

The Case for Data Assurance

Martin Arlitt, Keith I. Farkas
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2005-38
February 24, 2005*

E-mail: firstname.lastname@hp.com

Information
Technology
Computing
Environments,
monitoring data,
data quality

Monitoring data, while used historically primarily for performance
analysis and debugging, is increasingly playing a more central role in the
control and management of IT environments. Yet, monitoring data
contains errors, errors which can and do affect the decisions made by the
automatic control and management systems. To support the increasing
scale and complexity of IT environments, it is imperative that data quality
problems be recognized before automated systems act on the data. We
believe this need can be met with a data assurance layer, which sits
between the data collectors and consumers (human or software), and
which is responsible for informing the data consumers about its quality.
In this paper, we lay the groundwork for this layer by examining the
imperfections that exist in monitoring data, and then identifying some
promising directions for further investigation.

* Internal Accession Date Only Approved for External Publication
© Copyright 2005 Hewlett-Packard Development Company, L.P.

Paper submitted to the 3rd Workshop on End-to-End Monitoring Techniques and Services, 2005
The Case for Data Assurance
Martin Arlitt and Keith I. Farkas

Hewlett-Packard Laboratories
firstname.lastname@hp.com
Abstract
Monitoring data, while used historically primarily for per-

formance analysis and debugging, is increasingly playing a
more central role in the control and management of IT envi-
ronments. Yet, monitoring data contains errors, errors which
can and do affect the decisions made by the automatic control
and management systems. To support the increasing scale and
complexity of IT environments, it is imperative that data qual-
ity problems be recognized before automated systems act on
the data. We believe this need can be met with a data assur-
ance layer, which sits between the data collectors and consum-
ers (human or software), and which is responsible for
informing the data consumers about its quality. In this paper,
we lay the groundwork for this layer by examining the imper-
fections that exist in monitoring data, and then identifying
some promising directions for further investigation.

1 Introduction
Emerging utility computing models [1,2,3] and the
growing scale of Information Technology (IT)
compute environments are changing the role of
monitoring data. Historically, monitoring data has
been used predominantly for analyzing perfor-
mance, and for identifying and fixing performance
and functional problems. However, increasingly,
monitoring data is playing a more direct role in the
control and management of computing environ-
ments. Indeed, emerging automatic control and
management systems [4,5,6] use monitoring data
as a basis for the decisions they make.

While, as in other domains, poor quality data can
lead to bad decisions, the dynamics of current com-
pute infrastructure magnify the consequences. The
growing scale, adaptivity, and complexity of the
infrastructure is making it increasingly difficult for
humans to ensure that data is being collected prop-
erly, let alone sanity check the collected data val-
ues. Moreover, control systems are using this data
to make decisions more quickly than could a
human, thus challenging the ability of humans to

keep up. Finally, the growing complexity of the
infrastructure reduces the ability of humans to rea-
son about the cause-and-effect relationships
between components in the environment, thus
potentially leading to cascading failures following
an initial bad decision. Clearly, to prevent the mag-
nification of any data quality problems, these prob-
lems must be recognized early.

To address this problem, we believe there is a need
for a software layer that sits between the data col-
lectors and the users of the monitoring data. This
data assurance layer will be responsible for evalu-
ating the quality of the data, correcting simple
errors, and providing the data consumers with
quantitative measures of the data quality. In short,
this layer will automate many of the data prepara-
tion tasks humans now do, tasks guided by human
intuition. Consequently, it will help enable more
automatic and adaptive computing environments.

In this paper, we present a necessary first step to
creating this data assurance layer, namely an exam-
ination of the imperfections that exist in monitor-
ing data in IT environments. While our focus is
system-level and application-level resource utiliza-
tion metrics (e.g., CPU utilization), our conclu-
sions are not necessarily limited to this domain.
Our examination draws from work in epistemol-
ogy, the branch of philosophy that studies the
nature of knowledge, its foundation, scope, and
validity. To our knowledge, we are the first to
present a systematic examination of the problems
that occur in the monitoring data for IT systems,
and the first to recognize that data assurance is
required for the control and management of IT
computing environments.

We also present a discussion of promising direc-
tions for further investigation, and summarize
1

FarkasK
Paper submitted to the 3rd Workshop on End-to-End Monitoring Techniques and Services, 2005

some of the open issues, whose resolution requires
contributions from multiple communities.

