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Abstract

In this paper we consider holsgic-based object modelling techniqgues may be used to help
Utility Providers and their customers obtain ingigloncerning the security characteristics of
utility infrastructure and networked systems. Wiefly describe two modelling tool prototypes
that were built and the underlying technology thegd.

Starting from an asset-management view of utildynputing infrastructure, we realised that the
more interesting questions lie not entirely witle ihfrastructure itself, but in the way that it is
used and deployed within organisations as part sgraice-oriented delivery framework. As a
result, it is clearly necessary to represent than@ss process structure and correlate this with
the underlying utility infrastructure and the pemghat interact with these services and systems.

1. Introduction

Logic-based object modelling can be used to help people visualizexatateethe
security properties of an IT infrastructure configuration. ibea is that the model co-
exists in real-time with the infrastructure so that the daesgy architects, and utility
administrators can, based on the model, explore and see the conseqietines
actions. The goal of this work is to provide tools to support the pmnadi model
based security management and assurance.

We show that these broad, logic-based object modelling techniqueavaoieling
representation of detailed behavioural characteristics) can béocugealide a tractable,
usable and effective abstraction that models the managemenuafyspooperties in a
utility computing context.

Finally, we discuss and motivate the need for approaches to condboctiad risk
assessments of utility computing environments that can help bridgeedre
organisational structures on the one hand and utility systems arehites on the
other.



2. Adaptive Utility Computing

Business is constantly seeking ways and means to increaseethgiron investment in
IT systems. A promising way exploits the Utility Computing mpuofewhich business
will contract third-party Utility Providers to provide IT servigetypically within a
networked data centre environment. To do this economically, URBlibviders will
need to provide a computing environment with a high degree of automatedtdoppor
their IT services and processing.

However, there is a complication. The utility resources that are dyrngnaltacated by

a Utility Provider to their customers will typically neénl access and compute over
highly-valued data and other IP assets owned by those customhbrs. polentially
represents a considerable risk of exposure and compromise tortifieasig) IP assets of
any customer that tries to exploit utility computing in an ¢ifecway. Accordingly,
customers will need continual assurance that their data and IBtlessets are being
adequately looked after and protected on their behalf. At the samee utility
providers need to have the means to offer this assurance in agiractil effective
manner that could entice, attract and retain customers.

Adaptive utility computing aims to provide computing resources agcssron the basis
of contractual outsourcing and rental. Such a capability enhnse®ess agility since
it means that IT resources can be made dynamically avadakdecommercial basis to
corporate users, thus allowing IT resources to be rapidly and dyalpmeallocated as
demand varies (i.e. “flexing”).  Furthermore, standard comnsedit|T infrastructure
(i.e. networking interfaces, server systems, and standard GSnsyswill be used so
that the customer’'s software configuration can be readilyicegptl over as many
different machines as required, subject to availability. Valueornmdtion assets and
services can be located at various points in these systems, wditiety of different
access paths and dependency links.

For our purposes here, Utility Computing is about creating a flekbigstructure that

is shared between distrusting customers, whilst allowing custotoerscrease or

decrease the amount of resources they are using as their demasd \War assume a
utility provider whose job it is to provide a secure, highly instrunteatel trustworthy

environment for their customers. Customers will be segmented intiialvi

infrastructures (farms), and there will be utility managenmeathines responsible for
allocating and provisioning resources (i.e. CPU and storage) into aod these farms

in a secure manner.

The basic security property required is that customers should redil®do see each
other's data, or even be aware of their presence in termgtaforking and service
provision (e.g. network isolation). Customers should assume that seeéealsive
measures will be used in the architecture to provide defenceth-der the utility
itself. In particular, it should be very hard for customersctess or affect the back-
end Utility Management servers.

There are a number of techniques that can be used to isolage vamying from strong
physical separation (air-gapping), use of VLANs and enagptithrough to
configuration of traditional infrastructure such as firewallsnide management and
access control mechanisms. Customers should assume that #struofure will
already have been instrumented to the extent that that the provider will be gatber



Fig 1. A utility infrastructure consisting of netrkocomponents running a rendering service.

standard statistics about resource usage, but lacking the abikgvesdrop in detail
upon the customer’s activities.

Such flexibility of the IT infrastructure is likely to be aittive to Utility Providers,
Service Providers and End Customers alike, because:

» Utility Providers can make their infrastructure availableaodynamic basis to
different customers. The main advantage is that Utility Comgutielps cut
down the costs of provisioning a customer’s configuration. This méanstt
becomes possible to provide service to a wider range of customers.

