business customer outsource’s an
important part of their IT operations to a Utility Provider, subject to an appropriate
Service-Level Agreement and contract. However, to run the service effectively, the
customer will need to provide direct access to significant IP such as confidential
commercial data. Such information could certainly be useful to a competitor.

Some questions are:

� What is the risk of exposure of my valued IP to undesirable/unauthorised
access?

� Can I organise my resources and their defences better to mitigate my risks of
data exposure, whilst still continuing to operate effectively?

� Why can’t others in the Utility see my data? How does the Utility’s
configuration prevent unauthorised access? Can I access anyone else’s
VLAN? If I could see them, perhaps they could see me (e.g. network
isolation)?

� How “well” are my services performing under this Utility Provider? Is
performance meeting my Service-Level Agreements and Service-Level
Objectives?

The answer to several of these questions involves constructing some kind of model of
the utility security system that is accessible to customer and provider alike. The

 5

remainder of this report is concerned with suggesting some reasonable and effective
ways in which this might be done in practice.

3. Building models of utility infrastructure for se curity
As we have seen above, the basic problem is to represent the security aspects of a
deployed utility, in a form permitting exploration of interesting and relevant “what-if”
consequences.

An important part of the value proposition for Utility Computing is that the utility
systems architectures can be built up from standardised, commodity third-party
components for the networking, the server hardware and the software stack. This
means that the overall system offers a uniform, standardised computing environment to
each of its customers that is not dependent in detail upon which particular resources are
allocated to particular customers. This has the benefit from the Utility Providers point
of view that hardware and software systems can be more readily replaced and swapped
around in the event of component or systems failure.

This has a further implication for the kind of security modelling that can be effectively
used in practice. Because third-party components are used, this effectively restricts the
type of information, properties and characteristics that the model has available about
any particular component system or device. Broadly, the security model has to be based
as much as possible upon the infrastructure’s configuration information.

3.1. Modelling utility security requires effective abstractions
Modelling the utility in an effective manner could be attempted at many different levels.
For example, each of the networking devices, the compute servers and even the software
itself can be thought of in terms of detailed systems activities and processes. However,
as explained above, the utility is built out of standardised, third-party components for
which it is unreasonable to expect there to be sufficiently detailed, readily available
descriptions of behaviour. Accordingly, we have to instead make good use of whatever
information about these components that is available, such as the systems configuration
information, for instance.

Even if we did have sufficiently detailed behavioural descriptions of all the hardware
and software components, the upshot of the current research into systems verification
([HR04]) implies it is an intractable problem to systematically derive and extract useful
consequences from such detailed, complex information. Thus, some form of abstraction
would need to be applied in any case, if one wants to be able to gain any kind of
effective prediction concerning the security of utility configurations.

There are some other factors working in our favour as well. The properties that we wish
to deal with are security characteristics that, in any case, one may reasonably expect to
be extractable from systems configuration information (e.g. network connectivity,
access control permissions, and firewall rules). Fortunately, the kind of models we are
interested in here involve viewing the utility architecture as a kind of graph structure
which can be extracted from such information. This structure also conveniently permits
us to perform various reachability path queries, allowing us to examine the security
consequences of modelled utility configurations (e.g. impact analysis).

3.2. Semantic network models
The approach we shall take here exploits a number of ideas familiar from semantic
networks, object-modelling (see [UML, CIM]) and more generally, knowledge

 6

representation studies in philosophy and AI (see [Sowa1, Sowa2]). The security
modelling approach starts from the idea of being able to rigorously survey
hardware/software infrastructure and their configuration attributes. This asset-
management philosophy has already been explored with some success (see [HG02,
GHR03, DISCEX01, KYBS99]), and is thus potentially applicable to utility computing.

We naturally represent particular entities such as hardware servers and software
applications by objects having a certain attribute structure that is specified by a class
structure. For example:

def_class(server, [device, computer]
 [location / string,
 role / string,
 model / string,
 os / OS])

specifies a class called server that is a sub-class of both device and computer
with several simple attributes such as location (of type string) and operating system
(os of type OS).

