

Ensembles of Models for Automated Diagnosis of System
Performance Problems

Steve Zhang1, Ira Cohen, Moises Goldszmidt, Julie Symons,
Armando Fox1
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2005-3(R.1)
June 23, 2005*

E-mail: {ira.cohen, moises.goldszmidt, julie.symons}@hp.com {steveyz, fox}@cs.stanford.edu

automated
diagnosis, self-
healing and self-
monitoring
systems, statistical
induction and
Bayesian Model
Management

Violations of service level objectives (SLO) in Internet services are
urgent conditions requiring immediate attention. Previously we explored
[1] an approach for identifying which low-level system properties were
correlated to high-level SLO violations (the metric attribution problem).
The approach is based on automatically inducing models from data using
pattern recognition and probability modeling techniques. In this paper we
extend our approach to adapt to changing workloads and external
disturbances by maintaining an ensemble of probabilistic models, adding
new models when existing ones do not accurately capture current system
behavior. Using realistic workloads on an implemented prototype system,
we show that the ensemble of models captures the performance behavior
of the system accurately under changing workloads and conditions. We
fuse information from the models in the ensemble to identify likely
causes of the performance problem, with results comparable to those
produced by an oracle that continuously changes the model based on
advance knowledge of the workload. The cost of inducing new models
and managing the ensembles is negligible, making our approach both
immediately practical and theoretically appealing.

* Internal Accession Date Only
 1Stanford University, Stanford, CA 94305-9025 USA
Published in The International Conference on Dependable Systems and Networks, 28 June – 1 July 2005,
Yokohama, Japan
 Approved for External Publication
© Copyright IEEE 2005

Ensembles of Models for Automated Diagnosis of System Performance Problems

Steve Zhang2, Ira Cohen1 , Moises Goldszmidt1, Julie Symons1, Armando Fox2
1 {ira.cohen, moises.goldszmidt, julie.symons}@hp.com, Hewlett Packard Research Labs

2 {steveyz, fox}@cs.stanford.edu, Stanford University

Abstract

Violations of service level objectives (SLO) in Internet ser-
vices are urgent conditions requiring immediate attention. Pre-
viously we explored [1] an approach for identifying which low-
level system properties were correlated to high-level SLO viola-
tions (themetric attributionproblem). The approach is based on
automatically inducing models from data using pattern recogni-
tion and probability modeling techniques. In this paper we ex-
tend our approach to adapt to changing workloads and external
disturbances by maintaining anensembleof probabilistic mod-
els, adding new models when existing ones do not accurately
capture current system behavior. Using realistic workloads on
an implemented prototype system, we show that the ensemble
of models captures the performance behavior of the system ac-
curately under changing workloads and conditions. We fuse
information from the models in the ensemble to identify likely
causes of the performance problem, with results comparable
to those produced by an oracle that continuously changes the
model based on advance knowledge of the workload. The cost
of inducing new models and managing the ensembles is neg-
ligible, making our approach both immediately practical and
theoretically appealing.

Keywords: Automated diagnosis, self-healing and self-
monitoring systems, statistical induction and Bayesian Model
Management.

1 Introduction

A key concern in contemporary highly-available Internet
systems is to meet specified service-level objectives (SLO’s),
which are usually expressed in terms of high-level behaviors
such as average response time or request throughput. SLO’s are
important for at least two reasons. First, many services arecon-
tractually bound to meet SLO’s, and failure to do so may have
serious financial and customer-backlash repercussions. Sec-
ond, although most SLO’s are expressed as measures of perfor-
mance, there is a fundamental connection between SLO mon-
itoring and availability, both because availability problems of-
ten manifest early as performance problems and because under-
standing how different parts of the system affect availability is
a similar problem to understanding how different parts of the
system affect high-level performance metrics.

However, these systems are complex. A three-tier Internet
service includes a Web server, an application server and pos-

sibly a database or other persistent store; large services repli-
cate this arrangement many-fold, but the complexity of evena
non-replicated service encompasses various subsystems ineach
tier. An enormous number of factors, including performanceof
individual servers or processes, variation in resources used by
different types of user requests, and temporary queueing delays
in I/O and storage, may all affect a high-level metric such as
response time. Without an understanding of which factors are
actually responsible for SLO violation under a given set of cir-
cumstances, repair would have to proceed blindly, e.g. adding
more disk without knowing whether disk access is the only (or
even the primary) SLO bottleneck.

We refer to this asmetric attribution: under a given set of cir-
cumstances, which low-level metrics are most correlated with a
particular SLO violation? Note that this is subtly different from
root-cause diagnosis, which usually requires domain-specific
knowledge. Metric attribution gives us the subset of metrics that
is most highly correlated with a violation, allowing an operator
to focus his attention on a small number of possible options.In
practice, this information often does point to the root cause, yet
metric attribution does not require domain-specific knowledge
as diagnosis would.

In [1] we explored a pattern recognition approach that builds
statistical models for metric attribution. Using complex work-
loads that stress (but do not saturate) system performance,we
demonstrated that while no single low-level sensor is enough
by itself to model the SLO state (of violation or compliance), a
tree-augmented naive Bayesian network (TAN) model [3] cap-
tures 90–95% of the patterns of SLO behavior by combining
a small number of low-level sensors, typically between 3 and
8. The experiments also hinted at the need for adaptation,
since under very different conditions, different metrics and dif-
ferent thresholds on the metrics are selected as significantby
these models. This is unsurprising since metric attribution may
vary considerably depending on changes in the workload due
to surges or rebalancing (due to transient node failure), changes
in the infrastructure (including software and hardware revisions
and upgrades), faults in the hardware, and bugs in the software,
among other factors. In this paper we present methods to en-
able adaptation to these changes by maintaining an ensembleof
models. As the system is running we periodically induce new
models and augment the ensemble only if the new models cap-
ture a behavior that no existing model captures. The problem
of diagnosis under these conditions is thereby reduced to the
problem of managing this ensemble: for the best diagnosis of
a particular SLO problem, which model(s) in the ensemble are
relevant, and how can we combine information from those mod-

els regarding the system component(s) implicated in the SLO
violation?