The remainder of the paper is organized as follows.
Section 2 identifies relevant areas of related work.
Section 3 discusses uses of monitoring data in
computing environments. Section 4 summarizes an
existing taxonomy [9] of imperfection in data, clas-
sifies the type of monitoring data that we focus on
in this paper, and describes a mapping of problems
we have encountered with monitoring data onto the
taxonomy. Section 5 elaborates on the implications
of imperfections in monitoring data, and how we
intend to apply data assurance in IT computing
environments. Section 6 concludes the paper with a
summary of our work.

2 Related Work
Data quality is a recognized problem in a number
of domains, one of which is military intelligence.
Keegan notes in [7] that data acceptance is an
extremely important step in the processing of mili-
tary intelligence data. Data is not trusted until
assurances can be obtained about its correctness
and consistency. Incorrect or inconsistent data can
have profound consequences.

Data quality is also the subject of several confer-
ences including the International Conference on
Information Quality [8], which is focused on the
management issues related to information quality,
and covers such topics as information quality con-
cepts, management, best practices, and case stud-
ies. While such work is related to our own, we are
not aware of any that specifically address the issue
of data quality in the control and management of IT
resources.

An example from one of these communities that
clearly shows the importance of data quality is a
sensor-to-shooter (STS) network [10] for use in
battlefield situations to automatically detect, target,
and engage enemy targets. In a fully automated
STS network, humans are removed from the loop
with the aim of reducing the army’s exposure and
improving response times. Yet, removing humans
removes human intuition about whether an actual
target was detected, and whether the correct actions

are being taken to engage it, for example, that the
weapons are pointed in the correct direction.

In the context of the control and management of IT
environments, the consequences of incorrect deci-
sions could be as severe as in an STS network.
Indeed, computer systems control many aspects of
today’s physical infrastructure. Incorrect decisions
could have significant personal and business rami-
fications. We thus believe that data assurance has
an important role to play in IT environments.

Finally, the nature of knowledge, its foundations,
scope, and validity is being studied by epistemolo-
gists. This area of study provides a basis for under-
standing the type of errors that can occur, and how
these errors give rise to uncertainty; our discussion
in Section 4 is based on some work done by Smets
[9] in this area.

3 Uses of Monitoring Data
Data assurance is an increasingly important prob-
lem for the control and operation of computing
environments owing to data playing an increasing
central role in the decisions made by control and
management systems. In this section, we describe
several such systems, highlighting how monitoring
data is used, and some of the consequences of bad
data.

In enterprise IT environments, one important man-
agement task is the allocation of compute resources
to applications such that the time-varying resource
needs of the often long-running enterprise applica-
tions are met. This task is performed by a capacity
manager [4][5]. Capacity management algorithms
base the allocation decisions on monitoring data
that reflects the past resource needs of the applica-
tions and the capabilities of the target computer
systems. Typical metrics include peak CPU utiliza-
tion, peak memory utilization, and network band-
width. Scheduling decisions are made by first
evaluating for each measurement interval how
much resource capacity is required by each appli-
cation, and then selecting application groupings for
which the aggregate resource needs can be met at
each interval by a given target computer system. If,
however, the metric values are incorrect, a capacity
manager may either over-subscribe the resources
2

of a given system, thus impacting the performance
of the applications, or under-subscribe the
resources, thus increasing the cost of running the
IT environment. In either case, this incorrect allo-
cation decision could lead to further incorrect allo-
cations, thus complicating correction efforts.

A second important management task is that of
diagnosing performance problems once they occur.
Cohen et al. [11], for example, use probabilistic
models to identify relationships between relevant
system metrics and unmet performance targets.
These models are then used to locate the probable
cause of a problem. Thus, for example, if an appli-
cation is not meeting its performance target, this
approach can be used to determine whether the
CPU utilization, disk read operations, swapping, or
combination thereof is the likely cause. Moreover,
the approach can be used to identify normal operat-
ing ranges for the metrics, and thus identify pat-
terns that likely forecast performance problems.
Given the statistical nature of this approach, poor
quality data may impact the analyses, although, the
impact cannot be analyzed a priori. Poor analysis
may lead to an increase in false positives, which
are costly and time consuming to resolve.

