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Abstract

Efficient resource discovery based on dynamic attributes
such as CPU utilization and available bandwidth is a cru-
cial problem in the deployment of computing grids. Exist-
ing solutions are either centralized or unable to answer ad-
vanced resource queries (e.g., range queries) efficiently. We
present the design of NodeWiz, a Grid Information Service
(GIS) that allows multi-attribute range queries to be per-
formed efficiently in a distributed manner. This is obtained
by aggregating the directory services of individual organi-
zations in a peer-to-peer information service.

1 Introduction

Efficient resource or service discovery is a crucial prob-
lem in the deployment of computing Grids, especially as
these evolve to support diverse applications including inter-
active applications with real-time QoS requirements (e.g.,
multi-player networked games). As we migrate from a
resource-centric world to a more service-centric one, it is
anticipated that clients will search for raw computing and
storage resources (e.g., machine with Pentium 1.8 GHz
CPU and 512 MB memory) as well as services (e.g., Lightly
loaded Everquest game service). Further, the attributes
may be dynamically changing (e.g., available bandwidth
between two nodes) rather than static (e.g., OS version).
These trends make the resource or service discovery prob-
lem challenging. The information service must be archi-
tected to support multi-attribute range queries in an efficient
manner.

Current solutions for performing these queries are either
centralized or static hierarchical or have inherently poor ca-
pability for answering some complex queries. Centralized
solutions do not work well in geographically large systems
or with dynamic attributes that change rapidly. Many cen-
tralized solutions can be augmented by replication, but then
managing consistent replicas can incur significant overhead.
Hierarchical distributed systems alleviate some of the issues
with the centralized systems. However, most of these are in-

efficient in retrieving the answers to a multi-attribute range
query because of the static hierarchy through which the
query has to be forwarded. Further, there is limited recourse
available if due to the query load patterns, some information
servers get heavily loaded while others are essentially un-
loaded. Other recently proposed solutions use Distributed
Hash Table (DHT) technology to overcome the problems of
the hierarchical systems, but do not provide a natural way to
perform complex multi-attribute range queries while main-
taining load-balance.

Our goal is to design a Grid Information Service (GIS)
that allows multi-attribute range queries to be performed
efficiently in a distributed manner. We emphasize multi-
attribute range queries because these are among the more
useful and common types of queries that a client would need
to execute. In this paper, we present NodeWiz that aggre-
gates the directory services of individual organizations in
a peer-to-peer information service. NodeWiz is distributed
and self-organizing such that loaded servers can dynami-
cally offload some of their load onto other servers. Fur-
ther, as described later, the information storage and orga-
nization is driven by query workloads, thereby providing a
very natural way, not only to load-balance the query work-
load but also optimize the performance for more common
multi-attribute range queries.

The next section provides the background and related
work. Sections 3 describes the NodeWiz architecture in de-
tail and presents the associated algorithms. This is followed
by an evaluation using simulation in Section 4. Finally, our
conclusions are presented in Section 5.

2 Background

Grid Information Service (GIS) is a key component of
any large grid installation. It addresses the important prob-
lem of resource discovery which enables such large-scale,
geographically-distributed, general-purpose resource shar-
ing environments. Deployed grids based on first version of
the Globus Toolkit [8] employed the Metacomputing Direc-
tory Service (MDS) [21]. The initial architecture was cen-
tralized. Subsequently, MDS-2 [5] was implemented with a



decentralized architecture. The X.500 data model used by
LDAP [22] is employed in MDS-2 to organize objects in a
hierarchical namespace. Each entry has one or more object
classes, and must have values assigned to the mandatory at-
tributes for these classes. Values for optional attributes may
also be present. The query language, also borrowed from
LDAP, allows search based on attribute values, as well as
on the position of objects in the hierarchical namespace.

The MDS-2 architecture consists of directory servers and
other information providers maintained by the different or-
ganizations participating in a grid. They use soft-state reg-
istration to join aggregate directory servers, which in turn
can query them to get details of their content. The aggre-
gate directory servers are expected to include generic di-
rectory servers as well as others specialized for different
views and search methods. Resource brokers might want
an aggregate directory that categorizes computing resources
by processor speed and operating system, while monitoring
applications might want an aggregate directory on running
applications. Another option is to specialize based on the
type of queries supported. Thus a relational aggregate di-
rectory can query the information providers for details of
the resources registered by them, and enter that informa-
tion in a relational database so that relational queries can
be performed on them. NodeWiz can be viewed as a self-
organizing, distributed aggregate directory that specializes
in multi-attribute range queries. We envisage the informa-
tion providers as the peers that come together in a peer-to-
peer architecture to form NodeWiz. Hence we depart from
well-known P2P networks like Napster and Gnutella most
notably in the fact that we are depending on peers that are
stable infrastructure nodes.