We test our methods using a 3-tier web service and the work-
loads in [1] augmented with other workloads, some of which
simulate performance problems by having an external applica-
tion load the CPU’s of different components in the infrastruc-
ture. The experiments demonstrate that:

• We can successfully manage an ensemble of TAN mod-
els to provide adaptive diagnosis of SLO violations under
changing workload conditions.

• Using a subset of models in the ensemble yields more
accurate diagnosis than using a single monolithic TAN
model trained on all existing data. That is, the inher-
ent multi-modality characterizing the relationship between
high-level performance and low-level sensors is captured
more accurately by an ensemble of models each trained on
one “mode” than by a single model trying to capture all the
modes.

• Our techniques for managing the ensemble and selecting
the right subset for diagnosis are inexpensive and efficient
enough to be used in real time.

The rest of this paper is organized as follows. Section 2 re-
views our previous results and describes our metrics of model
quality and how they are computed. Section 3 describes how we
extend that work to manage an ensemble of models; it describes
how new models are induced, how the analyzer decides whether
to add them to the ensemble, and how models are selected for
problem diagnosis and metric attribution. In sections 4 and5
we describe our experimental methodology and results. Sec-
tion 6 places our contribution in the context of related work,
and section 7 concludes.

2 Background and Review of Previous Results

Consider a stimulus-driven request/reply Internet service
whose low-level behaviors (CPU load, memory usage, etc.)
are reported at frequent intervals, say 15 to 30 seconds. For
each successfully completed request, we can directly measure
whether the system is in compliance or non-compliance with
a specified service-level objective (SLO), for example, whether
the total service time did or did not fall below a specified thresh-
old.

In [1] we cast the problem of inducing a metric-attribution
model as a pattern classification problem in supervised learn-
ing. LetSt ∈ {s+,s−} denote whether the system is in compli-
ance (s+) or noncompliance (violation)(s−) with the SLO at
time t, which can be measured directly. Let~Mt = [m1, ...,mn]
denote the values ofn collected metrics at timet (we will omit
the subindext when the context is clear). The pattern classifica-
tion problem consists of inducing or learning a classifier func-
tion F : ~Mt → {s+,s−}. In order to determine a figure of merit
for the functionF we follow the common practice in pattern
recognition and estimate the probability thatF applied to some
~Mt yields the correct value ofS (s+ or s−) [9, 7]. Specifically
we usebalanced accuracy(BA), which averages the probabil-
ity of correctly identifying compliance with the probability of

detecting a violation.

BA= (0.5)× [P(s− = F (~M)|s−)+P(s+ = F (~M)|s+)] (1)

In order to achieve the maximal BA of 1.0,F must per-
fectly classify both SLO violation and SLO compliance. (Since
reasonably-designed systems are in compliance much more of-
ten than in violation, a trivial classifier that always guessed
“compliance” would have perfect recall for compliance but its
consistent misclassification of violations would result ina low
overall BA.) Note that since BA scores the accuracy with which
a set of metrics~M identifies (through the classification function
F) the different states of SLO, it is also a direct indicator of
the degree of correlation between these metrics and the SLO
compliance and violation.

To implement the functionF , we first use a probabilistic
model that represents the joint distributionP(S, ~M) – the dis-
tribution of probabilities for the system state and the observed
values of the metrics. From the joint distribution we compute
the conditional distributionP(S|~M) and the classifier uses this
distribution to evaluate whetherP(s−|~M) > P(s+|~M). Using the
joint distribution enables us to reverseF , so that the influence
of each metric on the violation of an SLO can be quantified
with sound probabilistic semantics. In this way we are able to
address the metric attribution problem as we now describe.

In our representation of the joint distribution, we arrive at the
following functional form for the classifier as a sum of terms,
each involving the probability that the value of some metricmi

occurs in each state given the value of the metricsmpi on which
mi depends (in the probabilistic model):

n

∑
i=1

log[
P(mi |mpi ,s

−)

P(mi |mpi ,s
+)

]+ log
P(s−)

P(s+)
> 0 (2)

From Eq. 2 we see that a metric,i, is implicated in an SLO vi-

olation if log[
P(mi |mpi ,s

−)

P(mi |mpi ,s
+)

] > 0, also known as the loglikelihood

difference for metrici. To analyze which metrics are impli-
cated with an SLO violation, then, we simply catalog each type
of SLO violation according to the metrics and values that had
a positive loglikelihood difference.These metrics are flagged as
providing an answer for the attribution to that particular viola-
tion. Furthermore, thestrengthof each metric’s influence on the
classifier’s choice is given from the actual value of the loglike-
lihood difference.

We rely on Bayesian networks to represent the probability
distributionP(S, ~M). Bayesian networks are computationally
efficient representational data structures for probability distrib-
utions [2]. Since very complex systems may not always be com-
pletely characterized by statistical induction alone, Bayesian
networks have the added advantage of being able to incorpo-
rate human expert knowledge. The use of Bayesian networks as
classifiers has been studied extensively [3]. Furthermore,in [1]
as well as in this paper we use a class of Bayesian networks
known as Tree Augmented Naive Bayes (TAN) models. The
benefits of TAN and its performance in pattern classificationis
studied and reported in [3]. The key results from our work [1]
on using TAN classifiers to model the performance of a 3-tier
web service include:

• Combinations of metrics are better predictors of SLO vi-
olations than are individual metrics. Moreover, different

combinations of metrics and thresholds are selected under
different conditions. This implies that most problems are
too complex for simple “rules of thumb” (e.g., only moni-
tor CPU utilization).

• Small numbers of metrics (typically 3-8) are sufficient to
predict SLO violations accurately. In most cases the se-
lected metrics yield insight into the cause of the problem
and its location within the system.

• Although multiple metrics are involved, the relationships
among these metrics can be captured by TAN models. In
typical cases, the models yield a BA of 90% - 95%.