The systems entities that we are attempting to capture and describe are naturally
multi-faceted and so we provide a class system that also supports multiple inheritance.
Note that supporting multiple inheritance of classes means that the ancestor classes of
some class must have attributes that are mutually consistent in terms of their types.

Values are defined in terms of the particular classes they instantiate and the attributes
that they are given. For example:

defn (neptune,
 server(role / ”Management serv er”,
 os / rh_linux,
 remote_admin_access / false,
 tty / p27,
 location / ”main m/c room”
)
)

defines a particular instance of the class server , called neptune . Note how this
instance doesn’t possess the particular attribute “model” mentioned in the class
definition for class server . Additionally, the instance also included a couple of extra
attributes (i.e. remote_admin_access and tty).

All of this is fine, as we may add, delete or modify attribute information at some later
stage to reflect our current state of knowledge. In modelling “live” systems, we are
inherently dealing with incomplete and imperfect information that are continually
subject to change and revision. Nothing about the configuration of the utility is
assumed known with complete finality.

We have therefore found it useful to be tolerant of partial and incomplete information.
In particular, we do not require that attributes are always defined for every instance of a
given class. However, once the attribute value is defined, then we expect it to match the
associated type constraint.

In fact, we may define instances and classes in any order; class definitions can follow
after instance definitions if necessary. This implies that instances may need to be
(re)validated upon class (re)definition.

In principle, classes may also have logical invariants associated with them. However,
these are only applied and checked upon update of the relevant attributes for each

 7

instance. This is because invariants are only meaningful and checkable if all the
relevant attributes are defined. This gives a more permissive regime accommodating
our understanding that knowledge about the utility configuration is typically incomplete.

3.2.1. Associations
We need more than pure objects to express all the characteristics that we are interested
in. In particular, we are interested in various graph-theoretical concepts of linkage and
connection that naturally arise when modelling systems (e.g. network connectivity
between devices, module and library use relationships). To this end, we introduce a
structured form of binary association (or link). These are structured entities that
explicitly join or connect two objects (the source and target). We allow associations to
be either directed or undirected.

Associations are structured in the same ways that objects are in the sense that they have
a class structure (called link-classes) and also may have attributes of their own. Thus,
we distinguish between attributes and associations – which are often treated in the same
way in other modelling systems. This means we can easily formulate properties
qualifying not only objects but also the associations themselves.

The advantage of using link-classes to qualify associations is that we can constrain the
kinds of object that can be used as sources and targets. For example, we make use of
this to ensure that associations representing network connectivity can only be attached
to computer systems and not other kinds of entity, such as some kind of software
component. Furthermore, by using attributes on the links themselves, we can assert that
an association represents a communications path between two systems using particular
protocols e.g. https , tcp-ip . Another application of using attributes on associations is
in modelling VLAN links.

The use of attributes on both objects and associations is illustrated in Fig 2 below.

In Fig 2, the dotted lines indicate an attribute for an object or association, and named by
an identifier. The square box attached to the dotted line represents an atomic value (i.e
string or number). The thick line indicates an association or dependency of some kind
between objects; clearly, there may be more than one association between two objects.

protocol

rh - linux

os

https

neptune

hostname server

switch

http

protocol
rh - linux

os

http

http

pluto

hostname

protocol

protocol

Fig 2: Attributed objects and attributed associations (thick lines)

…
…

…

 8

3.3. Semantics of routing & path making
As we have described, the utility architecture is modelled in terms of attributed objects
linked together by structured, attributed associations. This means that the kinds of
connection between objects are not just simple links but can be quite complex in their
own right.

There are two kinds of queries that we are going to need to use:

• Node queries that select particular sets of nodes.

• Path queries that show that two sets of nodes are linked together by paths
satisfying certain constraints. This kind of query naturally involves reachability
over the graph of associations. As such, these queries have some resemblance to
temporal model-checking (see [HR04, ModChk]).

As a result of this expressiveness of linkage, we can impose semantic constraints on the
routing connectivity between different classes of nodes, for example. This allows
particular classes of node, such as firewalls and switches, to have some specific
connectivity properties that can be dependant upon:

• Attribute information associated within the particular node.