* Service Providers and End Customers can obtain, under contract, out IT
resources from Utility Providers upon demand. They don’'t need to concern
themselves about systems availability or the cost of runningranataining all
of these systems; this is the responsibility of the Utility Provider.

There are several ways in which customers may choose tocinteth the resources
put at their disposal. Here are two ways:

1. Customers have direct access to the computational resourcdsatieeyented
and utilise them directly on tasks of their own choosing. The addtadeployed
and the data resources used may be owned and provided by the customer.

2. Customers require a standard commodity service using standasirudiare
and configurations. The customer therefore expects this environmdrg to
rolled out for them by the Utility Provider. The customeptedP is likely to
reside entirely in the data that is used and generated byngutim¢ service
provided by the utility.

Typically, there is a specific mechanism provided for the custton@mmunicate with
the utility resources running on his behalf. In each case, thty wdsources are
deployed according to some structured description.



2.1. Why modelling utility infrastructure helps

There are several concerns for utility providers and their bussioestomers alike.
Utility Providers are concerned that their systems are kesriglly utilised as possible
On the other hand, Service Providers (i.e. Brokers who purely marketefindtility
Services) and End-customers are concerned that they areydb#iservices that they
are being charged for according to contract, that their IP ig lk@pt confidential and
that the appropriate computational services are well-managed.

* Provider asks: What happens to my utility systems if this worm attacks us?

Consider the following scenario: a Utility Provider is operatindai@e set of
networked systems in a data centre with resources fully s#bda a number of
their business customers. The Utility Provider learns thag¢ thier various kinds of
worm attacks (e.g. Sasser) are underway. Although patchésshattly be
available, there will be some time during which customers could be exposed:

Some questions are:
» What is the likely effect/impact of an outbreak within the data centre?

» In what order should my servers be patched to reduce the imptuetsef
attacks for my business customers?

» Given best-effort defence, we should accept that some systéinssilivbe
vulnerable — at least until the official patches can be appligdthat case,
on what basis can | produce a reasonable estimate of the légitima
computing and network activity that | should charge my unpatched
customers for? What is the trade off to be made here?

» Does this attack compromise customer data separation? whabcould be
done about it?

» Customer asks: How is my confidential data protected?

Consider the following scenario: a corporate business customer outsoarce’
important part of their IT operations to a Utility Provider, subjecan appropriate
Service-Level Agreement and contract. However, to run the segffiectively, the
customer will need to provide direct access to significant I sgcconfidential
commercial data. Such information could certainly be useful to a competitor.

Some questions are:

» What is the risk of exposure of my valued IP to undesirable/unawtoris
access?

» Can | organise my resources and their defences betterig@atmiiny risks of
data exposure, whilst still continuing to operate effectively?

» Why can’t others in the Utility see my data? How does thiity}s
configuration prevent unauthorised access? Can | access ange'® el
VLAN? If | could see them, perhaps they could see me (e.g.orletw
isolation)?

» How “well” are my services performing under this UtilityoRider? Is
performance meeting my Service-Level Agreements and Sdrews-
Objectives?

The answer to several of these questions involves constructing sodefknodel of
the utility security system that is accessible to custoamet provider alike. The



remainder of this report is concerned with suggesting some reas@mableffective
ways in which this might be done in practice.

3. Building models of utility infrastructure for se curity

As we have seen above, the basic problem is to represent théysaspects of a
deployed utility, in a form permitting exploration of interestemd relevant “what-if’
consequences.

An important part of the value proposition for Utility Computing isttlthe utility
systems architectures can be built up from standardised, commaititiparty
components for the networking, the server hardware and the softteaake s This
means that the overall system offers a uniform, standardised cagpuatrironment to
each of its customers that is not dependent in detail upon whichugartiesources are
allocated to particular customers. This has the benefit fhenUtility Providers point
of view that hardware and software systems can be maléyregplaced and swapped
around in the event of component or systems failure.

This has a further implication for the kind of security modellirgt ttan be effectively
used in practice. Because third-party components are used, toisvefferestricts the
type of information, properties and characteristics that the muakelavailable about
any particular component system or device. Broadly, the sgocwodel has to be based
as much as possible upon the infrastructure’s configuration information.

3.1. Modelling utility security requires effective abstractions

Modelling the utility in an effective manner could be attempatechany different levels.
For example, each of the networking devices, the compute servers and evetwidre sof
itself can be thought of in terms of detailed systems aetsvdind processes. However,
as explained above, the utility is built out of standardised, thirg-garnponents for
which it is unreasonable to expect there to be sufficiently lddiaieadily available
descriptions of behaviour. Accordingly, we have to instead make goanf udetever
information about these components that is available, such as thesystefiguration
information, for instance.