Based on these findings, and the fact that TAN models are
extremely efficient to induce, represent and evaluate, we hy-
pothesized that the approach could be extended to enable a strat-
egy of adaptation based on periodically inducing new models
and managing an ensemble of models. This leads to the fol-
lowing questions, which are addressed and validated in the next
sections:

1. Can we achieve better accuracy by managing multiple
models as opposed to refining a single model? (Sec-
tion 3.1)

2. If so, how do we induce new models and how do we decide
whether a new model is needed to capture a behavior that
is not being captured by any existing model? (Section 3.2)

3. When different model(s) are correct in their classification
of the SLO state, but differ in metric attribution, which
model should we “believe”? (Section 3.3)

3 Managing an Ensemble of Models

We sketch our approach as follows. We treat the regularly
reported system metrics as a sequence of data vectors. As new
data are received, a sliding window is updated to include the
data. We score the BA of existing models in the ensemble
against the data in this sliding window and compare this to the
BA of a new model induced using only the data in this window.
Based on this comparison, the new model is either added to the
ensemble or discarded.

Whenever the system is violating its SLO (in our case end-
to-end request service time), we use the Brier score [4, 5] to
select the most relevant model from the ensemble for metric at-
tribution. The Brier score is related to the mean-squared-error
often used in statistical fitting as a measure of model goodness.
The analyzer then applies Eq. 2 to this model to extract the list
of low-level metrics most likely to be implicated with the viola-
tion. This information can then be used by an administrator or
automated repair agent.

In the rest of this section we give the rationale for this ap-
proach and describe the specifics of how new models are in-
duced and how the model ensemble is managed.

3.1 Multiple Models vs. Single Model

The observation that changes in workload and other con-
ditions leads to changes in metric-attribution relationships has

been observed in real Internet services [6] and in our own ex-
periments [1]. In the context of probabilistic models in general,
and TAN models in particular, there are various ways to handle
such changes.

One way is to learn a single monolithic TAN model that at-
tempts to capture all variations in workload and other condi-
tions. While we present a detailed analysis of this approach
in Section 5, the following experiment demonstrates its short-
comings. We use data collected on a system with two differ-
ent workloads (described in Sections 4.2.1 and 4.2.2), one that
mimics increasing but “well-behaved” activity (e.g. when asite
transitions from a low-traffic to a high-traffic service period)
and the second mimics unexpected surges in activity (e.g. a
breaking news story). A single classifier trained on both work-
loads had a BA of 72.4% (22.6% false alarm rate, 67.4% detec-
tion). But by using two models, one trained on each workload,
we achieve a BA of 88.4% (false alarm rate 13%, detection rate
90%). Note that the improved BA results from improvements
in both detection rate and false alarm rate.

A second approach, trying to circumvent the shortcomings of
the single monolithic model, is to use a single model that adapts
with the changing conditions and workloads. The biggest
shortcoming of such an approach is in the fact that the single
model does not have “long term” memory, that is, the model
can only capture short term system behavior, forcing it to re-
learn conditions that might have occurred already in the past.

In the third approach, taken in this paper, adaptation is ad-
dressed by using a scheduled sequence of model inductions,
keeping an ensemble of models instead of a single one. The
models in the ensemble serve as a memory of the system in case
problems reappear. In essence, each model in the ensemble isa
summary of the data used in building it. We can afford such an
approach since the cost, in terms of computation and memory,
of learning and managing the ensemble of models is relatively
negligible: SLO measures are typically computed at one to five
minutes in commercial products (e.g., HP’s OpenView Trans-
action Analyzer), while learning a model in our current imple-
mentation takes about 9-10 seconds, evaluating a model in the
ensemble takes about 1 msec and storing a model involves keep-
ing at most 20 floating point numbers1.

An ensemble of models raises two main issues: First, what is
the appropriate number of samples (or window size) for induc-
ing a new model and, second, once we have a violation how do
we fuse the information provided by the various models. These
are the questions we address in the next two sections.

3.2 Inducing New Models and Updating the Model
Ensemble

We use a standard TAN induction procedure [3], augmented
with a process calledfeature selection, for selecting the subset
of metrics that is most relevant to modeling the patterns andre-
lations in the data. The feature selection process providestwo
advantages. First, it discards metrics that appear to have little
impact on the SLO, allowing the human operator to focus on
a small set of candidates for diagnosis. Second, it reduces the

1These performance figures were on a Intel Pentium 4, 2.0GHz laptop, ini-
tial benchmarks of the model learning and testing with a new Java implementa-
tion indicate an order of magnitude improved performance

number of data samples needed to induce robust models. This
is known as the dimensionality problem in pattern recognition
and statistical induction: the number of data samples needed to
inducegoodmodels increases exponentially with the dimension
of the problem, which in our case is the number of metrics in the
model (which influences the number of parameters). The num-
ber of data samples needed to induce a viable model in turn in-
fluences the adaptation process. The feature selection problem
is essentially a combinatorial optimization problem that is usu-
ally solved using heuristic search; in this paper we use a beam
search algorithm, which provides some robustness against local
minima [8].

Models are induced periodically over a datasetD consisting
of vectors ofn metrics at some timet, ~Mt = [m1, ...,mn] and
the corresponding labelss+ or s− over the SLO state. Once the
model is induced, we estimate its balanced accuracy (Eq. 1) on
the data setD using tenfold crossvalidation [9]. We also com-
pute a confidence interval around the new BA score. If the new
model’s BA is statistically significantly better than that of all
models in the existing ensemble, the new model is added to the
ensemble; otherwise it is discarded. In our experiments, mod-
els are never removed from the ensemble; although any caching
discipline (e.g. Least Recently Used) could be used to limitthe
size of the ensemble, we did not study this issue in depth be-
cause evaluating models takes milliseconds and their compact
size allows us to store thousands of them, making the choice
among caching policies almost inconsequential.

There are two inputs to the ensemble-management algo-
rithm: the number of samples in the window, and the minimum
number of samples per class. Choosing too many samples may
increase the number of patterns that a single model tries to cap-
ture (approaching the single-model behavior described previ-
ously) and result in a TAN model with more parameters. Too
few may result in a non-robust model and overfitting of the data.
Lacking closed-form formulas that can answer these questions
for models such as TAN and for potentially complex workloads
such as those we emulate, we follow the typical practice in ma-
chine learning of using an empirical approach. We uselearning
surfacesto characterize minimal data requirements for the mod-
els in terms of number of data samples required and proportions
of SLO violation versus compliance as described in Section 5.3.
This provides an approximate estimate of the basic data require-
ments. We then validate those requirements in the experiments
we perform.