NodeWiz treats attribute values advertised by resources
and services, and the queries on them in a symmetric fash-
ion. We view the query process as distributed matchmaking
in which the advertisements and queries are routed through
the NodeWiz P2P network until they reach the same node
where a match is found. An analogy can be made with
Condor [16], which was initially designed for resource-
sharing in the LAN environment, and used a centralized
matchmaker. The ClassAds [20] language, used in Con-
dor, folds the query language into the data model, by allow-
ing resource or service descriptions, as well as queries on
them, to be stated as expressions containing attribute names,
relational operators, values and boolean operators. A re-
source provider can state in its ClassAd that a job will be
accepted provided the memory required is less than 1 GB
(Memory < 1GB). The resource consumer can state that
the memory required by her job will be at most 700 MB
(Memory <= 700MB). Matches will be found by the
centralized matchmaker. Query language is not the focus of
our current work. Unlike Condor, we have not addressed
ranking criteria for matches found during the search. We

focus on doing such multi-attribute range queries efficiently
in the distributed environment.

2.1 Related Work

A prior solution for discovering resources in grid en-
vironments using a peer-to-peer approach was described
in [13, 12]. Their approach differs from ours in that they
use an unstructured peer-to-peer system. They do not main-
tain a distributed index that can efficiently lead to the nodes
that can answer the query. Instead, they use heuristics such
as random walks, learning-based strategy (best neighbors
that answered similar query) and best-neighbor rule (one
that answered most queries, irrespective of type) to contact
neighbors and propagate the search through the P2P net-
work.

INS/Twine [2] describes a peer-to-peer solution. How-
ever, the focus is on semi-structured data (e.g., in XML
syntax) containing only attribute and values that may be
matched. Range queries are not supported.

Distributed Hash Tables (DHT) are popular in large scale
information repository systems as they are scalable, self-
organizing, load balanced, and efficient. However, support-
ing complex queries such as range queries is difficult on
DHTs. A DHT-based grid information service [1], support-
ing range queries on a single attribute, has studied various
query request routing and update strategies. Recently, prefix
hash tree [19], a trie-like data structure, has been proposed
for use on top of DHT to allow range queries. PIER [11]
is a distributed query engine performing database queries
over a DHT. SWORD [17] is an information service that
can answer multi-attribute range queries to locate suitable
PlanetLab [18] nodes. SWORD sends resource advertise-
ments to multiple sub-regions of a DHT, one per attribute.
A query is routed to one of the sub-regions. MAAN [4]
maintains multiple DHTs, one per attribute. Query selectiv-
ity is used to identify one attribute, and the query is routed
on the corresponding DHT. Maintaining multiple overlays
involves updating each of them when a resource advertise-
ment is received. Alternately, the advertisement can be sent
to one overlay, and the query must be sent to all of them.
As the number of attributes increases, the update or query
traffic also increases proportionately. NodeWiz maintains a
single distributed index. Hence the update and query traffic
is independent of the number of attributes.

There have been other proposals for supporting multi-
attribute range queries in distributed environments without
utilizing DHT. In [6], two spatial-database approaches are
compared for supporting multi-dimensional range queries
in P2P systems. The first approach uses space-filling curves
to map multi-dimensional data to a single dimension. The
latter is then partitioned by ranges among the available
nodes. The second approach uses kd-trees to partition the
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multi-dimensional space into hypercuboids, each of which
is assigned to a node. In both cases, skip graphs are used
to increase routing efficiency. SkipNet [10] enables range-
queries on a single attribute by using the skip list data struc-
ture and ordering nodes in the overlay using string names,
instead of hashed identifiers. Hence, explicit load balancing
is required. Distributed Index for Multi-dimensional data
(DIM) [15] is a data structure designed for multi-attribute
range queries in sensor networks. It uses a geographic hash
function to map the multi-dimensional space into a two-
dimensional geographic space, and then uses a geographic
routing algorithm. Mercury [3], like SWORD and MAAN,
maintains a separate logical overlay for each attribute. Un-
like them, the overlay is not a DHT. In research occurring
at the same time as NodeWiz, we find Brushwood [23]. It
can take any tree data structure, impose a linear ordering of
the tree nodes, and add a variation of skip graphs to route
efficiently. Multi-attribute range queries are supported by
instantiating Brushwood with a kd-tree. It might be in-
structive to compare NodeWiz to some of these other ap-
proaches. We have selected SWORD, Mercury and Brush-
wood for this comparison. The details can be found in Ap-
pendix A.