A third management task concerns tuning the per-
formance of an application. Xue et al [6] are inves-
tigating using feedback control algorithms to
dynamically and automatically adjust the resources
allocated to a resource container (e.g., virtual
machine) so as to deliver the required performance
with minimal resource allocation levels. The con-
trol algorithms use monitoring data to assess
whether the desired performance is being met, and
if not, to assess the impact of changes in resource
allocations. While short term non-repeating data
errors may not impact the performance of the sys-
tem, longer term or repeated errors could affect the
stability of the control system or its ability to meet
its design objectives. These effects could affect the
behavior of other inter-dependent control systems,
if they exist.

4 Problem and Measurement Taxonomies
Smets discusses the importance of cooperation
between the systems and uncertainty communities,
in order to arrive at more accurate solutions [9].

Smets suggests the following methodology when
confronted with imperfect data: first, realize the
form of imperfection; then, select the most appro-
priate model for addressing the imperfections. In
this paper we focus on the first of these steps, and
attempt to better understand the forms of imperfec-
tion that exist in system utilization data. We also
discuss some simple techniques that can be used to
identify some of these imperfections, as well as
possible methods for addressing several of these
problems. We defer a thorough examination of
modeling the imperfections to future work.

The remainder of this section is organized as fol-
lows. Section 4.1 presents a visualization of the
Smets taxonomy of imperfect information [9], and
applies it to the IT context. Section 4.2 outlines
properties of system utilization data. Section 4.3
provides a mapping between imperfections we
have encountered in system utilization data and
Smets taxonomy. Section 4.4 summarizes the con-
tributions of this section.
4.1 Smets Taxonomy

Smets provides a categorization of imperfect data
along three axes: imprecision, inconsistency, and
uncertainty [9]. Imprecision and inconsistency are
properties of the data; we focus on these aspects in
this section. Uncertainty concerns the state of
knowledge of the users of the data; that is, how
informed the users are with respect to the quality of
the data. We consider this third aspect in Section 5.

Figure 1 shows the complete categorization of
imperfect data as provided by Smets [9].1 Below
we reiterate the definitions provided in [9] and pro-
vide some IT specific examples.

Imprecision: a piece of data is imprecise if it is not
exact. Smets identified two general classes of
imprecise measurements: those without an error
component, and those with an error component.

Imprecise measurements without an error compo-
nent are further classified into either vagueness or

1. Please note that the graphical representation of Smets’ taxonomy is
our interpretation of his textual description.
3

missing. The most specific classes are defined
below:
• ambiguous: something that has multiple mean-

ings; e.g., ‘The system is up’ could mean the sys-
tem is powered or could run a job.

• approximate: close to reality and well defined,
and decidable if the information is correct or not;
e.g., ‘The number of servers is in the 40’s is true
if the actual number is 42.

• unclear: something that is not well defined and
not decidable; e.g., ‘The number of servers is
close to 40’ when the actual number is 42.

• incomplete: data is missing, but is not expected;
e.g., the number of virtual machines running on a
system is not defined for a system that is turned
off

• deficient: data is missing, and is expected; e.g., a
virtual environment is running on a system but
the number of virtual machines is not defined.

Smets defines seven types of imprecise measure-
ments with an error component. They are:
• erroneous: the data is simply wrong; e.g., ‘the

number of CPUs is 12’ when the actual number is
23.

• inaccurate: the data is wrong, but the error is
small; e.g., ‘the number of CPUs is 12’ when the
actual number is 13.

• invalid: the data is wrong, and could lead to
invalid conclusions; e.g., ‘the number of CPUs is
12’ when the actual number is 8, which could
lead to the conclusion that 12 applications can be
run on the system

• distorted: inaccurate and invalid data; e.g., ‘the
number of CPUs is 12’ when the actual number is
6, which could lead to paying twice the required
license fee for a software package.

• biased: all data has been subjected to a system-
atic error; e.g., the number of CPUs is recorded
as ‘number - 1’.

• nonsensical: the recorded value is so extreme that
the user can easily identify the problem; e.g., ‘the
number of CPUs in a server is 1,000,000’.

• meaningless: the value has no meaning, and no
importance; e.g., ‘the OS reports an ID for a non-
existent second processor’.