Algorithm 1 describes in detail the algorithm for managing
the ensemble of models.

3.3 Metric Attribution and Ensemble Accuracy

When using a single model, accuracy is computed by count-
ing the number of cases in which the model correctly predicts
the known SLO state and metric attribution is performed by ap-
plying Eq. 2: every metricmi for which the log-likelihood ratio
difference is positive is a metric whose value is consistentwith
the state of SLO violation. To compute accuracy and metric
attribution using an ensemble we follow awinner take allstrat-
egy: we select the “best” model from the ensemble, and then
proceed as in the single-model case.

Although the machine learning literature describes methods

Algorithm 1 Learning and Managing an Ensemble of Models
Input: TrainingWindowSize and Minimum Number of Samples Per
Class
Initialize Ensemble to{φ} and TrainingWindow to{φ}
for every new sampledo

add sample to TrainingWindow
if TrainingWindow has Minimum Number of Samples Per Class
then

Train new ModelM on TrainingWindow (sec. 3.2)
Compute accuracy ofM using crossvalidation.
For every model in Ensemble compute accuracy on Training-
Window.
if accuracy ofM is significantly higher than the accuracy of all
models in the Ensemblethen

add new model to Ensemble.
end if

end if
Compute Brier score (Eq. 3) over TrainingWindow for all models
in Ensemble (sec. 3.3)
if system state for new sample is SLO violationthen

Perform metric attribution using Eq. 2 over metrics of model
with lowest Brier score (Winner Takes All).

end if
end for

for weighted combination of models in an ensemble to get a
single prediction [10, 11, 12], our problem is complicated and
differs from most cases in the literature in that the workloads
and system behavior are not stationary. As we have observed,
this leads to different causes of performance problems at differ-
ent times even though the high level observable manifestation
is the same (violation of the SLO state). We find that given a
suitable window size (number of samples) we are able to obtain
fairly accurate models to characterize windows of nonstation-
ary workload; hence we expect that the simpler winner-take-all
approach should provide good overall accuracy.

For each model in the ensemble we compute its Brier
score [4] over a short window of past data,D = {dt−w, ...,dt−1},
wheret is the present sample, making sureD includes samples
of both SLO compliance and non-compliance. The Brier score
is the mean squared error between a model’s probability of the
SLO state given the current metrics and the actual value of the
SLO state, i.e., for every model in the ensemble,Mo j :

BSMo j (D) =
t−w

∑
k=t−1

[P(s−|~M = ~mk;Mo j)− I(sk = s−)]2, (3)

whereP(s−|~M = ~mi ;Mo j) is the probability of the SLO state
being in violation of modelj given the vector of metric mea-
surements andI(sk = s−) is an indicator function, equal to 1
if the SLO state iss− and 0 otherwise, at timek. For a model
to receive a good Brier score (best score being 0), the model
must be both correct and confident (in terms of the probabil-
ity assessment of the SLO state) in its predictions. Although
in classification literature the accuracy of the models is often
used to verify the suitability of an induced model, we require
a score that can select a model based on data that we are not
sure has the same characteristics as the data used to induce the
models. Since the Brier score uses the probability of prediction
rather than just {0,1} for matching the prediction, it provides us

with a finer grain evaluation of the prediction error. As our ex-
periments consistenly show, using the Brier score yields better
results, matching the intuition expressed above.

Note that we are essentially using a set of models to cap-
ture the drift in the relationship between the low level metrics
and performance as defined by the SLO state. The Brier score
is used as a proxy for modeling the change in the probability
distribution governing these relationship by selecting the model
with the minimal mean squared error (in the neighborhood) of
an SLO violation.

4 Experimental Methodology

We validate our methods on a three-tier system running
a web-accessible Internet service based on Java 2 Enterprise
Edition (J2EE). We excite the system using complex work-
loads, inducing performance problems that manifest as high
response times, thus violating the system’s SLO. We empiri-
cally designed our workloads to stress, but not overload, our
system during abnormal periods; once we determined the point
at which our workload saturated the system (regardless of the
underlying cause)2, we then aimed for steady-state workload at
50–60% of this threshold, as is typical for production systems
based on J2EE [13, 14].

For analysis, we collect both low level system metrics from
each tier (e.g., CPU, memory, disk and network utilizations)
and application level metrics (e.g., response time and request
throughput). The following subsections describe the testbed
and workloads we use to excite the system.

4.1 Testbed

Figure 1 depicts our experimental three-tier system, the most
common configuration for medium and large Internet services.
The first tier is the Apache 2.0.48 Web server, the second tier
is the application itself, and the third tier is an Oracle 9iR2
database. The application tier runs PetStore version 2.0, an
e-commerce application freely available from The Middleware
Company as an example of how to build J2EE-compliant appli-
cations. We tuned the deployment descriptors, config.xml, and
startWebLogic.cmd in order to scale to the transaction volumes
reported in the results. J2EE applications must run on middle-
ware called an application server; we use WebLogic 7.0 SP4
from BEA Systems, one of the more popular commercial J2EE
servers, with Java 2 SDK 1.3.1 from Sun.

Each tier (Web, J2EE, database) runs on a separate HP Net-
Server LPr server (500 MHz Pentium II, 512 MB RAM, 9 GB
disk, 100 Mbps network cards, Windows 2000 Server SP4) con-
nected by a switched 100 Mbps full-duplex network. Each ma-
chine is instrumented with HP OpenView Operations Agent 7.2
to collect system-level metrics at 15-second intervals, which we
aggregate to one minute intervals, each containing the means
and variances of 62 individual metrics. Although metrics are
reported only every 15 seconds, the true rate at which the sys-
tem is being probed is much higher so that volatile metrics like
CPU utilization can be captured and coalesced appropriately.

2By saturation we mean the point from which response time grows un-
bounded with a constant workload.

Our data collection tool is a widely distributed commercialap-
plication that many system administrators rely on for accurate
information pertaining to system performance.

