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Abstract sibly a database or other persistent store; large servegas r
cate this arrangement many-fold, but the complexity of even
Violations of service level objectives (SLO) in Internat se non-replicated service encompasses various subsysterastin
vices are urgent conditions requiring immediate attentiBre- tier. An enormous number of factors, including performanice
viously we explored [1] an approach for identifying whickvo individual servers or processes, variation in resources by
level system properties were correlated to high-level Siov different types of user requests, and temporary queueilagsie
tions (themetric attributiorproblem). The approachis basedon in I/O and storage, may all affect a high-level metric such as
automatically inducing models from data using pattern grtie response time. Without an understanding of which factoes ar
tion and probability modeling techniques. In this paper we e actually responsible for SLO violation under a given setiof ¢
tend our approach to adapt to changing workloads and externa cumstances, repair would have to proceed blindly, e.g.naddi
disturbances by maintaining ansemblef probabilistic mod- more disk without knowing whether disk access is the only (or
els, adding new models when existing ones do not accuratelyeven the primary) SLO bottleneck.
capture current system behavior. Using realistic worklpad We refer to this ametric attribution under a given set of cir-
an implemented prototype system, we show that the ensembleumstances, which low-level metrics are most correlatéld svi
of models captures the performance behavior of the system acparticular SLO violation? Note that this is subtly diffetérom
curately under changing workloads and conditions. We fuseroot-cause diagnosis, which usually requires domainipec
information from the models in the ensemble to identifyifike knowledge. Metric attribution gives us the subset of metitiat
causes of the performance problem, with results comparableis most highly correlated with a violation, allowing an oatar
to those produced by an oracle that continuously changes theto focus his attention on a small number of possible optitms.
model based on advance knowledge of the workload. The cospractice, this information often does point to the root eayst
of inducing new models and managing the ensembles is negmetric attribution does not require domain-specific knalgle
ligible, making our approach both immediately practicaldan as diagnosis would.
theoretically appealing. In [1] we explored a pattern recognition approach that tsuild
statistical models for metric attribution. Using complegnk-
Keywords: Automated diagnosis, self-healing and self- loads that stress (but do not saturate) system performamce,
monitoring systems, statistical induction and Bayesiard®o  demonstrated that while no single low-level sensor is ehoug
Management. by itself to model the SLO state (of violation or compliance)
tree-augmented naive Bayesian network (TAN) model [3] cap-
tures 90-95% of the patterns of SLO behavior by combining
a small number of low-level sensors, typically between 3 and
8. The experiments also hinted at the need for adaptation,
A key concern in contemporary highly-available Internet since under very different conditions, different metrics alif-
systems is to meet specified service-level objectives (§),0’ ferent thresholds on the metrics are selected as signifinant
which are usually expressed in terms of high-level behavior these models. This is unsurprising since metric attrilputiay
such as average response time or request throughput. SteO’s avary considerably depending on changes in the workload due
important for at least two reasons. First, many servicesame to surges or rebalancing (due to transient node failureygas
tractually bound to meet SLO's, and failure to do so may have in the infrastructure (including software and hardwaresiens
serious financial and customer-backlash repercussions- Se and upgrades), faults in the hardware, and bugs in the s&ftwa
ond, although most SLO’s are expressed as measures of-perfoamong other factors. In this paper we present methods to en-
mance, there is a fundamental connection between SLO monable adaptation to these changes by maintaining an ensefble
itoring and availability, both because availability pretvis of- models. As the system is running we periodically induce new
ten manifest early as performance problems and because-undemodels and augment the ensemble only if the new models cap-
standing how different parts of the system affect avaiigbis ture a behavior that no existing model captures. The problem
a similar problem to understanding how different parts @ th of diagnosis under these conditions is thereby reducedeo th
system affect high-level performance metrics. problem of managing this ensemble: for the best diagnosis of
However, these systems are complex. A three-tier Interneta particular SLO problem, which model(s) in the ensemble are
service includes a Web server, an application server and posrelevant, and how can we combine information from those mod-

1 Introduction



els regarding the system component(s) implicated in the SLOdetecting a violation.

Violon® BA= (05)x [P(s = F(M)ls ) +P(s" = F(M)is")] (1)
We test our methods using a 3-tier web service and the work- ‘

loads in [1] augmented with other workloads, some of which In order to achieve the maximal BA of 1.0F must per-

simulate performance problems by having an external aplic fectly classify both SLO violation and SLO compliance. (&n

tion load the CPU'’s of different components in the infrastru  reasonably-designed systems are in compliance much more of

ture. The experiments demonstrate that: ten than in violation, a trivial classifier that always giezss

“compliance” would have perfect recall for compliance kst i

consistent misclassification of violations would resultitow

overall BA.) Note that since BA scores the accuracy with Wwhic

a set of metric#/ identifies (through the classification function

e Using a subset of models in the ensemble yields more 7 ) the different states of SLO, it is also a direct indicator of
accurate diagnosis than using a single monolithic TAN the degree of correlation between these metrics and the SLO

model trained on all existing data. That is, the inher- COMPpliance and violation. - _ o
ent multi-modality characterizing the relationship betwe To implement the functiory?', we first use a probabilistic
high-level performance and low-level sensors is capturedMode! that represents the joint distributi&tS M) — the dis-
more accurately by an ensemble of models each trained orfribution of probabilities for the system state and the obse

one “mode” than by a single model trying to capture all the values of the metrics. From thﬁe joint distribution we congput
modes. the conditional distributiofP(SM) and the classifier uses this

distribution to evaluate wheth®s~|M) > P(s*|M). Using the
e Our techniques for managing the ensemble and selectingoint distribution enables us to revergg so that the influence
the right subset for diagnosis are inexpensive and efficientof each metric on the violation of an SLO can be quantified
enough to be used in real time. with sound probabilistic semantics. In this way we are able t