Even if we did have sufficiently detailed behavioural descriptmiall the hardware
and software components, the upshot of the current research intmsysgfication
([HRO4]) implies it is an intractable problem to systemdijaderive and extract useful
consequences from such detailed, complex information. Thus, some fobpstratcton
would need to be applied in any case, if one wants to be able to rgaikinal of
effective prediction concerning the security of utility configurations.

There are some other factors working in our favour as well. Thergsspthat we wish
to deal with are security characteristics that, in any, s may reasonably expect to
be extractable from systems configuration information (e.g. nktwonnectivity,
access control permissions, and firewall rules). Fortunatelkitideof models we are
interested in here involve viewing the utility architecture &snd of graph structure
which can be extracted from such information. This structurecalseeniently permits
us to perform various reachability path queries, allowing us tonieeathe security
consequences of modelled utility configurations (e.g. impact analysis).

3.2. Semantic network models

The approach we shall take here exploits a number of ideasdafndm semantic
networks, object-modelling (see [UML, CIM]) and more generakypowledge



representation studies in philosophy and Al (see [Sowal, Sowa2]). €Coeity
modelling approach starts from the idea of being able to riglyroagrvey
hardware/software infrastructure and their configuration attisbuteThis asset-
management philosophy has already been explored with some success (s€2,[HG
GHRO03, DISCEXO01, KYBS99]), and is thus potentially applicable to utility computing.

We naturally represent particular entities such as hardwaxerseand software
applications byobjects having a certairattribute structure that is specified byckass
structure. For example:
def _class(server, [device, computer]
[ location / string,
role /string,

model / string,
0s /OS]

specifies a class callezbrver that is a sub-class of bottevice andcomputer
with several simple attributes suchieéstion  (of typestring ) and operating system
(os of type0s.

The systems entities that we are attempting to capture asatiloe are naturally
multi-faceted and so we provide a class system that also suppgtigle inheritance.

Note that supporting multiple inheritance of classes means thantestor classes of
some class must have attributes that are mutually consistent in terms tfipési

Values are defined in terms of the particular classes tisgritiate and the attributes
that they are given. For example:

defn (neptune,

server(role / "Management serv er’,
0s / rh_linux,
remote_admin_access / false,
tty / p27,
location / "main m/c room”

)
)

defines a particular instance of the clssser , calledneptune . Note how this
instance doesn’t possess the particular attributeé!” mentioned in the class
definition for classerver . Additionally, the instance also included a couple of extra
attributes (i.eremote_admin_access  andtty ).

All of this is fine, as we may add, delete or modify attribute informaticomte later
stage to reflect our current state of knowledge. In modelling “live€systwe are
inherently dealing with incomplete and imperfect information that arercaily
subject to change and revision. Nothing about the configuration of the utility is
assumed known with complete finality.

We have therefore found it useful totkerant of partial and incomplete information.

In particular, we do not require that attributes are always defined for iestance of a

given class. However, once the attribute value is defined, then we expect ichotinea
associated type constraint.

In fact, we may define instances and classes in any order; clastiaedican follow
after instance definitions if necessary. This implies that instances m@adyabe
(re)validated upon class (re)definition.

In principle, classes may also hdwegical invariants associated with them. However,
these are only applied and checked upon update of the relevant attfdyutsch



instance. This is because invariants are only meaningful and atiteck all the
relevant attributes are defined. This gives a more permissgime accommodating
our understanding that knowledge about the utility configuration is typically jpleden

3.2.1. Associations

We need more than pure objects to express all the characsettistiove are interested
in. In particular, we are interested in various graph-theoretwadepts of linkage and
connection that naturally arise when modelling systems (e.g. neteamectivity
between devices, module and library use relationships). To this enidiroguce a
structured form ofbinary association (or link). These are structured entities that
explicitly join or connect two objects (tlseurce andtarget). We allow associations to
be either directed or undirected.

Associations are structured in the same ways that objedis @ sense that they have
a class structure (calldthk-classes) and also may have attributes of their own. Thus,
we distinguish between attributes and associations — which arerefseed in the same
way in other modelling systems. This means we can easily fatenyroperties
qualifying not only objects but also the associations themselves.