• Attributes within the incident associations themselves.

• Other specific path information (e.g. overall source and destination).

These special connectivity properties are defined by connection predicates for particular
classes and link-classes.

For example, each router instance will typically have a “rules” attribute whose value
could define the permitted VLAN connections. The linkages permitted via the router
instance then depend upon these rules and the attributes of the respective associations
and their link-classes. This dependency will be determined by a connection predicate
defined for the class of routers. We illustrate this in Fig 3 below.

Routing and path formation can in general depend upon more than the local attributes of
the links associated to the node. For example, routing through a firewall will typically
depend upon the source and destination IP addresses of a path.

router X

X

Y
Y

vlan

vlan

vlan
vlan

rules
router-rules

…

… …

…

Fig 3: Making a path by connecting dependant associations at nodes.

 9

3.4. Using reachability path queries over graph models
As utility designers, providers and operators, we are typically interested in knowing:

• Is it possible for the configuration of this part of the utility to have a certain kind
of impact on this other part of the utility?

• Given that some part of the utility has a given property, what is the likely impact
this has elsewhere on the utility?

• Given that a certain particular situation has arisen, what utility configurations
could have allowed this to happen?

The kind of reasoning about the utility needed to answer all of the above critically
depends upon being able to explore the model and find paths having certain
characteristics that link certain sets of nodes (i.e. mapping the dependencies). Paths are
represented as (non-repeating) sequences of links, where the nodes and links satisfy
certain properties. In simple cases, such path-finding typically involves computing
reachability in terms of transitive closure of the graph. However, because of the
potentially complex nature of the associations used, we need instead to adopt a lazy
computation strategy that tries to minimise the number of unnecessary paths or linkages
computed.

A query evaluation framework was developed for the purposes of conducting demo’s
and small-scale experimentation. For the time being, we only informally illustrate the
kind of queries that are supported in our demo prototypes (see below) via some
examples given below. Note that the query framework provides only simple means to
name and index the results of queries denoting sets of nodes, edges or even paths.

• ask(servers)

This query determines the current set of all servers.

• ask(servers and [os/ rh_linux, version / 9.7])

This query determines the set of servers with attribute os set to “rh_linux ” and
attribute version set to 9.7.

• ask(server and
 reaches(file_server, network and [protocol/htt ps]))

This query determines those servers that can reach/access those file_servers via
edges of link-class network having attribute protocol set to https .

• reach(n1 , n2)

This query determines a lazy enumeration of the set of paths from a node
labelled n1 to node labelled n2 (where there is an additional semantic constraint
built-in). Typically, there may be several paths satisfying the semantic
constraint but usually only the first is of interest as a witness of existence.

• ask_multi_path(customer_sys,
 [[svc_portal, ne twork_http]
 , [server and contains(render_app), ne twork_http]
 , [vuln_utility_servers, ne twork_http]))

This query determines a lazy enumeration of composite paths starting from
nodes belonging to customer_sys and which use links belonging to
network_http to reach several intermediate node sets (e.g. svc_portal) and
which finally reaches the set vuln_utility_servers .

 10

From the above examples, it is clear that our queries will critically depend upon
attribute values of both standard objects and associations between objects. Future
extensions include defining and implementing a query and data description language
based upon the framework developed so far.

3.4.1. Relationship to conventional database techno logy
Traditional database oriented knowledge representation, based upon non-recursive
relational algebra (as typified by SQL) doesn't adequately cope with the richer path-type
queries, such as reachability and transitive closure (see [Ullman88], page 145). Thus,
our query language has to strictly extend the range of queries that are typically
supported by a conventional relational database.

By adding a form of recursive query, we provide a strictly more expressive query
language than provided by any variant of SQL, the Standard Query Language. This
result has been well-known since the 1980’s, but not much exploited except perhaps in
AI-style reasoning applications (see [HR04, ModChk]). In practice, such queries would
have to be executed using ad-hoc “stored routines/procedures” that are external to the
database system itself.