A load generator calledhttperf offers load to the service. An
SLO indicator processes the Apache web server logs to deter-
mine SLO compliance over each one minute interval, based on
the average server response time for requests in the interval.

4.2 Workloads

All of our workloads were created to exercise the three-tiered
webservice in different ways. We rejected the use of standard
synthetic benchmarks such as TPC-W that ramp up load to a
stable plateau in order to determine peak throughput subject to
a constraint on mean response time. Such workloads are not
sufficiently rich to mimic the range of system conditions that
might occur in practice.

We designed the workloads to exercise our algorithms by
providing it with a wide range of(~M, ~P) pairs, where~M repre-
sents a sample of values for the system metrics and~P represents
a vector of application-level performance measurements (e.g.,
response time and throughput). Of course, we cannot directly
control either~M or ~P; we control only the workload submitted
to the system under test. We wrote simple scripts to generate
session files for the httperf workload generator, which allows
us to vary the client think time, the request mixture, and the
arrival rate of new client sessions.

4.2.1 RAMP: Increasing Concurrency

For this experiment we gradually increase the number of con-
current client sessions. We add an emulated client every 20
minutes up to a limit of 100 total sessions. Individual client
request streams are constructed so that the aggregate request
stream resembles a sinusoid overlaid upon a ramp. The average
response time of the web service in response to this workload
is depicted in Figure 2. Each client session follows a simple
pattern: go to main page, sign in, browse products, add some
products to shopping cart, check out, repeat.Pb is the prob-
ability that an item is added to the shopping cart given that it
has just been browsed;Pc is the probability of proceeding to
the checkout given that an item has just been added to the cart.
These probabilities vary sinusoidally between 0.42 and 0.7with
periods of 67 and 73 minutes, respectively. This experiment, as
well as that described in the next section, was used to validate
our earlier work. We felt both would be useful for demonstrat-
ing some key properties of our current work as well.

4.2.2 BURST: Background + Step Function

This run has two workload components. The firsthttperf cre-
ates a steady background traffic of 1000 requests per minute
generated by 20 clients. The second is an on/off workload con-
sisting of hour-long bursts with one hour between bursts. Suc-
cessive bursts involve 5, 10, 15, etc. client sessions, eachgen-
erating 50 requests per minute. The intent of this workload is
to mimic sudden, sustained bursts of increasingly intense work-
load against a backdrop of moderate activity. Each step in the
workload produces a different plateau of workload level, aswell

Figure 1. Our experimental system, featuring a commonly used three-tier internet service.

0 1 2 3 4 5 6 7 8

50

100

150

200

250

300

time (hours)

av
g

re
sp

 ti
m

e
(m

s)

0 1 2 3 4 5 6 7 8

100

200

300

400

time (hours)

av
g

re
sp

 ti
m

e
(m

s)

time (hours)
av

g
re

sp
 ti

m
e

(m
s)

0 1 2 3 4 5 6

60

80

100

120

140

160

(a) (b) (c)

Figure 2. Relevant sequences of average web server response time over1-minute windows when the test system was subjected to the (a)
RAMP workload (b) BURST workload (c) BUYSPREE workload

as transients during the beginning and end of each step as the
system adapts to the change.

4.2.3 BUYSPREE: Increasing Load Without Increasing
Concurrency

In this experiment, a new client session is added every 2
minutes. However, unlike in RAMP, each session only lasts
for slightly more than 50 minutes. This means that after a short
initial ramp up period, there will always be approximately 25
concurrent sessions. Also, after the first two hours, this exper-
iment alternates between two periods of operations which we
will call normalandabnormal. Each period lasts a single hour.
The parametersPb andPc are set to 0.7 with no variance during
the normal periods and are set to 1.0 with no variance during
the abnormal periods. The normal-abnormal cycle is repeated
3 times. The resulting average user response time is shown in
Figure 2.

4.2.4 DBCPU & APPCPU: External Contention for
Server CPU

These two experiments are identical to BUYSPREE except for
one important change. During the abnormal periods,Pb andPc

remain at 0.7, but an external program is executed on either the
database server (DBCPU) or the application server (APPCPU)
that takes away 30% of that server’s CPU cycles for the duration
of the period. This external program can be compared to a virus
scanning process that wakes up every once in a while and uses
significant CPU time but very little memory and no network
resources. The normal-abnormal cycle is repeated 4 times for
this experiment and resulting user response times are similar to
that in BUYSPREE.

5 Experimental Results

We report results of our methods using the data collected
from all the workloads described above. We compare these
results to: (a) a single model trained using all the experimen-
tal data, (b) an “oracle” that knows exactly when and how the
workload varies among the five workload types describe above.
The oracle induces workload-specific TAN models for each

type and invokes the appropriate model during testing; while
clearly unrealistic in a real system, this method provides aqual-
itative indicator of the best we could do.

We learn the ensemble of models as described in Algorithm 1
using a subset of the available data. The subset of data are the
first 4-6 hours of each workload. We keep the last portion of
each workload as a test (validation) set. Overall, the training
set is 28 hours long (1680 samples) and the test set is 10 hours
long (600 samples). The training set starts with alternating two
hour sequences of DBCPU, APPCPU, and BUYSPREE, with
DBCPU and APPCPU represented three times and BUYSPREE
twice. This is followed by six hour sequences of data from
RAMP and BURST. The result is a training set which has five
different workload conditions some of which are repeated sev-
eral times. Testing on the test set with the ensemble amounts
to the same steps as in Algorithm 1, except for the fact that the
ensemble is not initially empty (but has all the models trained
on the training data) and no new models are added at any point.
The accuracies and metric attribution provided by this testing
procedure show how generalizable the models are on unseen
data with similar types of workloads. The results of these tests
are described below.

5.1 Accuracy

Table 1 shows the balanced accuracy (BA), false alarm and
detection rates, measured on the validation data, of our ap-
proach compared to the single model and the set of models
trained on each of the five workloads. We present results for the
ensemble of models with three different training window size
(80, 120 and 240 samples). We see that for all cases: (a) the
ensemble’s performance with any window size is significantly
better than the single-model, (b) the ensemble’s performance is
robust to wide variations of the training window size, and (c)
the ensemble’s performance is slightly better, mainly in terms
of detection rates, compared to the set of five individual models
trained on each of the workload conditions we induced.