The advantage of using link-classes to qualify associations isvéhaan constrain the
kinds of object that can be used as sources and targets. F@lexam make use of
this to ensure that associations representing network connecavitgrdy be attached

to computer systems and not other kinds of entity, such as some kisaftware
component. Furthermore, by using attributes on the links themselvesyvassert that
an association represents a communications path between two systegparticular
protocols e.ghttps , tcp-ip . Another application of using attributes on associations is
in modelling VLAN links.

The use of attributes on both objects and associations is illustrated in Fig 2 below.
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Fig 2. Attributed objects and attributed associai¢thick lines)

In Fig 2, the dotted lines indicate an attribute for an object or association, and named b
an identifier. The square box attached to the dotted line represents an atomicevalue (i

string or number). The thick line indicates an association or dependency of some kind
between objects; clearly, there may be more than one association betweeretis obj



3.3. Semantics of routing & path making

As we have described, the utility architecture is modelledrimg of attributed objects
linked together by structured, attributed associations. Thisisngeat the kinds of
connection between objects are not just simple links but can be quiptezoim their
own right.

There are two kinds of queries that we are going to need to use:
* Node queries that select particular sets of nodes.

* Path queries that show that two sets of nodes are linked together by paths
satisfying certain constraints. This kind of query naturally inv@heachability
over the graph of associations. As such, these queries have semblaege to
temporal model-checking (see [HR04, ModChk]).

As a result of this expressiveness of linkage, we can imgasostic constraints on the
routing connectivity between different classes of nodes, for exampldis allows
particular classes of node, such as firewalls and switches, vie $@me specific
connectivity properties that can be dependant upon:

» Attribute information associated within the particular node.
» Attributes within the incident associations themselves.
» Other specific path information (e.g. overall source and destination).

These special connectivity properties are definedobyection predicates for particular
classes and link-classes.

For example, each router instance will typically have a “rufibute whose value
could define the permitted VLAN connections. The linkages permiitethe router
instance then depend upon these rules and the attributes of the vesassticiations
and their link-classes. This dependency will be determined dpnaection predicate
defined for the class of routers. We illustrate this in Fig 3 below.

X lvlan

7
7

_____________ Q router-rules

AN
AN
N

Fig 3: Making a path by connecting dependant associations at nodes.

Routing and path formation can in general depend upon more than the tidloafest of
the links associated to the node. For example, routing througdwalf will typically
depend upon the source and destination IP addresses of a path.



3.4. Using reachability path queries over graph models
As utility designers, providers and operators, we are typically interegstemwing:

* Is it possible for the configuration of this part of the utilityhtove a certain kind
of impact on this other part of the utility?

» Given that some part of the utility has a given property, \ghidie likely impact
this has elsewhere on the utility?

* Given that a certain particular situation has arisen, whatyutibhfigurations
could have allowed this to happen?

The kind ofreasoning about the utility needed to answer all of the above critically
depends upon being able to explore the model and find paths havingn certai
characteristics that link certain sets of nodes (i.e. magpadgpendencies). Paths are
represented as (non-repeating) sequences of links, where the nodieskswrsatisfy
certain properties. In simple cases, such path-finding typicallglves computing
reachability in terms of transitive closure of the graph. Howebecause of the
potentially complex nature of the associations used, we need insteatbpt a lazy
computation strategy that tries to minimise the number of unreeggsaths or linkages
computed.

A query evaluation framework was developed for the purposes of comgluemo’s
and small-scale experimentation. For the time being, we onlymiafby illustrate the
kind of queries that are supported in our demo prototypes (see belovgpivia
examples given below. Note that the query framework providessonjyle means to
name and index the results of queries denoting sets of nodes, edges or even paths.

e ask(servers)
This query determines the current set of all servers.
o ask( servers and [ os/ rh_linux, version /9.7 ])

This query determines the set of servers with attribaiteet to th_linux ” and
attributeversion  set to 9.7.

e ask(server and
reaches(file_server, network and [protocol/htt ps]) )

This query determines those servers that can reach/accesdilgoservers via
edges of link-classetwork having attributerotocol — set to hitps .

e reach(nl,n2)

This query determines a lazy enumeration of the set of paths dromade
labelledn1 to node labelled2 (where there is an additional semantic constraint
built-in).  Typically, there may be several paths satisfyihg semantic
constraint but usually only the first is of interest as a witness of existence

e ask_multi_path( customer_sys,

[ [ svc_portal, ne twork_http]
, [ server and contains(render_app), ne twork_http]
, [ vuln_utility_servers, ne twork_http] ))

This query determines a lazy enumerationarhposite paths starting from
nodes belonging teustomer_sys  and which use links belonging to
network_http  to reach several intermediate node sets §ecgportal) and
which finally reaches the seiln_utility_servers
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From the above examples, it is clear that our queries wiiicaity depend upon
attribute values of both standard objects and associations betweers.obfagiure
extensions include defining and implementing a query and data destigrnguage
based upon the framework developed so far.