3.5. The need for standardised systems descriptions
One of the common criticisms about model driven approaches to systems architecture is
that high-level models can very quickly lose touch with the actual system after
implementation and deployment. Typically, models aren’t kept up-to-date and do not
provide an accurate reflection of the system dynamically, thus quickly losing any
authority it may have once had to speak about system properties.

In some sense, our work above also suffers from this as it solely discusses
representations and techniques for reasoning about models of systems infrastructure,
and merely assumes that there is some accurate correspondence to the current
configuration.

However, the situation is by no means lost. There already exist mature, well-developed
tools and standards for reporting systems configurations (e.g. HP OpenView and
SNMP). More recently, some promising standards and technologies (e.g. CIM and
SmartFrog) are emerging that could help provide the semantically rich device and
infrastructure descriptions that are required. Broadly, this means that we can define a
collection of plug-ins that allow systems infrastructure descriptions to be supplied in a
variety of formats and then used to build models for subsequent processing and analysis
(see Fig 4).

CIM
Modelling Tools

Systems
Descriptions

Fig 4: Using Systems Infrastructure Descriptions to provide accurate data for modelling utility systems.

SmartFrog

…

SNMP

 11

In the next two sections, we describe a couple of particular means by which accurate
systems infrastructure configuration descriptions may be extracted.

3.5.1. Common Information Model
One example of such a standard is the systems management technology known as the
Common Information Model, as standardised by the Distributed Management Task
Force (see [DMTF, CIM]). CIM provides an object-oriented data model of an
implementation-neutral schema for describing overall management information in a
network/enterprise environment, whilst allowing for vendor extensions. This is
typically used to describe individual device configurations and related management
information. This enables vendors to define in an implementation-neutral manner the
semantically rich management information that can be exchanged between network-
connected systems.

The CIM standard is composed of a Specification and a Schema. The Schema provides
structure for the model descriptions, while the Specification defines the underlying
details and interpretation. The CIM standard includes an XML representation for data
exchange and provides a mapping of CIM Messages onto HTTP allowing
implementations of CIM to interoperate in an open, standardized manner. CIM uses a
set of concepts similar to those described earlier. In particular, CIM makes use of
associations to represent the structured links we use between instances of objects. This
commonality makes CIM particularly suitable as a systems descriptive framework that
is compatible with our query framework involving path properties.

The Schema provides a wide range of classes – from storage, to providing support for
modelling the JavaTM 2 Enterprise Edition (J2EE) environment. The Schema includes
the concept of management profiles, support for managing security principals and
describing their authentication policy and privileges, manages IPsec policy and resulting
security associations, and features modelling of management infrastructure for
discovery.

The DMTF is currently working on extensions to all of its management standards,
including CIM, to take greater account of Utility Computing and related industry
initiatives.

3.5.2. SmartFrog
Another important class of examples are automated distributed deployment
technologies, such as SmartFrog (see [SF, SF-RefMan]). This is a technology for
describing distributed systems as networks of cooperating software components, for the
purpose of initiating them and subsequently managing their activity.

Systems1 deployed using SmartFrog typically have multiple software components
running across a network of computing resources, where the components must work
together to deliver the functionality of the system as a whole. It’s critical that the right
components are running on the correct computers, that the components are correctly
configured, and that they are correctly combined together into the complete system.
This requirement recurs across many services and applications that run on all kinds of
computing infrastructure, naturally including utility computing systems.

A concrete example might be a three-tier web application, which will often consist of a
database server, application logic middleware, web server software, firewalls and load-

1 The material in this section is based upon the SmartFrog FAQ.

 12

balancers. All of these can be thought of as components that need to work together to
deliver the complete web-service. Each component must be installed on an appropriate
resource and correctly configured. Components must be started in a certain sequence,
and linked together into the complete system.

With SmartFrog, system configuration details are captured in formal system
descriptions documents written in the SmartFrog description language. These
documents are interpreted by the SmartFrog distributed runtime engine in order to
install the required software components, to configure them, and to start the complete
software system according to the details of the description.

 13

4. Prototypes
We built two prototype artefacts to illustrate and demonstrate in an effective way our
modelling approach in the context of utility computing. All prototypes were
constructed using non-proprietary, open-source, multi-platform technologies.