Inconsistency: Inconsistency can occur when sev-
eral pieces of information are combined and
aspects of imperfection appear. With inconsistency,
there is always some type of error. The specific
types of inconsistency are described below.

• conflicting: disagreement among the data; e.g., ‘a
system has 1 CPU but lists jobs as running on
two’.

• incoherent: incoherent conclusions are reached as
the result of conflicting data; e.g., (using the pre-
vious example) the peak CPU utilization is 200%.

• inconsistent: not compatible with other informa-
tion (best used when time is involved); e.g., ‘the
system was rebooted at 3:00pm’ ‘it is now
3:15pm and the system has been up for 2 hours’.

• confused: a milder form of incoherence that can
be recovered from small modifications of the

Imperfection in data

Without error Combined with error

Erroneous/incorrect
Inaccurate
Invalid
Distorted
Biased
Nonsensical
Meaningless

Incomplete
Deficient

Ambiguous
Approximate
Unclear

Conflicting
Incoherent
Inconsistent
Confused

Believable
Probable
Doubtful
Possible
Unreliable
Irrelevant
Undecidable

Random
Likely

Uncertainty

Objective Subjective

InconsistencyImprecision

Vagueness Missing

(Smets, 1997)

Figure 1. Smets’ Taxonomy of Imperfections in Data
4

data; e.g., ‘the system was rebooted at 3:00pm’,
‘it is now 3:15pm and it has been up 16 minutes’.

4.2 Properties of Monitoring Data

One observation from 4.1 is that some of Smets'
distinctions between specific classes are subjec-
tive. This provides more flexibility in applying the
taxonomy to different spaces, but also requires
agreement within a community about the defini-
tions of imperfections for a specific space (e.g.,
computing systems). For this reason, we examine
the imperfections that occur in a time series in the
context of computer systems. We defer discussion
of other measurement sequences for future work.

A time series is one of several measurement
sequences, which may be categorized by how the
measurements are ordered. Figure 2 shows one
possible classification. A time series is a special
type of ordered sequence, one in which the mea-
surements are ordered using time (usually the time
at which the measurements were taken). In a time
series, the time stamps are typically monotonically
increasing, and reflects a (partial) history of the
environment under observation. If the interval
between pairs of successive measurements in a
time series is constant, we say the time series is
regular; otherwise, it is irregular.2

More formally, a time series comprises one or
more data rows (Ti, M1i, M2i, … , Mni), where Ti is
the time stamp for time interval i, and M1i, M2i, …,

Mni are the corresponding values of the desired
metrics. Each Mji value is called a data point.

4.3 Mapping Between Taxonomy and Data

In this section we attempt to map imperfections we
have encountered in system utilization data to
Smets’ Taxonomy. We provide an example for
each specific type of imprecision and inconsis-
tency. For selected types, we provide additional
information on techniques that could be used to
identify, or possibly address the imperfection,
depending on how the data is to be used.

Ambiguous Data
In some computer systems, multiple agents are
used to collect measurements of system utilization.
Occasionally, these agents may use similar metric
names (e.g., CPU utilization), but with different
meanings. Without knowing which data collector
was used (or even which version), it may be impos-
sible to know how to properly interpret the value of
the metric.

Approximate Data
Some data collectors may round metric values to a
specified number of decimal places. This may
result in a slight deviation from the true value.

Unclear Data
In an attempt to reduce the performance overhead
of collecting data, collectors often aggregate data
over longer intervals (e.g., five minutes). If a user
requires maximum values at one minute intervals,
they may only be able to ascertain that the maxi-
mum is at least as great as the maximum over the
five minute data (which may only provide average
values).

Incomplete Data
Data collectors provide values on a finite set of
metrics. In some cases, this set may not include all
of the metrics of interest to the user. However,
occasionally it is possible to derive the desired
metric from the collected data.

Deficient Data
A common problem we have observed with time
series data (for system utilization) is missing data
rows. Identifying missing rows is straightforward,2. We are interested in comments regarding the existence of a more

formal taxonomy describing sequences of measurements.