) . . ) address the metric attribution problem as we now describe.
The rest of this paper is organized as follows. Section 2re- , o, representation of the joint distribution, we arrivére

views our previous results and describes our metrics of 'mOdefoIIowing functional form for the classifier as a sum of terms

quality and how they are computed. Section 3 describes howweeach involving the probability that the value of some matmic
extend that work to manage an ensemble of models; it de:~:cribeOccurs in each state given the value of the metrigson which

how new models are induced, how the analyzer decides Whethe;rn depends (in the probabilistic model):

to add them to the ensemble, and how models are selected for

problem diagnosis and metric attribution. In sections 4 and - g[P(m|man_) (s)

we describe our experimental methodology and results. Sec- Zi P(my|mp;,s™) (s™)

tion 6 places our contribution in the context of related work From Eq. 2 we see that a metrigjs implicated in an SLO vi-
P my; >] > 0, also known as the loglikelihood

and section 7 concludes. o (

olation if Iog[W
2 Background and Review of Previous Results difference for metrid. To analyze which metrics are impli-
cated with an SLO violation, then, we simply catalog eacketyp
of SLO violation according to the metrics and values that had
a positive loglikelihood difference.These metrics aredkedjas
roviding an answer for the attribution to that particularia-
on. Furthermore, thetrengthof each metric’s influence on the
classifier’s choice is given from the actual value of the ilcgyl
lihood difference.

We rely on Bayesian networks to represent the probability
distribution P(S,I\7I). Bayesian networks are computationally
efficient representational data structures for probatilistrib-
utions [2]. Since very complex systems may not always be com-
pletely characterized by statistical induction alone, &agn
networks have the added advantage of being able to incorpo-
rate human expert knowledge. The use of Bayesian networks as
classifiers has been studied extensively [3]. Furtherniofé]
as well as in this paper we use a class of Bayesian networks
known as Tree Augmented Naive Bayes (TAN) models. The
benefits of TAN and its performance in pattern classificatson
studied and reported in [3]. The key results from our work [1]
on using TAN classifiers to model the performance of a 3-tier
web service include:

e We can successfully manage an ensemble of TAN mod-
els to provide adaptive diagnosis of SLO violations under
changing workload conditions.

]+Iogz >0 2

Consider a stimulus-driven request/reply Internet servic
whose low-level behaviors (CPU load, memory usage, etc.)
are reported at frequent intervals, say 15 to 30 seconds. FOE
each successfully completed request, we can directly measu
whether the system is in compliance or non-compliance with
a specified service-level objective (SLO), for example, thbe
the total service time did or did not fall below a specifiedsir-
old.

In [1] we cast the problem of inducing a metric-attribution
model as a pattern classification problem in supervisedhiear
ing. LetS € {s*,s™} denote whether the system is in compli-
ance §") or noncompliance (violation)s~) with the SLO at
time t, which can be measured directly. L = [my,...,my]
denote the values of collected metrics at time(we will omit
the subindex when the context is clear). The pattern classifica-
tion problem consists of inducing or learning a classifiercfu
tion F : My — {s",s™}. In order to determine a figure of merit
for the function¥ we follow the common practice in pattern
recognition and estimate the probability tifatapplied to some
M yields the correct value @ (st or s7) [9, 7]. Specifically
we usebalanced accuradiBA), which averages the probabil- e Combinations of metrics are better predictors of SLO vi-
ity of correctly identifying compliance with the probalbyliof olations than are individual metrics. Moreover, different



combinations of metrics and thresholds are selected undebeen observed in real Internet services [6] and in our own ex-

different conditions. This implies that most problems are periments [1]. In the context of probabilistic models in geai,

too complex for simple “rules of thumb” (e.g., only moni- and TAN models in particular, there are various ways to handl

tor CPU utilization). such changes.

. . - One way is to learn a single monolithic TAN model that at-

* Sma_II number_s of _metrlcs (typically 3-8) are sufficient to tempts to capture all variations in workload and other condi

predict SLQ V|ol_at|o_ns _accu_rately. In most cases the se-y,nq - \while we present a detailed analysis of this approach

Iecte_d metru_:s y|e_Id_|nS|ght into the cause of the problem in Section 5, the following experiment demonstrates itstsho

and its location within the system. comings. We use data collected on a system with two differ-
e Although multiple metrics are involved, the relationships €nt workloads (described in Sections 4.2.1 and 4.2.2), late t

among these metrics can be captured by TAN models. InMimics increasing but “well-behaved” activity (e.g. whesite

typical cases, the models yield a BA of 90% - 95%. transitions from a low-traffic to a high-traffic service pet)
and the second mimics unexpected surges in activity (e.g. a