The way we divide the attribute space among the
NodeWiz nodes had some resemblance to various data
structures studied in computational geometry, if we con-
sider the attribute space as a multi-dimensional space. kd-
trees divide a multi-dimensional space, but at each level of
the tree, one of the dimensions is used. Interval trees orga-
nize line intervals in tree data structure, so that the intervals
intersecting a query range can be efficiently found. Mul-
tidimensional range trees are recursive binary search trees.
First, a balanced binary search tree is built on the first at-
tribute, and for each subtree, all the points contained in it
are used to build a balanced binary search tree on the next
attribute. Since we are building a peer-to-peer distributed
system, a data structure that allows efficient search in a cen-
tralized environment is not enough. We need to have effi-
cient ways of mapping the structure among the nodes. kd-
trees provide the most obvious mapping. However, using a
kd-tree would imply all nodes at the same level would split
on the same attribute, using the median value of the local
data. In NodeWiz, nodes at the same level decide indepen-
dently which attribute to split on, and the splitting value is
not necessarily the median value.

3 NodeWiz Architecture

In this section, we present the Nodewiz architecture and
various mechanisms for routing the queries and advertise-
ments, and splitting the attribute subspace, etc. We will
refer to the nodes in NodeWiz as the information service
nodes, or service nodes interchangeably. They should not

be confused with resource provider nodes on which appli-
cation services will be hosted. NodeWiz adopts a soft-state
approach for storing resource information for dynamic at-
tributes. The provider nodes update the information about
their service by periodically advertising the current attribute
values. Resource brokers and consumer nodes will query
our service nodes to find the provider nodes. They will
also be referred to as clients of NodeWiz. Our emphasis in
this section and the subsequent subsections is primarily on
defining how service nodes join NodeWiz, how we do load
balancing and how messages are routed. We do not address
the issue of node failures in detail, although we mention it
briefly in Section 3.3. This is because we assume that the
nodes joining NodeWiz are stable infrastructure nodes, as
explained in Section 2. Security issues such as mutual au-
thentication are also outside the scope of this work.

When NodeWiz is bootstrapped with one node, the sit-
uation is similar to the centralized matchmaker in Con-
dor [20]. When the next node joins NodeWiz, we have to
distribute the workload between the new node and an ex-
isting node that was identified previously as having maxi-
mum workload. The algorithm used to identify the existing
node with the highest workload is described in Section 3.1.
The next step is to identify the attribute based on which the
identified node will split its attribute subspace with the new
node, and the splitting value of that attribute. This algorithm
is described in Section 3.2.

Figure 1(a) shows how the attribute space of adver-
tisements and queries gets eventually divided among 7
NodeWiz nodes, A through G. This figure can be viewed as
a distributed decision tree according to which an advertise-
ment or query will end up on the correct node to facilitate
matchmaking. Each of the non-leaf nodes is labeled with a
node-pair. The first node was an existing node of NodeWiz,
while the second node joined, resulting in the split of the
attribute space. Thus A was an existing node and the only
node of NodeWiz when E joined. The load attribute and
a splitting value of 0.6 were selected, based on the Split-
ting Algorithm described in Section 3.2, for splitting the
attribute space1. All advertisements and queries associated
with load less than 0.6 were assigned to A, while those as-
sociated with load greater than 0.6 were assigned to E. Both
nodes own the same range of values for all other attributes
after the split. These ranges are not affected by the split.
The figure shows that E subsequently split its attribute sub-
space with F, and then with D. The leaves of this tree are all
the existing nodes of NodeWiz.