3.4.1. Relationship to conventional database techno  logy

Traditional database oriented knowledge representation, based upon nsiveecu
relational algebra (as typified by SQL) doesn't adequatghg with the richer path-type
gueries, such as reachability and transitive closure (semdu88], page 145). Thus,
our query language has to strictly extend the range of qudrasate typically
supported by a conventional relational database.

By adding a form ofrecursive query, we provide a strictly more expressive query
language than provided by any variant of SQL, the Standard Queguage. This
result has been well-known since the 1980’s, but not much exploited g@arbpps in
Al-style reasoning applications (see [HR04, ModChk]). In pracsiceh queries would
have to be executed using ad-hoc “stored routines/procedures” trettaneal to the
database system itself.

3.5. The need for standardised systems descriptions

One of the common criticisms about model driven approaches to syatemtecture is
that high-level models can very quickly lose touch with the actuslesy after
implementation and deployment. Typically, models aren’t kept upi®-alad do not
provide an accurate reflection of the system dynamically, tuiskly losing any
authority it may have once had to speak about system properties.

In some sense, our work above also suffers from this as it sdisbusses
representations and techniques for reasoning about models of systexssucture,
and merely assumes that there is some accurate corresponderthe turrent
configuration.

However, the situation is by no means lost. There alreadyreatsire, well-developed
tools and standards for reporting systems configurations (e.gOp#hView and
SNMP). More recently, some promising standards and technol@ggsCIM and
SmartFrog) are emerging that could help provide the semdwtiveth device and
infrastructure descriptions that are required. Broadly, thi;mm#desat we can define a
collection of plug-ins that allow systems infrastructure dpgons to be supplied in a
variety of formats and then used to build models for subsequent pnocasd analysis
(see Fig 4).

> SNMF
/’///7 CIM
e Modelling Tools
:::: ::\ §§§§§ ) SmartFro w
Systems \\\\)

Descriptions

Fig 4: Using Systems Infrastructure Descriptionpriovide accurate data for modelling utility system
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In the next two sections, we describe a couple of particular nisangich accurate
systems infrastructure configuration descriptions may be extracted.

3.5.1. Common Information Model

One example of such a standard is the systems management teghmaag as the
Common Information Model, as standardised by the Distributed Managehaskt
Force (see [DMTF, CIM]). CIM provides an object-oriented data madean

implementation-neutral schema for describing overall managemgrmation in a
network/enterprise environment, whilst allowing for vendor extensioriis is

typically used to describe individual device configurations andectlatanagement
information. This enables vendors to define in an implementation-nevdraher the
semantically rich management information that can be exchadng@deen network-
connected systems.

The CIM standard is composed of a Specification and a SchdraeéSdhema provides
structure for the model descriptions, while the Specification defihesunderlying
details and interpretation. The CIM standard includes an XML repta&son for data
exchange and provides a mapping of CIM Messages onto HTTP allowing
implementations of CIM to interoperate in an open, standardized ma@hdruses a

set of concepts similar to those described earlier. In patjcGIM makes use of
associations to represent the structured links we use betwesmcesbf objects. This
commonality makes CIM particularly suitable as a systerssriggive framework that

is compatible with our query framework involving path properties.

The Schema provides a wide range of classes — from storage, to providing support for
modelling the Javd 2 Enterprise Edition (J2EE) environment. The Schema includes
the concept of management profiles, support for managing security principals and
describing their authentication policy and privileges, manages IPsec paiicgsulting
security associations, and features modelling of management infrastifocture
discovery.

The DMTF is currently working on extensions to all of its management standards
including CIM, to take greater account of Utility Computing and related industr
initiatives.

3.5.2. SmartFrog

Another important class of examples are automated distributed depidy
technologies, such as SmartFrog (see [SF, SF-RefMan]). Tlasteshnology for
describing distributed systems as networks of cooperating sefteaponents, for the
purpose of initiating them and subsequently managing their activity.

System$ deployed using SmartFrog typically have multiple software pmrants
running across a network of computing resources, where the componemts/arikis
together to deliver the functionality of the system as a whible critical that the right
components are running on the correct computers, that the componentsracdycor
configured, and that they are correctly combined together int@dhmplete system.
This requirement recurs across many services and applicat@nsubh on all kinds of
computing infrastructure, naturally including utility computing systems.