The last observation (c) is at first glance puzzling, as intu-
ition suggests that the set of models trained specifically for each
workload should perform best. However, some of the work-
loads on the system were quite complex, e.g., BURST has a
ramp up of number of concurrent sessions over time and other
varied conditions. This complexity is further characterized in
Section 5.3, where we will see that it takes many more samples
to capture patterns of the BURST workload, and with lower ac-
curacy compared to the other workloads. The ensemble of mod-
els, which is allowed to learn multiple models foreach work-
load, is better able to characterize this complexity than the sin-
gle model trained with the entire dataset of that workload.

The table also shows the total number of metrics included
in the models and the average number of metrics attributable
to specific instances of SLO violations (as discussed in sec-
tion 3.3). The ensemble chooses many more metrics overall
because models are trained independently of each other, which
suggests that there is some redundancy among the different
models in the ensemble. However, only a handful of metrics
are attributed to each instance of an SLO violation, therefore
attribution is not affected by the redundancy.

Most of the single model’s false alarms occur for the

metrics avg attr BA FA Det
chosen metrics

Ensemble W80 64 2.3 95.67 4.19 95.53
Ensemble W120 52 2.5 95.12 4.84 95.19
Ensemble W240 33 3.7 94.68 5.48 94.85

Workload 9 2 93.62 4.51 91.75
specific models
Single model 4 2 86.10 21.61 93.81

Table 1. Summary of performance results. First three rows
show results for ensemble of models with different size training
window (80, 120, 240 samples).

BUYSPREE workload, and we observed that the lower false
alarm rate of the ensemble in these cases was largely attribut-
able to the inclusion of three metrics that werenot chosen by
the single model, namely number of incoming packets and bytes
to the application server and number of requests to the system.
Additionally, the first two metrics also appear in the model spe-
cific to the BUYSPREE workload. Thus, the ensemble of mod-
els is capable of capturing more of the important patterns, both
of violations and non-violations by focusing on different met-
rics for different workloads.

Adaptation to different workloads To show how the en-
semble of models adapts to changing workloads, we store the
accuracy of the ensemble of models as the ensemble is trained.
The changes in the ensemble’s accuracy as a function of the
number of samples is shown in Figure 3a. There are initially
no models in the ensemble until enough samples of violations
are observed. The ensemble’s accuracy remains high until new
workloads elicit behaviors different from those already seen,
but adaptation is quick once enough samples of the new work-
load have been seen. An interesting situation occurs during
adaptation for the last workload condition (BURST, marked as
5 in the figure). We see that the accuracy decreases signifi-
cantly when this workload condition first appears, but improves
after about 100 samples. It then decreases again, illustrating
the complexity of this workload and the need for multiple mod-
els to capture its behavior, and finally recovers as more sam-
ples appear. It is worth noting that there is a tradeoff between
adaptation speed and robustness of the models, e.g., with small
training window, adaptation would be fast, however, the models
might not be robust to overfitting and will not generalize to new
data.

We remind the reader that prediction accuracy is not a direct
evaluation of the proficiency of our approach. After all, SLOvi-
olation can be determined by direct measurement, so there isno
need to predict it from lower level metric data. However, these
raw accuracy figures do provide a quantitative assessment of
how well the model(s) produced capture correlations between
low level metrics and SLO state. Intuitively, models that cap-
ture system behavior patterns more faithfully should be more
helpful in diagnosing problems. Although we cannot rigorously
prove that is the case, the next section will show anecdotal evi-
dence that metric attribution using models induced according to
our approach do point to the likely root cause of an issue.

5.2 Metric attribution

Figure 3b illustrates the metric attribution for part of thetest
set for one of the ensemble of models we learned. The image
illustrates which metrics were implicated with an SLO viola-
tion during the different workload conditions. For instances of
violations in the BUYSPREE workload, network inbyte and in-
packet are implicated with most of the instances of violation.
In addition, due to the increased workload, the App server CPU
(usertime) is sometimes also implicated with the SLO viola-
tions, as the heavier workload causes increased CPU load. For
the DBCPU workload, we see that the DB CPU is implicated
for all instances of SLO violation, while for the APPCPU work-
load, all the App server CPU is implicated with all SLO viola-
tions. Some SLO violation instances in the APPCPU workload
also implicate the network inbyte and inpacket, but what the
image does not show is that they are implicated because ofde-
creasednetwork activity, in contrast to BUYSPREE in which
they are implicated due toincreasednetwork activity. With the
knowledge that the application server CPU load is high and the
network activity is low, a diagnosis of external contentionfor
the CPU resource can be deduced.

It is worth noting that the image illustrates that for different
workloads (hence different performance problem causes) there
appears to be different “signatures” of metric attribution— cat-
aloguing such signatures could potentially serve as a basisfor
fast diagnosis based on information retrieval principals.

5.3 Learning surfaces: determining the appropriate
sample size

To test how much data is needed to learn accurate models,
we take the common approach of testing it empirically. Typi-
cally, in most machine learning research, the size of the train-
ing set is incrementally increased and accuracy is measuredon
a fixed test set. The result of such experiments are learning
curves, which typically show what is the minimum training data
needed to achieve models that perform close to the maximum
accuracy possible. In the learning curve approach, the ratio be-
tween violation and non-violation samples is kept fixed as the
number of training samples is increased. Additionally, thetest
set is usually chosen such that the ratio between the two classes
is equivalent to the training data. These two choices can lead to
an optimistic estimate of the number of samples needed in train-
ing, because real applications (including ours) often exhibit a
mismatch between training and testing distribution and because
it is difficult to keep the ratio between the classes fixed.