4.1. Enterprise Security Modelling Tool
The first prototype, the Enterprise Security Modelling Tool, developed the
object-oriented deductive database approach, in which:

• Models of utility computing infrastructure were constructed (by hand) in the
manner described above. As implied earlier, in neither of our prototypes did we
consider the issue of where these descriptions came from. We did not spend any
effort here in developing automated mechanisms for capturing this information.

• Certain kinds of graph reachability query was ran against the model and the
results obtained were shown to combine together to help investigate high level
accessibility questions, as motivated by the two scenarios mentioned earlier in
Section 3.

This prototype was assembled and implemented fairly rapidly in Prolog (see [SWI,
AofP]) and demonstrated as a part of an international press event held at HP Labs in late
April 2004. It was designed mostly to show that some kind of effective model could be
constructed and then queried in a manner useful to utility customers and providers – this
much was achieved.

What we learnt from building this prototype was that further thought is needed about
mechanisms for capturing accurate and relevant utility configuration information in a
live manner. Perhaps as telling, it also became abundantly clear that relevant security
information is not easily extractable from basic configuration information on its own –
the organisational context is necessary to help understand what the interesting queries
are that utility providers and their customers might care about.

Fig 5: Screenshot of the Enterprise Security Modelling Tool

 14

4.2. Labyrinth
Our second prototype, called Labyrinth, was developed to explicitly show that it was
possible to provide an accessible graphical user interface to simplify the interaction with
the modelling tools. A further driver for this was to be able to present this work as part
of our overall research programme at an influential external event, the EU’s IST 2004
conference held in The Hague, NL, 15th-17th November, 2004. The conference
programme largely addressed policy issues related to research and the long-term
perspectives and trends affecting the EU IST research agenda.

The strategy we took was to focus on how graphical information could be extracted for
presentation from systems models and how to illustrate the results of queries.

Given these objectives, it was also important to develop architecture for this system that
could be compatible with our earlier prototype ESMT. In particular, there had to be a
practical way to include existing and future work on the reasoning engine without being
forced to re-implement everything again from scratch. As it happens, the Labyrinth
reasoning engine was simpler than that used for ESMT, as we needed to focus on
producing graphical output for display. However, we don’t anticipate major difficulties
in upgrading the Labyrinth reasoning engine to incorporate the capabilities developed in
ESMT. The architecture we adopted is diagrammed in Fig 6:

Fig 5: Screenshot of the Labyrinth prototype

 15

The bulk of the effort was spent in developing the Graphical Display Engine in JavaTM –
this was substantially based upon the open-source JGraph graphical visualisation library
(see [JGraph]). We made extensive use of the popular Eclipse development
environment.

What we learnt from developing Labyrinth was firstly that Prolog can be very
effectively coupled with other systems as a subordinate process. There is of course a
need to coordinate activities between all the systems involved – but this turned out to be
straightforward to implement.

Secondly, as one would probably have anticipated, there are no “silver bullet” solutions
to the task of laying out graphical information to highlight important aspects of a
particular situation. In some sense, this should be expected, as complex sets of
information will typically have more than one aspect needing to be highlighted – there
is often no clear priority. Graph drawing is well known to be a hard problem to solve
and JGraph itself implements a number of well-known algorithms (e.g. Simulated
Annealing, Moen’s algorithm, Sugyjama, etc.) that have been developed to do this.
However, the high bandwidth provided by graphical display’s for showing complex
information is something of a mixed blessing. It is hard to avoid, on the one hand,
confusion due to showing too much and over-simplification by not showing enough, on
the other.

In the end, we manually laid out the diagrams and avoided, for the time being, any
“closed” automation of layout. This reduces the frustration of trying to indirectly
persuade systems to layout data according to one’s aesthetic desires, but at the expense
of having to do so by hand. It would be interesting to combine automated “layout
policy” with some degree of manual placement and layout editing.