A concrete example might be a three-tier web application, whiltloften consist of a
database server, application logic middleware, web server seftiwvawalls and load-

! The material in this section is based upon therSfrag FAQ.
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balancers. All of these can be thought of as components that nesdkidogether to

deliver the complete web-service. Each component must be edstallan appropriate
resource and correctly configured. Components must be started iitaia sequence,
and linked together into the complete system.

With SmartFrog, system configuration details are captured ammdl system
descriptions documents written in the SmartFrog descriptionudayegg These
documents are interpreted by the SmartFrog distributed runtimeeeny order to
install the required software components, to configure them, andrtdr&acomplete
software system according to the details of the description.
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4. Prototypes

We built two prototype artefacts to illustrate and demonstragmnieffective way our
modelling approach in the context of utility computing. All prototypesre
constructed using non-proprietary, open-source, multi-platform technologies.

4.1. Enterprise Security Modelling Tool

The first prototype, the Enterprise Security Modelling Tool, dsed the
object-oriented deductive database approach, in which:

* Models of utility computing infrastructure were constructed Klayd) in the
manner described above. As implied earlier, in neither of our ppe®did we
consider the issue of where these descriptions came from. \WWetdigend any
effort here in developing automated mechanisms for capturing this information.

» Certain kinds of graph reachability query was ran against the Inandethe
results obtained were shown to combine together to help investiggtdehel
accessibility questions, as motivated by the two scenarios anedtiearlier in
Section 3.

This prototype was assembled and implemented fairly rapidly atodPr(see [SWI,
AofP]) and demonstrated as a part of an international press everat P Labs in late
April 2004. It was designed mostly to show that some kind of effectoel could be
constructed and then queried in a manner useful to utility customeémaviders — this
much was achieved.

= |

Y Enterprise Security Madelling Tool === Proof-Of-Concept Version : May 2004 === ®= <]
File . Edit Settings Run Debug Help
n=: [ drv.mou linux drv kbd_ linux drv wvmon_linux drv fdsk linux drv _hdsk linux python ph [4

p perl jvm rh_linux] and hub farm_hub b (location-udc room_rackll max =slot=-64 rolesFarm
B Hub Fouter)

Adding internet_protocol http (name-http std port-80) dewvice connections for server
ez_fmn_2 (rolesResource Farm Hachine model-DL360 o=so= rh linux location-udc room_rack$)
elen=z: [ drv_mou linux drwv kbd_linux drv_wvmon linux drw fd=l linuw drw_hdslk linux python

php perl jwm rh linux] and hub farm _hub b {location-udc room_rackl3 max =lots-s64 rolesF
arm B Hub Router)

Adding internet_protocol ftp (name<ftp std _ports0) device connections for server res
fm_3 {(role<Resource Farm Machine model-DL360 o=-o= rh_linux location-udc room_racki) =le
n=: [ drv_mou linux drv kbd_linux drv wmnon_ linuzx drv fdsk linuz drv_hdsk linu=x python ph
p perl jvm rh linux] and hub farm_hub b {location<udc room rackld meax slot=-64 rolesFarm

B Hub Router)

Adding internet_protocol http {(name~http std port-80) device connections for server
ez_fm_3 (rolesResource Farm Hachine model-DL360 o=<o= rh linux location-udc room_rack8)
elemn=z: [ drv_mou linux drwv kbd linux drv_wvmon linux drwv fd=sk linux drwv hdsk linux python

php perl jwm rh linux] and hub farm _hub b {location-udc room_rackl3 max =lots<64 rolesF
arm B Hub Router)

Fefreshing cache of all model element= ... done.

Object=s summnary:

Total number of classes = 70
Total number of node objects = 93
Total number of link objects = 778

24 nodelssesnt- {d compiled 4.78 sec., 189,932 bytes

Pres=s any key to continue . ..

Fig 5: Screenshot of the Enterprise Security MaaigIT ool

What we learnt from building this prototype was that further thoiggheeded about
mechanisms for capturing accurate and relevant utility contigaranformation in a
live manner. Perhaps as telling, it also became abundantlyticttanelevant security
information is not easily extractable from basic configuratioarmftion on its own —
the organisational context is necessary to help understand whatetesting queries
are that utility providers and their customers might care about.
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4.2. Labyrinth

Our second prototype, called Labyrinth, was developed to explicitly shaint was
possible to provide an accessible graphical user interface plifgithe interaction with
the modelling tools. A further driver for this was to be ablprésent this work as part
of our overall research programme at an influential externaitetiree EU’s IST 2004
conference held in The Hague, NL, 57" November, 2004. The conference
programme largely addressed policy issues related to reseadcltha long-term
perspectives and trends affecting the EU IST research agenda.