Based on these findings, and the fact that TAN models arebreaking news story). A single classifier trained on bothkaor
extremely efficient to induce, represent and evaluate, we hy loads had a BA of 72% (226% false alarm rate, 62% detec-
pothesized that the approach could be extended to enalpég-a st tion). But by using two models, one trained on each workload,
egy of adaptation based on periodically inducing new modelswe achieve a BA of 88% (false alarm rate 13%, detection rate
and managing an ensemble of models. This leads to the fol-90%). Note that the improved BA results from improvements
lowing questions, which are addressed and validated ingke n  in both detection rate and false alarm rate.
sections: A second approach, trying to circumvent the shortcomings of
the single monolithic model, is to use a single model thaptsla
with the changing conditions and workloads.  The biggest
“shortcoming of such an approach is in the fact that the single

model does not have “long term” memory, that is, the model
2. If so, how do we induce new models and how do we decidecan only capture short term system behavior, forcing it to re
whether a new model is needed to capture a behavior thatearn conditions that might have occurred already in the. pas

is not being captured by any existing model? (Section 3.2)  In the third approach, taken in this paper, adaptation is ad-

] . ) .. dressed by using a scheduled sequence of model inductions,
3. When different model(s) are correct in their classifati  1eeping an ensemble of models instead of a single one. The
of the SLO state, but differ in metric attribution, which y5delsin the ensemble serve as a memory of the system in case

1. Can we achieve better accuracy by managing multiple
models as opposed to refining a single model? (Sec
tion 3.1)

model should we “believe™? (Section 3.3) problems reappear. In essence, each model in the enserable is
summary of the data used in building it. We can afford such an
3 Managing an Ensemble of Models approach since the cost, in terms of computation and memory,

of learning and managing the ensemble of models is relgtivel

We sketch our approach as follows. We treat the regularly negligible: SLO measures are typically computed at one & fiv
reported system metrics as a sequence of data vectors. As neWinutes in commercial products (e.g., HP's OpenView Trans-
data are received, a sliding window is updated to include theaction Analyzer), while learning a model in our current il
data. We score the BA of existing models in the ensemblementation takes about 9-10 seconds, evaluating a modegin th
against the data in this sliding window and compare this ¢o th ensemble takes about 1 msec and storing a model involves keep
BA of a new model induced using only the data in this window. ing at most 20 floating point numbérs
Based on this comparison, the new model is either added to the An ensemble of models raises two main issues: First, what is
ensemble or discarded. the appropriate number of samples (or window size) for induc

Whenever the system is violating its SLO (in our case end-ing a new model and, second, once we have a violation how do
to-end request service time), we use the Brier score [4, 5] towe fuse the information provided by the various models. €hes
select the most relevant model from the ensemble for metric a are the questions we address in the next two sections.
tribution. The Brier score is related to the mean-squareore
often used in statistical fitting as a measure of model gossine 3.2 Inducing New Models and Updating the Model
The analyzer then applies Eq. 2 to this model to extract #te i Ensemble
of low-level metrics most likely to be implicated with theola-
tion. This information can then be used by an administratoro ~ We use a standard TAN induction procedure [3], augmented
automated repair agent. with a process calleteature selectionfor selecting the subset

In the rest of this section we give the rationale for this ap- of metrics that is most relevant to modeling the patternsrand
proach and describe the specifics of how new models are indations in the data. The feature selection process proviges

duced and how the model ensemble is managed. advantages. First, it discards metrics that appear to litee |
impact on the SLO, allowing the human operator to focus on
3.1 Multiple Modelsvs. Single M odel a small set of candidates for diagnosis. Second, it redinees t

. . 1These performance figures were on a Intel Pentium 4, 2.0Gagaini-
The observation that changes in workload and other con-gg| penchmarks of the model learning and testing with a reva mplementa-

ditions leads to changes in metric-attribution relatiopsthas tion indicate an order of magnitude improved performance



number of data samples needed to induce robust models. Thi&lgorithm 1 Learning and Managing an Ensemble of Models

is known as the dimensionality problem in pattern recogniti
and statistical induction: the number of data samples rietxle
inducegoodmodels increases exponentially with the dimension
of the problem, which in our case is the number of metricsén th
model (which influences the number of parameters). The num-
ber of data samples needed to induce a viable model in turn in-
fluences the adaptation process. The feature selectiothepnob
is essentially a combinatorial optimization problem tisati$u-
ally solved using heuristic search; in this paper we use ambea
search algorithm, which provides some robustness agaiceit |
minima [8].

Models are induced periodically over a datd3etonsisting
of vectors ofn metrics at some timg, M; = [my,...,my] and
the corresponding labess or s~ over the SLO state. Once the
model is induced, we estimate its balanced accuracy (Eqm 1) o
the data sebD using tenfold crossvalidation [9]. We also com-
pute a confidence interval around the new BA score. If the new
model’s BA is statistically significantly better than thdtadl
models in the existing ensemble, the new model is added to the

Input: TrainingWindowSize and Minimum Number of Samples Pe
Class
Initialize Ensemble td ¢} and TrainingWindow td ¢}
for every new sampldo
add sample to TrainingWindow
if TrainingWindow has Minimum Number of Samples Per Class
then
Train new ModelM on TrainingWindow (sec. 3.2)
Compute accuracy dfl using crossvalidation.
For every model in Ensemble compute accuracy on Training-
Window.
if accuracy oM is significantly higher than the accuracy of all
models in the Ensemblden
add new model to Ensemble.
end if
end if
Compute Brier score (Eq. 3) over TrainingWindow for all misde
in Ensemble (sec. 3.3)
if system state for new sample is SLO violatitwen
Perform metric attribution using Eq. 2 over metrics of model
with lowest Brier score (Winner Takes All).