Since the node selected for splitting is chosen with the
goal of distributing the query workload evenly among all
nodes, the distributed decision tree will grow in a balanced
fashion, provided the query workload does not show a sud-

1Although we depict only binary splits, the scheme can be generalized
to splitting the attribute space into more than two partitions at a given time.
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(a): Division of attribute space
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(d): Proximity-Aware Layout of nodes

Figure 1. Division of attribute space among 7 NodeWiz nodes A through G, and corresponding routing tables of nodes A and B

den change in characteristics. In practice, the query pat-
tern can change, and so subtrees can receive unbalanced
query workloads. When the query traffic received by a node
falls below a predetermined threshold,it can leave and rejoin
by splitting with the currently overloaded nodes. In Fig-
ure 1(a), consider node C. If it wants to leave, it will identify
the last node with which it has split the attribute subspace.
In this example, it will be A. So C will inform A that it is
leaving. A will remove the entry in its overlay routing ta-
ble pointing to C, and also propagate the request to nodes
with which it split attribute subspaces after its split with C.
These nodes will repeat the action A took. This will ensure
that the attribute subspace assigned to C gets reclaimed.

Each node keeps track of some of the nodes responsible
for other parts of the attribute space, so that advertisements
and queries can be routed efficiently. When a new node
joins, it gets a copy of the routing table of the node with
which it splits the latter’s attribute subspace. Both nodes
add an entry in their routing table pointing to the other node,
and record the range of the splitting attribute assigned to the
other node. We illustrate the details of the routing table in
parts (b) and (c) of Figure 1, which are for nodes A and
E respectively. B’s table, for example, will differ from A’s
table only in the level 2 entry. It will have A’s IP address,
and the range of the load attribute assigned to A during the
split with B, which is from 0.3 to 0.6. Now we consider
a query for resources with Load < 0.2 and Mem > 3

which is sent to node E. Level 0 of its routing table indicates
that the query should be forwarded to A. When A receives
the query, and scans its routing table, there is no match at
levels 0 and 1. Based on level 2, A forwards the query to

B. Advertisements are routed similarly. If the query was
Load < 0.4 and Mem > 3, both A and B would have
received it. Thus the number of nodes visited by a query
increases as it becomes less selective.

Part (d) of this figure illustrates the point that the actual
location of these nodes has no correlation with the way at-
tribute subspaces are split. For example, A and B are ad-
jacent in the attribute space, and so queries for machines
with Load < 0.6 and Mem > 2 will visit both nodes.
Part (d) shows that A and B are far in terms of network la-
tency. Hence, when a new node B1 was available for joining
NodeWiz, and the workload did not warrant splitting the at-
tribute subspace of an existing node, B1 was assigned as a
replica of B. In this context, B will be referred to as the pri-
mary node. B1 was chosen as a replica of B, since A was
experiencing long latency on requests forwarded to B. B1’s
location in the network proximity of A made it a good can-
didate as B’s replica. B1 gets a copy of B’s overlay routing
table. Other NodeWiz nodes in the network proximity of
B1 are alerted to its presence when they send out a query
that gets routed to B. In its response, B includes B1’s IP ad-
dress as a replica that could be contacted. The ability to do
this depends on the availability of a network distance esti-
mation service that can order B’s replicas according to their
proximity to the querying node. Replicas can help localize
the network traffic if many advertisements and queries gen-
erated by clients near A belong to the attribute subspace as-
signed to B. These clients could be served by B1. However,
there is a trade-off. Depending on how consistent the repli-
cas need to be kept with their primary nodes, there can be
significant traffic generated by these additional consistency
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messages. We have not evaluated the replica assignment
problem so far.

3.1 Load Balancing

When a new node joins NodeWiz, we need to identify
one of the most overloaded nodes and split its attribute
space with the new node. We employ a distributed al-
gorithm, henceforth referred to as the Top-K Algorithm,
which orders the nodes in NodeWiz according to their work-
loads and identifies the most overloaded one. Depending
on how frequently nodes join, this algorithm could run pe-
riodically or on demand. If another join request had already
reached the identified node, resulting in it undergoing a split
since the top-K workload information was disseminated, the
request is forwarded to the node with the next highest work-
load identified during the run of the Top-K Algorithm.

The Top-K Algorithm is distributed and runs in two
phases. Each node maintains a counter which represents
its workload. The counter is incremented for each adver-
tisement or query received by the node. Periodically, it is
divided by 2 to give more weight to recent workload. In
the first phase, each node sends a message to another node
selected from its routing table according to a criterion to be
explained soon. The recipient is selected such that these
messages travel along the links of a tree composed of all
the nodes in NodeWiz. Each non-leaf node waits during a
timeout period for its children to send their messages to it.
After receiving their messages, the node includes its own
workload, sorts and retains the top K workloads along with
identities of the corresponding nodes. It sends out the re-
tained top K workloads to its selected recipient. After the
root of the tree builds the list of top K workloads among
all nodes, the list is disseminated in the second phase to all
nodes in NodeWiz. This is simply achieved by relaying the
list to all nodes from which a node receives a message in the
first phase. Thus the list travels back along the links of the
tree to all the children. This algorithm may run once for the
on-demand case, or it may run periodically, as mentioned
earlier. In the second case, there is an epoch counter tagged
to each message, so that messages delayed from one epoch,
do not get processed by a node in the next epoch.