The strategy we took was to focus on how graphical information cowdatbected for
presentation from systems models and how to illustrate the results of queries.

B C:\WINDOWS\System32\cmd. ... - 0| x|

"B Labyrinth : Infrastructure Model Graphical Demo [v1.15, 10th November 2004] . -5 Nodes-[fs2. <18
| mbstract View L wLan view i s s ol pai i
. JLegic
L A= A= o
server ml server n3 server x1 SEIVEr K3
X i
e b a5
et=z1, Node..—[f,,:}
server Nz server x4

et=s2, MNodes=[fs3.

- Modes_so_far=[s3.

; : : — ; et=31. Modes=[f=s3.
mmll =l
lan 182 Bl EE fan 182 et=s2, MNodes=[fs3.
fmin =t
DHS dinst switch =1 switch 52 LDAP lckapt 1. Nodes su _fFar=[fsi
. ) 1
. — : 2
mmll =l i
1 | =] 4
el o=t 4
witch 53 witch 54 3
4
-
@ d dl | - =32, Modes=[fs4,
— » Nodes_so_far=I[s3.
file server fs1 file server fa2 file server =3 | file server fad et=s1. Nodes=[fs

et=s2, MNodes=[fs4.

Nodes_so fiu—[f 1

RAID clut RAID cu2 RAID cu3 RAID dud Load / Reload
| Ok

1.
1
2.
2.
3.
3.

Found a target=s2, Nodes—[ldapi
Fig 5: Screenshot of the Labyrinth prototype (next)

Given these objectives, it was also important to develop architdotulds system that
could becompatible with our earlier prototype ESMT. In particular, there had to be a
practical way to include existing and future work on the reasamgge without being
forced to re-implement everything again from scratch. As it happéesLabyrinth
reasoning engine was simpler than that used for ESMT, asewded to focus on
producing graphical output for display. However, we don’t anticipetr difficulties

in upgrading the Labyrinth reasoning engine to incorporate théittpa developed in
ESMT. The architecture we adopted is diagrammed in Fig 6:
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Utility Model + Layout
(hand-crafted)

j ......
A Reasoning

Utility Description Engine

Graphical
Display
Engine

[Prolog]

O - [Java™]
1

Fig 6: Schematic Block Architecture for Labyrinth

Display Info

The bulk of the effort was spent in developing the Graphical Dispigyng in Javel' —
this was substantially based upon the open-source JGraph graphiefiaiton library
(see [JGraph]). We made extensive use of the popular Eclipséopteeat
environment.

What we learnt from developing Labyrinth was firstly that Protanp be very
effectively coupled with other systems as a subordinate proddsse is of course a
need to coordinate activities between all the systems involvedthibttirned out to be
straightforward to implement.

Secondly, as one would probably have anticipated, there are no “silledf balutions
to the task of laying out graphical information to highlight impartaspects of a
particular situation. In some sense, this should be expected, gderxosets of
information will typically have more than one aspect needing tbigpdighted — there
is often no clear priority. Graph drawing is well known to beaed problem to solve
and JGraph itself implements a number of well-known algorithms &mulated
Annealing, Moen’s algorithm, Sugyjama, etc.) that have been developdd this.
However, the high bandwidth provided by graphical display’s for showingpleoxm
information is something of a mixed blessing. It is hard todvon the one hand,
confusion due to showing too much and over-simplification by not showing enaugh, o
the other.

In the end, we manually laid out the diagrams and avoided, for thebgmg, any
“closed” automation of layout. This reduces the frustration ahgryto indirectly
persuade systems to layout data according to one’s aesthatgsdest at the expense
of having to do so by hand. It would be interesting to combine autorfiateuit
policy” with some degree of manual placement and layout editing.
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5. Risk Analysis — or asking the right questions

As already discussed, Utility Computing provides technology foroomests to
outsource and “rent” computing resources from Utility Provider§hese Utility
Providers offer a managed computing environment into which customerdepéoy

their own services and software environments, built upon standard, already
instrumented, components and environments. Infrastructure models beawe
developed and investigated here that can help both utility customers ifityd ut
providers explore and query the security consequences of confogistatin general,
utility security will require collaborative cooperation betwesility providers and their
customers.