ensemble; otherwise it is discarded. In our experiments-mo end if
els are never removed from the ensemble; although any @achin = gng for
discipline (e.g. Least Recently Used) could be used to linat
size of the ensemble, we did not study this issue in depth be-
cause evaluating models takes milliseconds and their compa for weighted combination of models in an ensemble to get a
size allows us to store thousands of them, making the choicesingle prediction [10, 11, 12], our problem is complicated a
among caching policies almost inconsequential. differs from most cases in the literature in that the worklla
There are two inputs to the ensemble-management algoand system behavior are not stationary. As we have observed,
rithm: the number of samples in the window, and the minimum this leads to different causes of performance problemdfardi
number of samples per class. Choosing too many samples magnt times even though the high level observable manifestati
increase the number of patterns that a single model triesgo ¢ is the same (violation of the SLO state). We find that given a
ture (approaching the single-model behavior describedipre suitable window size (number of samples) we are able tobtai
ously) and result in a TAN model with more parameters. Too fairly accurate models to characterize windows of nonstati
few may resultin a non-robust model and overfitting of theadat ary workload; hence we expect that the simpler winner-tke-
Lacking closed-form formulas that can answer these questio approach should provide good overall accuracy.
for models such as TAN and for potentially complex workloads ~ For each model in the ensemble we compute its Brier
such as those we emulate, we follow the typical practice in ma score [4] over a short window of past dafa= {d:_w, ...,ck_1},
chine learning of using an empirical approach. Welaaening wheret is the present sample, making siréncludes samples
surfacego characterize minimal data requirements for the mod- of both SLO compliance and non-compliance. The Brier score
els in terms of number of data samples required and propsrtio is the mean squared error between a model’s probabilityeof th
of SLO violation versus compliance as described in SectiBn5 SLO state given the current metrics and the actual valueeof th
This provides an approximate estimate of the basic datareequ  SLO state, i.e., for every model in the ensemble;:
ments. We then validate those requirements in the expetimen
we perform.
Algorithm 1 describes in detail the algorithm for managing
the ensemble of models.

t—w
BSuo, (D)= Y [P(s N = mqMoj) —I(s=s )2, (3)

k=t—1

whereP(s™|[M = m;Mo;) is the probability of the SLO state
being in violation of modelj given the vector of metric mea-
surements andi(s = s7) is an indicator function, equal to 1
When using a single model, accuracy is computed by count-if the SLO state is~ and 0 otherwise, at timke For a model
ing the number of cases in which the model correctly predictsto receive a good Brier score (best score being 0), the model
the known SLO state and metric attribution is performed by ap must be both correct and confident (in terms of the probabil-
plying Eq. 2: every metriay for which the log-likelihood ratio ity assessment of the SLO state) in its predictions. Althoug
difference is positive is a metric whose value is consistatit in classification literature the accuracy of the models ierof
the state of SLO violation. To compute accuracy and metric used to verify the suitability of an induced model, we requir
attribution using an ensemble we followénner take allstrat- a score that can select a model based on data that we are not
egy: we select the “best” model from the ensemble, and thensure has the same characteristics as the data used to itduce t
proceed as in the single-model case. models. Since the Brier score uses the probability of ptigaic
Although the machine learning literature describes method rather than just {0,1} for matching the prediction, it prdes us

3.3 Maetric Attribution and Ensemble Accuracy



with a finer grain evaluation of the prediction error. As oxr e  Our data collection tool is a widely distributed commereip}
periments consistenly show, using the Brier score yieldt®be plication that many system administrators rely on for aatair
results, matching the intuition expressed above. information pertaining to system performance.

Note that we are essentially using a set of models to cap- A load generator calletttperfoffers load to the service. An
ture the drift in the relationship between the low level riestr ~ SLO indicator processes the Apache web server logs to deter-
and performance as defined by the SLO state. The Brier scorenine SLO compliance over each one minute interval, based on
is used as a proxy for modeling the change in the probability the average server response time for requests in the ihterva
distribution governing these relationship by selectirgritodel
with the minimal mean squared error (in the neighborhood) of 4.2 \Workloads
an SLO violation.

All of our workloads were created to exercise the threestler
4 Experimental M ethodology webservice in different ways. We rejected the use of stahdar
synthetic benchmarks such as TPC-W that ramp up load to a

We validate our methods on a three-tier system runnmgstable plateau in order to determine peak throughput sutgjec

a web-accessible Internet service based on Java 2 Eneerpris? Constraint on mean response time. Such workloads are not
Edition (J2EE). We excite the system using complex work- sufficiently rich to mimic the range of system conditionsttha

loads, inducing performance problems that manifest as highMight occurin practice. _ _

response times, thus violating the system’s SLO. We empiri- e designed the workloads to exercise our algorithms by

cally designed our workloads to stress, but not overload, ou Providing it with a wide range ofM, P) pairs, whereM repre-

system during abnormal periods; once we determined the poinsents a sample of values for the system metricsFarepresents

at which our workload saturated the system (regardlesseof th & vector of application-level performance measuremengs, (e

underlying causé) we then aimed for steady-state workload at response time and throughput). Of course, we cannot djrectl