Figure 2. Types of Measurement Sequences

Sequence of measurements

Random-ordered sequence Ordered sequence

Temporal ordering (time series) Non-temporal ordering

Fixed
interval
(regular

time series)

Non-fixed
interval

(irregular
time series)

Fixed
interval

Non-
fixed

interval
5

assuming that the start time and the interval length
of the data set are known. Identifying the cause of
the missing data is more problematic, as there are
multiple potential causes. For example, the system
may have been powered off, or the data collector
may have been turned off. Figure 3 indicates that
other causes are possible. In this data set, there
were no data rows on Fridays. Although we were
unable to determine the cause of this problem, we
suspect it was unrelated to the data collection.

There are also methods for ‘repairing’ deficient
data in a time series. The timestamp for each data
row can be calculated exactly, while the values for
each metric could be approximated using any num-
ber of algorithms, such as linear interpolation.
Obviously though, the usefulness of repairing this
type of problem depends on how the data is to be
used.

Erroneous Data
Within a data row, several types of incorrect data
may occur. First, the timestamp (or interval length)
for time i may deviate from the expected time. In a
manner similar to the previous example, this devia-
tion is easy to detect. Second, there may be errors
with the metric values. As we will describe in sub-
sequent examples, some of these errors can be
detected with relative ease, while others are more
difficult and perhaps even impossible to detect.

Inaccurate Data
We have observed this type of imperfection quite
often, typically in the timestamps associated with a
data row. In particular, the timestamp for a data

row is often +/−1 second off the expected value. In
this situation, it may be acceptable to the user to
simply change the observed timestamp for the data
row to the expected value.

Invalid Data
One of the more significant problems that can arise
is one that leads to invalid conclusions regarding
the specific scenario in which the data is being
used. For example, in a capacity planning exercise,
outliers in the metric values could suggest a signif-
icantly higher demand exists for resources than is
actually the case. This could result in an overly
conservative capacity plan, that leads to unneces-
sary purchases of equipment.

Distorted Data
This is a less significant case of the previous type
of data imperfection. Use of distorted data may
result, for example, in capacity plans that are
slightly higher or slightly lower than the correct
plan. Being able to identify distorted data may help
users of the data to provide bounds on the accuracy
of any conclusions drawn from the data; this could
be extremely helpful in certain situations (e.g., cus-
tomers who must compare the bids of several com-
peting hardware suppliers).

Biased Data
This type of imperfection is quite common when
using time series data from multiple computer sys-
tems. In particular, the clocks on each system may
be skewed from the true (universal) time by some
constant amount. This type of error may be diffi-
cult to detect, depending on how the data collector
records the information. The best solution is to pro-
mote the systematic synchronization of all system
clocks (e.g., using a protocol like ntp), to mini-
mize the significance of such imperfections.

Nonsensical Data
One of the more common imperfections that we
have detected in system utilization data are metric
values that are “obviously” wrong. In some cir-
cumstances the nonsensical values are immediately
obvious, as the reported values fall outside of a
well defined range for the metric. In other cases,
the nonsensical values only become obvious once
they have been identified through other means. We
explain this in more depth below.

Figure 3. Example of Deficient Data.
6

Table 1 provides a list of metrics that we have seen
in practice report nonsensical values. The first two
metrics, CPU and memory utilization, were
defined for the specific collector used to return a
value between 0 and 100 percent. For well defined
metrics such as these, it is straightforward to iden-
tify problematic values.

The values of the next five metrics in Table 1 (rows
3 to 7) were all observed in one data set. These val-
ues all appear erroneous, because (if we ignore the
decimal place) they are all equivalent to 215-1, the
maximum value of a 16 bit signed integer, the data
type used for the metrics.

The final metric in Table 1 is the average packet
rate per second. It is even less clear that the value
shown for this metric is in fact erroneous. How-
ever, after identifying the network resources in the
specific machine, we verified that it would be
impossible for the machine to generate this rate of
packets.

All of the nonsensical values shown in Table 1
could be identified by verifying the values fall
within an acceptable range. The primary challenge
is in identifying the range of values to use, as not
all metrics have well defined ranges, and some
actually vary from machine to machine, and collec-
tor to collector.

Meaningless Data
Imperfections that have no impact on a study that
uses the data could be considered meaningless. For
example, if a study only considers CPU utilization,
the imperfections in the other seven metrics
described in Table 1 could be considered meaning-
less, for that particular study.