Reasoning

Engine

[Prolog]

Graphical
Display
Engine

[JavaTM]

Input Queries

Utility Model + Layout
(hand-crafted)

XML format
(SGF)

Control Info

Display Info

Utility Description

Fig 6: Schematic Block Architecture for Labyrinth

 16

5. Risk Analysis – or asking the right questions
As already discussed, Utility Computing provides technology for customers to
outsource and “rent” computing resources from Utility Providers. These Utility
Providers offer a managed computing environment into which customers can deploy
their own services and software environments, built upon standard, already
instrumented, components and environments. Infrastructure models have been
developed and investigated here that can help both utility customers and utility
providers explore and query the security consequences of configurations. In general,
utility security will require collaborative cooperation between utility providers and their
customers.

However, as implied earlier, simply being able to ask all sorts of low level queries about
infrastructure and its security configuration doesn’t help with knowing what the
important, business related security questions are that need to be asked (i.e. security
policy). There is also the important question of translating high-level concerns about
security protection and policy into lower-level queries about infrastructure.

In short, supplying effective security involves knowing what needs to be defended,
whilst at the same time enabling business utility customers to serve their end-customers,
to continuously optimise operations, and maintain their competitive edge.

This broader picture involves not only understanding the configuration of the
infrastructure systems but additionally understanding the needs that they are designed to
serve. This involves to some extent understanding and mapping out the organizational
context and the business processes involved. Such knowledge helps both the business
customer and their utility providers to see better what the risks are and thus making
informed decisions concerning how best to defend their assets with the resources
available.

Given this analysis, we are broadening our research goals to encompass more of this
“risk management” point of view which takes more of the organisational structure into
account. Traditionally, risk assessment has meant calculating “impact × probability” in
some meaningful way. Such a calculation is difficult to do meaningfully unless the
impacts of compromise and loss of service functionality have been understood in
business terms.

A key part of this risk assessment process involves the business determining its “risk
appetite”. This is a risk profile that identifies classes of risk and at what level risk is
deemed acceptable and, consequently, what level it is deemed unacceptable. Once risk
has been identified and assessed, appropriate controls and process mechanism can then
be put in place to mitigate the overall risk by reducing the probability of incidents and
even their impact. Of course, these controls themselves will have some management
overhead and a need for appropriate configuration etc.

From a business point of view, security issues are also increasingly linked with
corporate IT governance. Legislation such as the HIPAA and Sarbanes-Oxley acts in
the US now make corporate management directly accountable for their organisational
practices, including financial integrity and security. The need for regulatory compliance
is now forcing companies on a global scale to develop and adopt explicit security
policies and mechanisms. Also, at a systems level, there is increasingly a parallel to be
seen between policy and management for security in business-critical systems and
policy and management for safety-critical systems. Approaches for actively managing

 17

risk associated with safety concerns may therefore be relevant in the context of security
(see [Leveson, PRA]).

The UK MoD and QinetiQ have jointly developed their Domain-Based Security (DBSy)
risk methodology to map out and assess information security requirements at a business
relevant level (see [DBSy1, DBSy2, DBSy3]). A Business Communications Model is
first mapped out and developed which establishes the business need for communications
between business entities. A second Infrastructure Architecture Model is then
developed that captures at a high-level the infrastructure and networking requirements
in alignment with the business need established earlier. The risk analysis process then
makes use of Compromise Path Analysis to establish the degree of risk due to potential
sources of compromise and information leakage. This prioritisation means that
defences can then be more strategically placed to mitigate the most pressing sources of
compromise.

Techniques such as DBSy offer an interesting, promising data point but will need
further research to take it into a commercial context. For example, the various DBSy
models do not easily address the stewardship issues that naturally arise in the context of
Utility Computing, where customers place their IT capital in the hands of one or more
trusted Utility Providers. Today, commercial organisations view the Internet as
primarily a business tool via which business transactions are routinely performed. The
Internet is also a source of potential threats, which therefore has to be balanced against
modern business needs. The risk analysis models need to more explicitly incorporate
strong identity concepts (e.g. Authorisation-Authentication-Audit, Virtual Private
Networks) to appropriately assign responsibility and also capability. Finally, there is a
clear need to explicitly identify systems management roles and associated controls as a
part of the infrastructure mapping – and this certainly lies at the interface between
systems and business organisation.