50—60% of this threshold, as is typical for production syste ~ control eitherM or P; we control only the workload submitted

based on J2EE [13, 14]. to the system under test. We wrote simple scripts to generate
For analysis, we collect both low level system metrics from session files for the httperf workload generator, whichveslo

each tier (e_g_, CPU, memory, disk and network uti”zatjons us to vary the client think time, the request mixture, and the

and application level metrics (e.g., response time andestqu  arrival rate of new client sessions.

throughput). The following subsections describe the tbtb

and workloads we use to excite the system. 421 RAMP: Increasing Concurrency

For this experiment we gradually increase the number of con-
4.1 Testbed ; : .
current client sessions. We add an emulated client every 20
Figure 1 depicts our experimental three-tier svstem. thetmo minutes up to a limit of 100 total sessions. Individual ctien
comr?wn confipuration forpmedium and large In%/ernet ,services request streams are constructed so that the aggregatesreque
The first tier isgthe Apache 2.0.48 Web segr]ver the second tierStream resembles a sinusoid overlaid upon a ramp. The @verag
. T 1S the Ap o ST . response time of the web service in response to this workload
is the application itself, and the third tier is an Oracle iR . . - : . .

is depicted in Figure 2. Each client session follows a simple

database. The application tier runs PetStore version 2.0, a j . S
e-commerce application freely available from The Middlesva pattern: go to main page, sign in, browse products, add some
pp y products to shopping cart, check out, repeB.is the prob-

Cotgnﬁani//vastarr: e(;(??pclje Olf h?:/]vtnq[t(;wld iZFE-cor?]pf:Ia)r:Igppll-abi“ty that an item is added to the shopping cart given that i
cations. 4Ve tuned e deployment descriptors, contig.mdl, &, just been browsed?; is the probability of proceeding to

startWebLogic.cmd in order to scale to the transactionmeisi : . .
) o ) the checkout given that an item has just been added to the cart
reported in the results. J2EE applications must run on raiddl 2 . .
ware called an application server: we use WebLogic 7.0 SI34These probabilities vary sinusoidally between 0.42 anavitty
from BEA S stempsp one of the mo’re opular commgerciai J2EEperiOdS 0f 67 and 73 minutes, respectively. This experigznt
y i pop well as that described in the next section, was used to walida

SEIVers, V.V'th Java 2 SDK 1.3.1 from Sun. our earlier work. We felt both would be useful for demonstrat
Each tier (Web, J2EE, database) runs on a separate HP Neﬁhg some key properties of our current work as well,

Server LPr server (500 MHz Pentium I, 512 MB RAM, 9 GB
disk, 100 Mbps network cards, Windows 2000 Server SP4) con- _
nected by a switched 100 Mbps full-duplex network. Each ma-4-2.2 BURST: Background + Step Function

chine is instrumented with HP OpenView Operations Agent 7.2 This run has two workload components. The figiperf cre-

to collect system-levgl met.rics at 15-second inter v_alScWWe ates a steady background traffic of 1000 requests per minute
aggregate to one minute intervals, each containing the snéangenerated by 20 clients. The second is an on/off workload con

and variances of 62 individual metrics. Although metrice ar  sisting of hour-long bursts with one hour between bursts- Su
reported only every 15 seconds, the true rate at which the SYScessive bursts involve 5, 10, 15, etc. client sessions, gaoh

tem is being probed is much higher so that volatile metrkas li o a4ing 50 requests per minute. The intent of this worklsad i
CPU utilization can be captured and coalesced appropyiatel (4 mimic sudden, sustained bursts of increasingly intergtw

2By saturation we mean the point from which response time gron- load against a backdrop of moderate activity. Each stepen th
bounded with a constant workload. workload produces a different plateau of workload levelyal
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Figure 1. Our experimental system, featuring a commonly used thegéaternet service.
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Figure 2. Relevant sequences of average web server response timgé-ovaute windows when the test system was subjected to jhe (a
RAMP workload (b) BURST workload (c) BUYSPREE workload

as transients during the beginning and end of each step as thé.2.4 DBCPU & APPCPU: External Contention for
system adapts to the change. Server CPU

These two experiments are identical to BUYSPREE except for
one important change. During the abnormal periéjsndP;
remain at 0.7, but an external program is executed on eitlieer t
database server (DBCPU) or the application server (APPCPU)
423 BUYSPREE: Increasing Load Without Increasing that takes_ away 30% of that server’s CPU cycles for the otmat_i
of the period. This external program can be compared to & viru
Concurrency : . .
scanning process that wakes up every once in a while and uses
significant CPU time but very little memory and no network
In this experiment, a new client session is added every presources. The normal-apnormal cycle is repeated 4 ti_me_:s fo
minutes. However, unlike in RAMP, each session only lasts this gxperlment and resulting user response times aressitoil
for slightly more than 50 minutes. This means that after atsho thatin BUYSPREE.
initial ramp up period, there will always be approximately 2
concurrent sessions. Also, after the first two hours, thieex 5 EXperimental Results
iment alternates between two periods of operations which we
will call normalandabnormal Each period lasts a single hour. We report results of our methods using the data collected
The parameter®, andP; are set to 0.7 with no variance during from all the workloads described above. We compare these
the normal periods and are set to 1.0 with no variance duringresults to: (a) a single model trained using all the expemime
the abnormal periods. The normal-abnormal cycle is redeate tal data, (b) an “oracle” that knows exactly when and how the
3 times. The resulting average user response time is shown irworkload varies among the five workload types describe above
Figure 2. The oracle induces workload-specific TAN models for each