Conflicting Data
Many data collectors of system utilization provide
both summary statistics (e.g., of the system as a
whole) as well as more detailed statistics (e.g., of
individual system components). For example, a
data collector may report the total number of CPU
seconds used across all processors in the system,
during a particular interval, as well as the number
of CPU seconds used on each individual processor
in the system. An example of conflicting data is
when the sum of the values for each individual
CPU does not match the reported value for all
CPUs.

Incoherent Data
This type of imperfection is again dependent on the
use of the data. If the data described in the previous
example were used in an analysis, it could result in
incoherent conclusions being made.

Inconsistent Data
When using time series (often the case with system
utilization data), it is important to use timestamps
in universal time (UTC). Timestamps left in local
time can be affected by offset changes (i.e., due to
daylight savings time) which may result in the time
series appearing to jump backwards in time, and
contain multiple data rows for the same interval of
time.

Confused Data
Even when system clocks are synchronized, small
deviations may still exist between them. When try-
ing to compare data across machines, these small
deviations may complicate the comparisons. It may
be necessary, for example, to consider timestamps
within d time units of one another to be equivalent,
in order to work around this problem. Figure 4 pro-
vides an example of confused data. In this particu-
lar situation, we had data from two different
systems, one running a RedHat Linux operating
system, the other HP-UX. An error in the timezone

Table 1 Empirical Examples of Nonsensical Data

Metric Name Maximum Observed Value

1 CPU utilization >100%

2 memory utilization >100%

3 CPU run queue
length

327.67

4 disk queue length 327.67

5 memory queue length 327.67

6 page request rate 3276.7

7 pageout rate 3276.7

8 packet rate 6524830.0
7

rules on the RedHat system caused it to adjust its
offset nine hours too soon. During that nine hour
period, errors could occur in any comparisons
between the systems, as the universal times would
differ by one hour.
4.4 Summary

In this section we have proposed a potential con-
vergence of the uncertainty and systems communi-
ties, following the guidelines of Smets. We
provided examples of imperfections we have
encountered in system utilization data sets, and
mapped them onto the taxonomy of imperfections
proposed by Smets (see Figure 1). In the next sec-
tion we discuss implications of our work.

5 Implications
The discussion in the preceding section points to
the wide variety of problems that can occur in
monitoring data and the subtle differences in how
these problems give rise to data uncertainty.

One goal for a data assurance solution is for it to
provide control and management systems with a
quantitative measure of the quality of data. To
derive this measure, the data assurance solution
must associate values to the various factors from
which uncertainty flows. How these values are
derived is one of the issues we are currently
addressing. We believe that there are three cases
that must be taken into account. These cases relate
to the uncertainty classification shown in Figure 1.

According to Smets, uncertainty flows from sub-
jective and objective properties of the data. Subjec-
tive properties are linked to the observer’s opinion

about the true value of the data, while objective
properties are linked to the information and the
environment from which it was collected. Subjec-
tive properties flow, in turn, from humans, as soft-
ware entities cannot form subjective opinions.
Hence, one case reflects the need to capture human
intuition in a programmatic way.

Objective properties may further be divided into
“likely” properties, which result from some proba-
bly cause or known frequency distribution, and
“random” properties, which result from something
that is seemingly without purpose. The second
case, which address likely properties, could be
solved using algorithms to uncover trends in data.
We do not presently know how to address random
properties.

As we have already mentioned, our long-term
vision involves enabling more automated and
adaptive computing environments. We believe that
data assurance will play a critical role. First, it will
facilitate more repeatable and consistent analyses,
by humans and automated control and management
systems, thereby ensuring that a consistent set of
conclusions are drawn from a single data set. Sec-
ond, it improves the scalability of the ‘acceptance’
process, by enabling “experts” to examine larger
data sets, and by sharing the combined intuitions of
a “group of experts” with a much broader audi-
ence. Similarly, it benefits automated systems by
freeing the developers from these systems from
developing point data-assurance solutions. Third,
identifying a more formal description of human
intuition (applied to the computer systems space)
will help overcome numerous trust barriers, a nec-
essary step in activating automated systems.

We believe that there are numerous important
research questions that must be solved before our
long-term vision will be achieved. Some of these
questions are:
• What mechanisms can be used to quantify uncer-

tainty?
• What meta-data should be retained about the

monitoring data to provide important contextual
information?

Figure 4. Example of Confused Data.
8

• Is Smets’ taxonomy sufficient for formally
describing the types of imperfections in monitor-
ing data?