Conclusions
Our initial objectives were to investigate the building of simplified semantic models that
could examine security consequences of managed infrastructures. We developed two
prototype systems demonstrating that such models could be effectively implemented
and deployed. There is a clear need for more automation to capture and report on
systems infrastructure configuration details. To a large extent, such automation is
already in progress as a part of the development of existing and emerging technologies
and standards, such as CIM and SmartFrog.

By far the most important realisation is that it is necessary (not merely ‘interesting’) to
have knowledge of the business objectives and their risks before being able to assess if
security and IT governance objectives have been adequately met by a particular systems
configuration. Inevitably, there is a mismatch in translating high-level security policy
requirements into queries against lower-level systems configurations and in translating
the responses back again. It is an interesting open question to see how far this gap can
be bridged. As a result, it is clearly necessary to represent the business process structure
and correlate this with the underlying utility infrastructure and the people that interact
with these services and systems.

Acknowledgements
I thank Simon Shiu, Adrian Baldwin, Yolanta Beres, Chris I Dalton, Nicholas Murison,
David Plaquin, Rich Smith and Frederic Gittler for their assistance and many helpful
comments during this research.

 18

References
[AofP] L. Sterling, and E. Shapiro, The Art of Prolog, 2nd Ed, MIT Press, 1994

[CIM] http://www.dmtf.org/standards/cim/

[DBSy1] Domain Based Security White Paper, QinetiQ 2004
 http://www.qinetiq.com/home/core_skills/knowledge_i nformation_and_systems
/trusted_information_management/white_paper_index.P ar.0004.File.pdf

[DBSy2] C.L. Robinson and K.J.Hughes, Managing Infosec Risk in Complex
Projects, 4th Annual Systems Engineering for Defence Conference,
RMCS Shrivenham, 15-16th February 2001

[DBSy3] C. L. Robinson, Security Requirements Models to Support the
Accreditation Process, 2nd Annual Sunningdale Accreditor’s
Conference, 10th – 11th September 2001

[DISCEX01] J.Burns, A.Cheng, P.Gurung, S.Rajagopalan, P.Rao, D.Rosenbluth,
A.V.Surendran, D.M.Martin Jr. Automatic Management of Network
Security Policy, DISCEX II'01 -- DARPA Information Survivability
Conference and Exposition, IEEE Press, June 2001.

[DMTF] http://www.dmtf.org

[GHR03] J.D.Guttman, A.Herzog, J.D.Ramsdell, Information Flow in Operating
Systems: Eager Formal Methods, Workshop on Issues in the Theory of
Security (WITS'03), April, 2003.

[HG02] A.Herzog, J.D.Guttman, Eager Formal Methods for Security
Management, Proc. of VERIFY'02, 2002

[HR04] M.Huth, and M.Ryan, Logic in Computer Science, 2nd Ed, CUP, 2004

[JGraph] http://www.jgraph.com/

[KYBS99] A.V.Konstantinou, Y.Yemini, S.Bhatt, S.Rajagopalan, Managing
Security in Dynamic Networks, USENIX -- 13th Systems Administration
Conference -- LISA '99, November 1999.

[Leveson] Nancy G. Leveson, Safeware: System Safety and Computers, Addison
Wesley, 1995.

[ModChk] E.M.Clarke, O.Grumberg, and D.A. Peled, Model Checking, MIT Press,
1999.

[PRA] H.Kumamoto, E.J.Henley, Probabilistic Risk Assessment and
Management for Engineers and Scientists, 2nd Ed, IEEE Press, 1996

[SF] http://www.smartfrog.org/

[SF-RefMan] http://www.smartfrog.org/papers/sfReference.pdf

[Sowa1] J.F.Sowa, Conceptual Structures, Addison Wesley, 1984

[Sowa2] J.F.Sowa, Knowledge Representation, Brooks/Cole, 2000

[SWI] http://www.swi-prolog.org/

[Ullman88] J.D.Ullman, Principles of Database and Knowledge-Base Systems, Vol.1,
Computer Science Press, 1988

[UML] http://www.uml.org/