type and invokes the appropriate model during testing; avhil metrics | avg attr| BA FA Det

clearly unrealistic in a real system, this method providgsa- chosen | metrics

itative indicator of the best we could do. Ensemble W80| 64 2.3 | 95.67| 419 | 9553
We learn the ensemble of models as described in Algorithm 1 | Ensemble W120 52 25 |9512) 484 | 95.19

using a subset of the available data. The subset of data@re th | ENSeémble W24 33 37 |9468| 548 | 94.85

first 4-6 hours of each workload. We keep the last portion of sz\éﬁ(iﬂélﬁiddels 9 2 93.62| 4.51 | 9L.75

each workload as a test (validation) set. Overall, the imgin Single model 7 5 8610 | 2161 9381

set is 28 hours long (1680 samples) and the test set is 10 hours
long (600 samples). The training set starts with altergativo Table 1. Summary of performance results. First three rows
hour sequences of DBCPU, APPCPU, and BUYSPREE, with  show results for ensemble of models with different sizentraj
DBCPU and APPCPU represented three times and BUYSPREE  window (80, 120, 240 samples).

twice. This is followed by six hour sequences of data from

RAMP and BURST. The result is a training set which has five

different workload conditions some of which are repeated se

eral times. Testing on the test set with the ensemble amounts

to the same steps as in Algorithm 1, except for the fact treat th BUYSPREE workload, and we observed that the lower false
ensemble is not initially empty (but has all the models &din  alarm rate of the ensemble in these cases was largely attribu
on the training data) and no new models are added at any pointable to the inclusion of three metrics that weret chosen by
The accuracies and metric attribution provided by thisiigst  the single model, namely number of incoming packets andsbyte
procedure show how generalizable the models are on unseetp the application server and number of requests to thersyste
data with similar types of workloads. The results of thestste Additionally, the first two metrics also appear in the mogw-s

are described below. cific to the BUYSPREE workload. Thus, the ensemble of mod-
els is capable of capturing more of the important patteras) b
5.1 Accuracy of violations and non-violations by focusing on differenétm

rics for different workloads.

Table 1 shows the balanced accuracy (BA), false alarm and Adaptation to different workloads To show how the en-

detection rates, measured on the validation data, of our apgemple of models adapts to changing workloads, we store the

proach compared to the single model and the set of models, .o, 40y of the ensemble of models as the ensemble is trained
trained on each of the five workloads. We presentresultitort 4 changes in the ensemble’s accuracy as a function of the
ensemble of models with three different training windowesiz |, \mper of samples is shown in Figure 3a. There are initially

(80, 120 and 240 samples). We see that for all cases: () thg,q models in the ensemble until enough samples of violations
ensemble’s performance with any window size is signifisantl - 56 ghserved. The ensemble’s accuracy remains high until ne
better than the single-model, (b) the ensemble’s perfoo@an \ryjoads elicit behaviors different from those alreadgrse

robust to wide variations of the training window size, anji (C ;¢ adaptation is quick once enough samples of the new work-
the ensemble’s performance is slightly better, mainly mte 1554 haye been seen. An interesting situation occurs during
of detection rates, compared to the set of five individuale®d 55 htation for the last workload condition (BURST, marked a
trained on each of the workload conditions we induced. 5 i, the figure). We see that the accuracy decreases signifi-
_ The last observation (c) is at first glance puzzling, as intu- ¢4y when this workload condition first appears, but inves
ition suggests that the set of models trained specificallgéah after about 100 samples. It then decreases again, illirgrat
workload should perform best. However, some of the work- yhe complexity of this workload and the need for multiple mod
loads on the system were quite complex, €.9., BURST has gyg (5 capture its behavior, and finally recovers as more sam-
ramp up of number of concurrent sessions over time and otherp|eS appear. It is worth noting that there is a tradeoff betwe
varied conditions. This complexity is further charactedzn adaptation speed and robustness of the models, e.g., wéth sm

Section 5.3, where we will see that it takes many more Samplestraining window, adaptation would be fast, however, the eied
to capture patterns of the BURST workload, and with lower ac- nignt not be robust to overfitting and will not generalize ewn
curacy compared to the other workloads. The ensemble of mOd'data.

els, which is allowed to learn multiple models feach work-
load is better able to characterize this complexity than the sin  We remind the reader that prediction accuracy is not a direct
gle model trained with the entire dataset of that workload. evaluation of the proficiency of our approach. After all, Sti©
The table also shows the total number of metrics included olation can be determined by direct measurement, so thare is
in the models and the average number of metrics attributableneed to predict it from lower level metric data. Howeversthe
to specific instances of SLO violations (as discussed in secraw accuracy figures do provide a quantitative assessment of
tion 3.3). The ensemble chooses many more metrics overalhow well the model(s) produced capture correlations batwee
because models are trained independently of each othehwhi low level metrics and SLO state. Intuitively, models thap-ca
suggests that there is some redundancy among the differenure system behavior patterns more faithfully should beemor
models in the ensemble. However, only a handful of metrics helpful in diagnosing problems. Although we cannot rigaigu
are attributed to each instance of an SLO violation, theeefo prove that is the case, the next section will show anecdutal e
attribution is not affected by the redundancy. dence that metric attribution using models induced acoortti
Most of the single model’s false alarms occur for the our approach do pointto the likely root cause of an issue.