To obtain a more complete view of the amount of data
needed, we use Forman and Cohen’s approach [15] and vary
the number of violations and non-violations in the trainingset
independently of each other, testing on a fixed test set that has
a fixed ratio between violations and no violations. The result
of this testing procedure is alearning surfacethat shows the
balanced accuracy as a function of the ratio of violations to
non-violations in the training set. Figure 3c shows the learn-
ing surface for the RAMP workload we described in the previ-
ous section. Each point in the learning surface is the average
of five different trials. Examining the learning surface reveals
that after about 80 samples of each class, we reach a plateau

Workload # vio # no vio max BA(%)
RAMP 90 80 92.35
BURST 180 60 81.85

BUYSPREE 40 40 95.74
APPCPU 20 30 97.64
DBCPU 20 20 93.90

Table 2. Minimum sample sizes needed to achieve accuracy
that is at least 95% of the maximum accuracy achieved for each
workload condition.

in the surface, indicating that increasing the number of sam-
ples does not necessarily provide much higher accuracies. The
surface also shows us that small numbers of violations paired
with high numbers of nonviolations results in poor BA, even
though the total number of samples is high; e.g., accuracy with
200 nonviolations and 20 violations is only 75%, in contrastto
other combinations on the surface with the same total number
of samples (220) but significantly higher accuracy.

Table 2 summarizes the minimum number of samples needed
from each class to achieve 95% of the maximum accuracy. We
see that the simpler APPCPU and DBCPU workloads require
fewer samples of each class to reach this accuracy threshold
compared to the more complex RAMP or BURST workloads.

In properly designed systems, contractual SLOs having se-
rious repercussions are rarely violated. Therefore, it is likely
that very large windows of data would be needed to capture
enough samples of violation to construct a model. However,
as mentioned previously, larger windows increases the chance
that a single model tries to captures several disparate behav-
ior patterns. This issue can be addressed by making a virtual
SLO that is more stringent than what is contractually obligated.
This would be useful in determine what factors may cause a
system to operate such that the real SLO is close to being vio-
lated. Also, the high level indictor of system performance need
not be defined only in terms of throughput or latency, but could
also be in terms of measures like a buy-to-browse ratio for an
e-commerce site.

5.4 Summary of Results

The key observations of our results may be summarized as
follows:

1. Even when multiple workload-specific models are trained
on separate parts of the workload, the ensemble method
results in higher accuracy because the ability to learn and
manage multiple models results in better characterization
of these complex workloads.

2. The ensemble method also gives better metric attribut-
ion than workload-specific models, and allows us to ob-
serve that different workloads seem to be characterized by
metric-attribution “signatures”. Future work may include
exploiting such distinct signatures for enhanced diagnosis.

3. The ensemble provides rapid adaptation to changing work-
loads, but adaptation speed is sensitive not only to the

200 400 600 800 1000 1200 1400 1600
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time (minutes)

B
a

la
n

ce
d

 A
cc

u
ra

cy

2 3 1 2 3 1 2 4 51

(a) (b) (c)

Figure 3. (a) Balanced accuracy of ensemble of models during training. Vertical dashed lines show boundaries between workload changes.
Numbers above figure enumerate which of the five types of workload corresponds to each period (1=DBCPU, 2=APPCPU, 3=BUYSPREE,
4=RAMP, 5=BURST). (b) Metric attribution image for the ensemble of models. First column is the actual SLO state (white indicates
violation), other columns are the state of each metric chosen in the ensemble (white indicates the violation can be attributed to this metric).
Y-axis is epochs (minutes), dark horizontal lines show boundaries between changes in workloads. (c) Learning surface for RAMP experiment
showing balanced accuracy. The color map on each figure showsthe mapping between color and accuracy. Each quad in the surface is the
balanced accuracy of the right bottom left corner of the quad.

number of samples seen but also the ratio between the two
classes of samples (violation and nonviolation).

4. The observed overlap of the metrics chosen by various
models in the ensemble suggests that there is some redun-
dancy among the models in the ensemble. One area of
future work will be to investigate and remove this redun-
dancy.

5. Choosing a “winner take all” selection function rather than
one that combines models in the ensemble gives excellent
results; future work may include investigating more com-
plicated selection functions or further refinements of met-
ric attribution, such as ranking the metrics based on their
actual log-likelihood ratio difference values.

6. At no point in our process is explicit domain-specific
knowledge required, though such knowledge could be
used, e.g., to guide the selection of which metrics to
capture for model induction. Future work may investi-
gate which aspects of our approach could be enhanced by
domain-specific knowledge.

6 Related Work

Automatic monitoring and dynamic adaptation of computer
systems is a topic of considerable current interest, as evidenced
by the recent spate of work in so-called “autonomic comput-
ing”. Recent approaches to automatic resource allocation use
feedforward control [16], feedback control [17], and an open-
market auction of cluster resources [18]. Our goal is to un-
derstand the connection between high-level actionable prop-
erties such as SLO’s, which drive these adaptation efforts,
and the low-level properties that correspond to allocatable re-
sources, decreasing the granularity of resource allocation deci-
sions. Other complementary approaches pursuing similar goals

include WebMon [19] and Magpie [20]. Aguilera et al. [21]
provide an excellent review of these and related research ef-
forts, and propose algorithms to infer causal paths of messages
related to individual high-level requests or transactionsto help
diagnose performance problems.

Pinpoint [6] uses anomaly-detection techniques to infer fail-
ures that might otherwise escape detection in componentized
applications. The authors of that work observed that some iden-
tical components have distinct behavioral modes that depend on
which machine in a cluster they are running on. They addressed
this by explicitly adding human-level information to the model
induction process, but approaches such as ours could be applied
for automatic detection of such conditions and disqualification
of models that try to capture a “nonexistent average” of multi-
ple modes. Similarly, Mesnier et al. [22] find that decision trees
can accurately predict properties of files (e.g., access patterns)
based on creation-time attributes, but that models from onepro-
duction environment may not be well-suited to other environ-
ments, inviting exploration of an adaptive approach.

Whereas “classic” approaches to performance modeling and
analysis [23] rely ona priori knowledge from human experts,
our techniques induce performance models automatically from
passive measurements alone. Other approaches perform diag-
nosis using expert systems based on low-level metrics [24];
such approaches are prone to both false negatives (low-level in-
dicators do not trigger any rule even when high-level behavior
is unacceptable) and false negatives (low-level indicators trig-
ger rules when there is no problem with high-level behavior). In
contrast, our correlation-based approach uses observablehigh-
level behavior as the “ground truth”, and our models are in-
duced and updated automatically, allowing for rapid adaptation
to a changing environment.