We have mentioned that each node sends a message in
the first phase to one of the nodes selected from its rout-
ing table. The selection of the recipient node is based on
the routing table. The recipient selection process retraces
the order by which nodes join NodeWiz. Recall that each
join results in the splitting of the range of one attribute re-
maining in the possession of the splitting node. To retrace
the order of these joins, each node looks at the most recent
join event it participated in, either as the splitting node or
as the joining node. This will be the most recent (highest
level) entry in its routing table. Recall that each entry in

the routing table indicates a range of values for a single at-
tribute, and a corresponding node to which advertisements
or queries overlapping that range should be sent. By ex-
cluding all ranges present in the routing table for this at-
tribute, the node obtains the range of values of this attribute
for which it is responsible. If the values in its own range
are greater than the values in the range of the routing table
entry, the node will wait for the recipient node in that rout-
ing table entry to send a message to it. Otherwise, the node
will send its own message to the recipient node. In case the
node waits for the recipient’s message, it checks the next
most recent entry in its routing table. This might be for the
same or different attribute. In any case, a comparison is
again done for the values in the range of the corresponding
attribute owned by this node and the recipient of this entry.
If the node has to wait for the recipient’s message, it adds
this recipient to the list of nodes for whose message it is
waiting. This list grows until the node reaches a routing ta-
ble entry, while scanning back from the most recent entry,
for which the comparison indicates that it should send the
message. The node does not scan the routing table beyond
this point. After it waits for the messages from all the nodes
its list of nodes to wait on, it includes its own workload, re-
tains the top K values, and sends the resulting message to
the recipient of the entry where it stopped scanning the rout-
ing table. Thus each node in NodeWiz will wait for zero or
more nodes to send their message to it, and will send out ex-
actly one message. The exception is the one node that will
scan its entire routing table and add all nodes to its list of
nodes to wait on. This is the node whose attribute subspace
includes the maximum value of each attribute. This node is
the root, and will disseminate the list of top K values in the
second phase.

3.2 Splitting the Attribute Space

The Splitting Algorithm has to identify an attribute, for
which the range of values owned by the splitting node can
divided into two ranges of values. Two conditions have to
be satisfied. Firstly, the values of the selected attribute in
the advertisements and queries seen by the splitting node
should show high probability of falling in clusters that are
within the two ranges selected. This is based on the un-
derlying assumption that an attribute which shows strong
clusters will continue to do so, and has the better chance of
maintaining even distribution of load between the splitting
and joining nodes. For example, there might be a cluster of
workstations which are kept busy by jobs submitted through
a batch queuing system. There might be another cluster of
desktop machines that are idle most of the time. If the split-
ting node finds the load averages of both sets of machines
in the advertisements received by it, a clustering algorithm
could easily select the load average attribute and a splitting
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value so that the advertisements from the two sets of ma-
chines are assigned to the two nodes. This brings us to the
second condition that needs to be satisfied. Consider the
case where the clustering algorithm finds two clusters for
an attribute. However one cluster is very small is size com-
pared to the other. This can clearly lead to load imbalance
between the splitting and joining node. Hence we select
among all the attributes the one for which our clustering
algorithm leads to most even-sized clusters. The cluster-
ing algorithm used in our experiments is the k-means algo-
rithm [9]. The input to the algorithm in our implementation
is the histogram of values of each attribute in advertisements
and queries received by a node since the last time the algo-
rithm was run. We try to divide equally the search workload
of a node. When an advertisement reaches a node, pending
queries are looked up, and vice-versa. Hence both queries
and advertisements contribute to the histogram of each at-
tribute.