5.2 Metricattribution Workload | #vio | #no vio | max BA(%)
RAMP 90 80 92.35

Figure 3b illustrates the metric attribution for part of theet BURST 180 60 81.85
set for one of the ensemble of models we learned. The image BUYSPREE| 40 40 95.74
illustrates which metrics were implicated with an SLO viola APPCPU 20 30 97.64
tion during the different workload conditions. For insteaof DBCPU 20 20 93.90
violations in the BUYSPREE workload, network inbyte and in-
packet are implicated with most of the instances of viotatio Table 2. Minimum sample sizes needed to achieve accuracy

that is at least 95% of the maximum accuracy achieved for each

In addition, due to the increased workload, the App servey CP "
workload condition.

(usertime) is sometimes also implicated with the SLO viola-
tions, as the heavier workload causes increased CPU load. Fo
the DBCPU workload, we see that the DB CPU is implicated
for all instances of SLO violation, while for the APPCPU werk in the surface, indicating that increasing the number of-sam
load, all the App server CPU is implicated with all SLO viola- ples does not necessarily provide much higher accuraches. T
tions. Some SLO violation instances in the APPCPU workload surface also shows us that small numbers of violations gaire
also implicate the network inbyte and inpacket, but what the with high numbers of nonviolations results in poor BA, even
image does not show is that they are implicated becaude-of  though the total number of samples is high; e.g., accuraty wi
creasednetwork activity, in contrast to BUYSPREE in which 200 nonviolations and 20 violations is only 75%, in conttast
they are implicated due tmcreasedchetwork activity. With the  other combinations on the surface with the same total number
knowledge that the application server CPU load is high ard th of samples (220) but significantly higher accuracy.
network activity is low, a diagnosis of external contentfon Table 2 summarizes the minimum number of samples needed
the CPU resource can be deduced. from each class to achieve 95% of the maximum accuracy. We
It is worth noting that the image illustrates that for diffat see that the simpler APPCPU and DBCPU workloads require
workloads (hence different performance problem causesgth fewer samples of each class to reach this accuracy threshold

appears to be different “signatures” of metric attributiercat- compared to the more complex RAMP or BURST workloads.
aloguing such signatures could potentially serve as a iasis In properly designed systems, contractual SLOs having se-
fast diagnosis based on information retrieval principals. rious repercussions are rarely violated. Therefore, iikisly

that very large windows of data would be needed to capture

5.3 Learning surfaces: determining the appropriate enough samples of violation to construct a model. However,
sample size as mentioned previously, larger windows increases theaghan

that a single model tries to captures several disparatevbeha

To test how much data is needed to learn accurate modelsior patterns. This issue can be addressed by making a virtual
we take the common approach of testing it empirically. Typi- SLO thatis more stringent than what is contractually olitida
cally, in most machine learning research, the size of tHa-tra This would be useful in determine what factors may cause a
ing set is incrementally increased and accuracy is measured System to operate such that the real SLO is close to being vio-
a fixed test set. The result of such experiments are learnindated. Also, the high level indictor of system performaneeah
curves, which typically show what is the minimum trainingala  not be defined only in terms of throughput or latency, but doul
needed to achieve models that perform close to the maximunglso be in terms of measures like a buy-to-browse ratio for an
accuracy possible. In the learning curve approach, the bati e-commerce site.
tween violation and non-violation samples is kept fixed &s th
number of training samples is increased. Additionally, tdet 5.4 Summary of Results
set is usually chosen such that the ratio between the tweedas
is equivalent to the training data. These two choices cahttea The key observations of our results may be summarized as
an optimistic estimate of the number of samples neededimtra ¢, ows:
ing, because real applications (including ours) often leixfai
mismatch between training and testing distribution andbee
it is difficult to keep the ratio between the classes fixed.

To obtain a more complete view of the amount of data
needed, we use Forman and Cohen’s approach [15] and vary
the number of violations and non-violations in the traingsg
independently of each other, testing on a fixed test set #mt h
a fixed ratio between violations and no violations. The fiesul 2. The ensemble method also gives better metric attribut-

1. Even when multiple workload-specific models are trained
on separate parts of the workload, the ensemble method
results in higher accuracy because the ability to learn and
manage multiple models results in better characterization
of these complex workloads.