7 Conclusion

We routinely build and deploy systems whose behavior we
understand only at a very coarse grain. Although this obser-
vation motivates autonomic computing, progress requires that
we be able to characterize actionable system behaviors in terms
of lower-level system properties. Furthermore, previous efforts
showed that no single low-level metric is a good predictor of
high-level behaviors. Our contribution has been to extend our
successful prior work on using TAN (Bayesian network) models
comprising low-level measurements both for prediction of com-
pliance with service-level objectives and for metric attribution
(understanding which low-level properties are correlatedwith
SLO compliance or noncompliance). Specifically, by manag-
ing an ensemble of such models rather than a single model, we
achieve rapid adaptation of the model to changing workloads,
infrastructure changes, and external disturbances. The result is
the ability to continuously characterize a key high-level behav-
ior of our system (SLO compliance) in terms of multiple low-
level properties; this gives the administrator, whether human or
machine, a narrow focus in considering repair or recovery ac-
tions. Using a real system under realistic workloads, we showed
that collecting instrumentation, inducing models, and maintain-
ing the ensemble of models is inexpensive enough to do in (soft)
real time. Beyond the specific application of TAN models in
our own work, we believe our approach to managing ensem-
bles of models will prove more generally useful to the rapidly-
growing community of researchers applying machine learning
techniques to issues of system dependability.

8 Acknowledgments

We thank Terence Kelly for his help in generating the work-
loads. Rob Powers and Peter Bodík provided useful comments
on a previous version of this paper. Finally, the comments of
the reviewers and our shepherd greatly improved the presenta-
tion of the material.

References

[1] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. Chase,
“Correlating instrumentation data to system states: A building
block for automated diagnosis and control,” in6th Symposium on
Operating Systems Design and Implementation (OSDI’04), Dec.
2004.

[2] J. Pearl,Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann, 1988.

[3] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network
classifiers,”Machine Learning, vol. 29, pp. 131–163, 1997.

[4] G. Brier, “Verification of forecasts expressed in terms of proba-
bility,” Monthly weather review, vol. 78, no. 1, pp. 1–3, 1950.

[5] I. Cohen and M. Goldszmidt, “Properties and benefits of cal-
ibrated classifiers,” in8th European Conference on Principles
and Practice of Knowledge Discovery in Databases (PKDD),
pp. 125–136, Sept. 2004.

[6] E. Kıcıman and A. Fox, “Detecting application-level failures in
component-based internet services.” Submitted for publication,
September 2004.

[7] R. Duda, P. Hart, and D. Stork,Pattern Classification. New York:
John Wiley and Sons, 2001.

[8] R. Kohavi and G. H. John, “Wrappers for feature subset selec-
tion,” Artificial Intelligence, vol. 97, no. 1-2, pp. 273–324, 1997.

[9] R. Kohavi, “A study of cross-validation and bootstrap for accu-
racy estimation and model selection,” inInternational Joint Con-
ference on Artificial Intelligence (IJCAI), pp. 1137–1145, 1995.

[10] L. Breiman, “Bagging predictors,”Machine Learning, vol. 24,
no. 2, pp. 123–140, 1996.

[11] R. Caruana, A. Niculescu-Mizil, G. Crew, and A. Ksikes,“En-
semble selection from libraries of models,” inInternational con-
ference on Machine learning ICML, 2004.

[12] P. Domingos, “Bayesian averaging of classifiers and theoverfit-
ting problem,” inInternational Conference on Machine Learning
ICML, pp. 223–230, 2000.

[13] A. Messinger, “Personal comm..” BEA Systems, 2004.

[14] S. Duvur, “Personal comm..” Sun Microsystems, 2004.

[15] G. Forman and I. Cohen, “Learning from little: Comparison of
classifiers given little training,” in8th European Conference on
Principles and Practice of Knowledge Discovery in Databases
(PKDD), pp. 161–172, Sept. 2004.

[16] E. Lassettre, D. Coleman, Y. Diao, S. Froelich, J. Hellerstein,
L. Hsiung, T. Mummert, M. Raghavachari, G. Parker, L. Rus-
sell, M. Surendra, V. Tseng, N. Wadia, and P. Ye, “Dynamic
Surge Protection: An Approach to Handling Unexpected Work-
load Surges with Resource Actions that have Lead Times,” in
Proc. of 1st Workshop on Algorithms and Architectures for Self-
Managing Systems, (San Diego, CA), June 2003.

[17] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram, and
J. Bigus, “Using control theory to achieve service level objec-
tives in performance management,”Real Time Systems Journal,
vol. 23, no. 1–2, 2002.

[18] K. Coleman, J. Norris, A. Fox, and G. Candea, “OnCall: Defeat-
ing spikes with a free-market server cluster,” inProc. Interna-
tional Conference on Autonomic Computing, (New York, NY),
May 2004.

[19] P. K. Garg, M. Hao, C. Santos, H.-K. Tang, and A. Zhang, “Web
transaction analysis and optimization,” Tech. Rep. HPL-2002-45,
Hewlett-Packard Labs, Mar. 2002.

[20] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan, “Mag-
pie: real-time modelling and performance-aware systems,”in
Proc. 9th Workshop on Hot Topics in Operating Systems, (Lihue,
Hawaii), June 2003.

[21] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and
A. Muthitacharoen, “Performance debugging for distributed sys-
tems of black boxes,” inProc. 19th ACM Symposium on Operat-
ing Systems Principles, (Bolton Landing, NY), 2003.

[22] M. Mesnier, E. Thereska, G. R. Ganger, D. Ellard, and M. Seltzer,
“File classification in self-* storage systems,” inProceedings
of the First International Conference on Autonomic Computing
(ICAC-04), May 2004.

[23] R. Jain,The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation,
and Modeling. New York, NY: Wiley-Interscience, 1991.

[24] A. Cockcroft and R. Pettit,Sun Performance and Tuning. Pren-
tice Hall, 1998.