• How should users formally describe the signifi-
cance of different types of imperfections?

• What techniques should be used to identify and/
or “repair” each type of imperfection?

We cannot answer all of these (and related)
research questions on our own. In particular, we
need help from the systems community to identify
methods of expressing our collective intuition
about the problems with monitoring data, to
develop a system for passing relevant information
between data assurance tools and data consumers
in a programmatic manner, and for generalizing
our techniques across other computer systems.
From the uncertainty community, we require assis-
tance on understanding the key attributes to focus
on (e.g., decidability), and how we can relate the
imperfections we identify and the significance lev-
els specified by users to the levels of uncertainty
defined by Smets. We also believe that there are
other communities that could contribute to this
space, and welcome any assistance they offer.

In addition to the tasks we are attempting to do, we
believe it is important to point out what we are not
trying to do. For example, we are not advocating
that all processes involving computer systems
should be automated. Instead, we are simply trying
to assist in overcoming the obstacles for automat-
ing simple and often mundane yet important tasks
that need to be done. We anticipate that this would
enable people to spend additional time on more
important tasks. Also, we envision that data assur-
ance will occur at a layer between data collection
and data consumption, i.e., use of that data. This
offers several potential benefits. First, it allows for
easy integration, as none of the existing tools need
to be modified. Second, even though some of the
imperfections identified are due to problems in the
implementation of the data collectors, not all are,
so the data collectors cannot provide all of the
required assurance functionality.

6 Conclusions
IT compute environments are becoming increas-
ingly large in size and complex in nature. As a

result, these environments are difficult to manage.
Automation is seen as a desirable feature for reduc-
ing the total cost of ownership for such environ-
ments. However, automation introduces additional
risk, as humans are removed from the control loop.
Without some notion of data assurance, obvious
errors may be propagated at a much faster rate,
affecting a much larger part of the environment.

To mitigate the addition risk, we are developing
techniques to automatically identify errors with the
data, correct some of them, and assign a quality rat-
ing to a data set. This rating will permit control
systems to, for example, adjust their aggressive-
ness or decide to take no action. We are also
exploring how to report such errors to humans
without overwhelming them with details.

This is a large and challenging problem space. We
invite others to critique our work, and to assist us
in identifying relevant work that can help develop
this important area.

Acknowledgments

We are indebted to Dejan Milojicic for reviewing
the paper. His comments significantly improved
the contents and presentation.

References
[1] Wilkes, J., Mogul, J., Suermondt, J., “Utilification,”

in the proceedings of the ACM European SIGOPS
Workshop, September 2004.

[2] “Utility Computing,” IBM Systems Journal special
issue 43(1), 2004.

[3] Foster, I. et al., “The Physiology of the Grid: An
Open Grid Services Architecture for Distributed
Systems Integration.“, 2002.

[4] Rolia, J., Cherkasova, L., Arlitt, M., and Andrzejak,
A., “A Capacity Management Service for Resource
Pools”, Hewlett-Packard Laboratories Technical
Report, HPL-2005-01, January 2005.

[5] Asset Optimization Group, Capacity PlannerTM,
http://www.aogtech.com/CapacityPlanner.htm

[6] Xue, L., Zhu, X., Singhal, S., and Arlitt, M., “Adap-
tive Entitlement Control of Resrouce Containers on
Shared Servers”, to appear in the proceedings of the
9th IFIP/IEEE International Symposium on Inte-
grated Network Management, 2005.
9

[7] Keegan, J., Intelligence in War, Pimlico, London,
UK, 2004.

[8] International Conference on Information Quality,
1996-2005.

[9] Smets, P., “Imperfect Information: Imprecision -
Uncertainty”, Universite Libre de Bruxelles, 1999.

[10] Driscoll, Patrick J. and Pohl, Edward, “Modeling the
Decision Quality in Sensor-to-Shooter (STS) Net-
works for Unattended Ground Sensor Clusters”, in
the proceedings of the Seventh International Con-
ference on Information Quality, 2002.

[11] Cohen, I., Goldszmidt, M., Kelly, T., Symons, J.,
Chase, J., "Correlating instrumentation data to sys-
tem states: A building block for automated diagnosis
and control", in the proceedings of Operating Sys-
tem Design and Implementation (OSDI), 2004.
10