of this testing procedure is arning surfacahat shows the ion than Work|oad-speciﬁc models, and allows us to ob-
balanced accuracy as a function of the ratio of violations to serve that different workloads seem to be characterized by
non-violations in the training set. Figure 3c shows therlear metric-attribution “signatures”. Future work may include
ing surface for the RAMP workload we described in the previ- exploiting such distinct signatures for enhanced diagnosi
ous section. Each point in the learning surface is the aeerag

of five different trials. Examining the learning surface eais 3. The ensemble provides rapid adaptation to changing work-

that after about 80 samples of each class, we reach a plateau loads, but adaptation speed is sensitive not only to the
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Figure 3. (a) Balanced accuracy of ensemble of models during trainiegical dashed lines show boundaries between workloadgis.
Numbers above figure enumerate which of the five types of watktorresponds to each period (1=DBCPU, 2=APPCPU, 3=BRERY
4=RAMP, 5=BURST). (b) Metric attribution image for the engde of models. First column is the actual SLO state (whitdicates
violation), other columns are the state of each metric andas¢he ensemble (white indicates the violation can belaited to this metric).
Y-axis is epochs (minutes), dark horizontal lines show lolauies between changes in workloads. (c) Learning surtad@AMP experiment
showing balanced accuracy. The color map on each figure sth@wsapping between color and accuracy. Each quad in thacsuid the
balanced accuracy of the right bottom left corner of the quad

number of samples seen but also the ratio between the twanclude WebMon [19] and Magpie [20]. Aguilera et al. [21]
classes of samples (violation and nonviolation). provide an excellent review of these and related research ef
forts, and propose algorithms to infer causal paths of ngessa

4. The observed overlap of the metrics chosen by variousyg|ated to individual high-level requests or transactinkelp
models in the ensemble suggests that there is some redurbiagnose performance problems.

dancy among the models in the ensemble. One area of
future work will be to investigate and remove this redun-
dancy. Pinpoint [6] uses anomaly-detection techniques to infiér fa
ures that might otherwise escape detection in componehtize
applications. The authors of that work observed that soer-id

] . . N Eical components have distinct behavioral modes that dipen
re_sults, future ?’VO”‘ may include mvestlggtmg MOre COM-=\hich machine in a cluster they are running on. They adddesse
p_Ilcate_d sglectlon functlons_or further refmements of met_- this by explicitly adding human-level information to the d&d
ne attnbutl(_)n, .SUCh as _ranl_qng the metrics based on their induction process, but approaches such as ours could hie@ppl
actual log-likelihood ratio difference values. for automatic detection of such conditions and disqualifica

6. At no point in our process is explicit domain-specific Of models that try to capture a “nonexistent average” of mult
knowledge required, though such knowledge could be ple modes. Slmllarly, Mesnier _et al. [2_2] find that decisimres
used, e.g., to guide the selection of which metrics to Can accurately predict properties of files (e.g., accedsnpa)
capture for model induction. Future work may investi- Pased on creation-time attributes, but that models frompooe

gate which aspects of our approach could be enhanced byluction environment may not be well-suited to other environ
domain-specific knowledge. ments, inviting exploration of an adaptive approach.

5. Choosing a “winner take all” selection function rathearth
one that combines models in the ensemble gives excellen

6 Related Work Whereas “classic” approaches to performance modeling and
analysis [23] rely ora priori knowledge from human experts,

Automatic monitoring and dynamic adaptation of computer our techniques induce performance models automaticalip fr
systems is a topic of considerable current interest, agagid passive measurements alone. Other approaches perform diag
by the recent spate of work in so-called “autonomic comput- nosis using expert systems based on low-level metrics [24];
ing”. Recent approaches to automatic resource allocatsen u such approaches are prone to both false negatives (lowiteve
feedforward control [16], feedback control [17], and anmpe dicators do not trigger any rule even when high-level betravi
market auction of cluster resources [18]. Our goal is to un- is unacceptable) and false negatives (low-level indicatag-
derstand the connection between high-level actionable-pro gerrules when there is no problem with high-level behavilor)
erties such as SLO’s, which drive these adaptation efforts,contrast, our correlation-based approach uses observithie
and the low-level properties that correspond to allocatabl level behavior as the “ground truth”, and our models are in-
sources, decreasing the granularity of resource allatatéwi- duced and updated automatically, allowing for rapid adagpta
sions. Other complementary approaches pursuing simi@sgo to a changing environment.



7 Conclusion

(7]

We routinely build and deploy systems whose behavior we [8]

understand only at a very coarse grain. Although this obser-

vation motivates autonomic computing, progress requhias t
we be able to characterize actionable system behaviorenste
of lower-level system properties. Furthermore, previdieres
showed that no single low-level metric is a good predictor of [10]
high-level behaviors. Our contribution has been to extemd o
successful prior work on using TAN (Bayesian network) medel
comprising low-level measurements both for predictionarhe
pliance with service-level objectives and for metric &ittion
(understanding which low-level properties are correlatth

SLO compliance or noncompliance). Specifically, by manag-

(9]

[11]

[12]

ing an ensemble of such models rather than a single model, we

achieve rapid adaptation of the model to changing worklpads

infrastructure changes, and external disturbances. Tudtiie
the ability to continuously characterize a key high-levethav-
ior of our system (SLO compliance) in terms of multiple low- [15]
level properties; this gives the administrator, whethenho or

machine, a narrow focus in considering repair or recovery ac

tions. Using a real system under realistic workloads, wevsido
that collecting instrumentation, inducing models, andnten-

ing the ensemble of models is inexpensive enough to do it) (sof
real time. Beyond the specific application of TAN models in
our own work, we believe our approach to managing ensem-

bles of models will prove more generally useful to the rapidl

growing community of researchers applying machine legrnin

techniques to issues of system dependability.
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