However, as implied earlier, simply being able to ask all stisw level queries about
infrastructure and its security configuration doesn’t help with knowaigat the
important, business related security questions arentgdtto be asked (i.e. security
policy). There is also the important question of translating-leigél concerns about
security protection and policy into lower-level queries about infrastructure.

In short, supplying effective security involves knowing what needbetalefended,
whilst at the same time enabling business utility customegsrte their end-customers,
to continuously optimise operations, and maintain their competitive edge.

This broader picture involves not only understanding the configuratiorthef
infrastructure systems but additionally understanding the needfiélyadire designed to
serve. This involves to some extent understanding and mapping out theatigaal
context and the business processes involved. Such knowledge helps both tres busine
customer and their utility providers to see better what the @se and thus making
informed decisions concerning how best to defend their assets withesbarces
available.

Given this analysis, we are broadening our research goatsxctonpass more of this
“risk management” point of view which takes more of the organisadtginacture into
account. Traditionally, risk assessment has meant calculatpgct x probability” in
some meaningful way. Such a calculation is difficult to do meaniygtuiless the
impacts of compromise and loss of service functionality have bederstood in
business terms.

A key part of this risk assessment process involves the businesmigétg its “risk
appetite”. This is a risk profile that identifies classésisk and at what level risk is
deemed acceptable and, consequently, what level it is deemed uabhlce@nce risk
has been identified and assessed, appropriate controls and processsmecharthen
be put in place to mitigate the overall risk by reducing the pibtyaof incidents and
even their impact. Of course, these controls themselves widl f@ame management
overhead and a need for appropriate configuration etc.

From a business point of view, security issues are also inaggadinked with

corporate IT governance. Legislation such as the HIPAA andaBeskOxley acts in
the US now make corporate management directly accountabtbeeiororganisational
practices, including financial integrity and security. The rfeedegulatory compliance
is now forcing companies on a global scale to develop and adopt esaaitity

policies and mechanisms. Also, at a systems level, thareréasingly a parallel to be
seen between policy and management for security in busingsalcgystems and
policy and management for safety-critical systems. Approdchnesctively managing
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risk associated with safety concerns may therefore be relevdrg context of security
(see [Leveson, PRA]).

The UK MoD and QinetiQ have jointly developed their Domain-Basedii8g (DBSy)
risk methodology to map out and assess information security reguitem@t a business
relevant level (see [DBSyl, DBSy2, DBSy3]). A Business Comaations Model is
first mapped out and developed which establishes the business needrfarrgoations
between business entities. A second Infrastructure Architedilogdel is then
developed that captures at a high-level the infrastructure aneénkety requirements
in alignment with the business need established earlier. Thanaysis process then
makes use o€ompromise Path Analysis to establish the degree of risk due to potential
sources of compromise and information leakage. This priordisatheans that
defences can then be more strategically placed to mitigatmost pressing sources of
compromise.

Techniques such as DBSy offer an interesting, promising data potnwill need
further research to take it into a commercial context. Fampleg the various DBSy
models do not easily address st@vardship issues that naturally arise in the context of
Utility Computing, where customers place their IT capital inithads of one or more
trusted Utility Providers. Today, commercial organisations viee Internet as
primarily a business tool via which business transactions aremebuperformed. The
Internet is also a source of potential threats, which thereforeohzes balanced against
modern business needs. The risk analysis models need to more lgxpkoitporate
strong identity concepts (e.g. Authorisation-Authentication-Audit, MirtBaivate
Networks) to appropriately assign responsibility and also capabffinally, there is a
clear need to explicitly identify systems management rahesassociated controls as a
part of the infrastructure mapping — and this certainly lieshatinterface between
systems and business organisation.

Conclusions

Our initial objectives were to investigate the building of singdifsemantic models that
could examine security consequences of managed infrastructureslewdeped two
prototype systems demonstrating that such models could beivaffgamplemented
and deployed. There is a clear need for more automation to caidresport on
systems infrastructure configuration details. To a largengxsaich automation is
already in progress as a part of the development of exigtoh@merging technologies
and standards, such as CIM and SmartFrog.

By far the most important realisation is that inecessary (not merely ‘interesting’) to
have knowledge of the business objectives and their risks beforediBentp assess if
security and IT governance objectives have been adequately ragidnicular systems
configuration. Inevitably, there is a mismatch in translatirgipével security policy
requirements into queries against lower-level systems conigugaand in translating
the responses back again. It is an interesting open questionitovedar this gap can
be bridged. As aresult, it is clearly necessary to repréise business process structure
and correlate this with the underlying utility infrastructure #mel people that interact
with these services and systems.
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