3.3 Routing Diversity Optimization

The nodes which join NodeWiz initially, such as A and E
in Figure 1(a), are found in the routing table entries of sev-
eral nodes. As a result, they forward more messages than
nodes that join later. We have tried a simple optimization
for this problem. When a query or advertisement reaches its
destination, the query results or an acknowledgment for the
advertisement is sent back to the NodeWiz node that initi-
ated the query or advertisement. When the routing diversity
optimization is turned on, the initiator takes the destination
node’s IP address, and caches it in correlation with the rout-
ing table entry that was used to send the query or advertise-
ment out. This ensures that another query or advertisement
destined for the same sub-tree of the decision tree can be
sent there with fewer overlay hops. This routing diversity
optimization has been evaluated, and the results are pre-
sented in Section 4. We also observe that instead of caching
just the last destination for each entry in the routing table,
we can cache multiple entries. This has the added benefit of
providing fault-tolerance. Also, if we allow lightly loaded
nodes to leave and rejoin in a different part of the attribute
space, this optimization provides an obvious way to repair
the routing table.

4 Evaluation

We have built an event-driven simulation framework for
NodeWiz. Our experiments use both synthetic and real
datasets. For both of them, we have six attributes. In the
synthetic dataset, each attribute is generated from a Pareto
distribution which has been observed by other researchers
to have good correlation to the attributes in a data-center
trace [1]. For the real dataset, we used the measurements
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reported by the ganglia distributed monitoring system for
PlanetLab nodes [7]. We selected six attributes from the
dataset, namely the system load averages measured at 1,
5 and 15 minute intervals, and the amount of available
disk, memory and swap space. Our discrete-event simulator
reads one query and one advertisement at each clock cycle
until all events in the input files have been consumed. The
NodeWiz node which a client would contact with this query
or advertisement is chosen randomly. In future, we will
model network proximity to study the assignment of repli-
cas (Figure 1(d)). At that time, the input will be specific to
a client and will be sent to the nearest NodeWiz node. Each
simulation must specify the number of NodeWiz nodes.
When all of them have joined NodeWiz, we reset the statis-
tics and report only the values obtained at the at the end of
the simulation. The number of events simulated in the syn-
thetic dataset is 100 times the number of nodes, and usually
a third of the events are simulated by the time all nodes have
joined. However, due to the small size of the PlanetLab
archive available, this is not always true in the PlanetLab
dataset.

Figure 2 shows the variation in average number of hops
for a query or advertisement as the network size increases
exponentially from 10 to 10000 nodes. We observe that the
average number of hops increases very slowly. The queries
in this experiment are for specific values of each attribute.
If we were querying for a range, each query would visit
all nodes overlapping the query range, and so the average
number of hops will increase. This is explored in Figure 5,
which is explained later in this section. The plots for queries
and advertisements look similar. This is to be expected,
since NodeWiz will treat a query and an advertisement with
the same attribute values identically as long as we are not
querying for a range. Both will be routed to the node with
ownership of the attribute subspace in which these attribute
values fall.

Figure 3 shows the increase in number of entries in the
routing table, both maximum and averaged over all nodes,
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as the network size increases. From this figure, we conclude
that the routing table size increases very slowly compared
to the rate at which the network size increases. This is to
be expected since the number of entries in the routing table
of a node equals the number of times the attribute space
has been split to obtain the node’s attribute subspace. Since
our joining algorithm limits the imbalance in the number
of entries of different nodes, we expect this growth to be
logarithmic in the number of nodes.

Figure 4 shows the standard deviation of the workload,
as a measure of load imbalance, versus number of nodes.
The workload is number of advertisements and queries re-
ceived by a node until the end of simulation, from the steady
state when all nodes have joined. Recall that we reset statis-
tics at that point. For each dataset, we show 2 plots, one
marked ’clustering’ which uses the clustering algorithm de-
scribed in Section 3 to identify the attribute and the split-
ting value. To measure how well this is doing, we compare
against the plot marked ’kd-tree’. Here the idea is to di-
vide the attribute space as a kd-tree. So, at level i in the
tree, attribute i is used, with a wraparound when maximum
number of attributes is reached. Also, the splitting value
is the median of all data points for that attribute that the
node received in advertisements. Notice that our clustering
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Figure 5. Average Hops for a query as the relative query
range is varied. A higher value of range implies lower query
selectivity

technique is doing better than a kd-tree. Also, we do bet-
ter usually on PlanetLab dataset compared to the synthetic
dataset. This could be attributed to the fact that the syn-
thetic data will not have clusters as much as the real Plan-
etLab data. We must also note that we are not comparing
to other P2P schemes that use kd-trees. In particular, the
NodeWiz techniques of maintaining routing tables, and the
top-K workload vector remain invariant.

Figure 5 shows that average number of hops taken by a
query increases as the relative query range sought by each
query increases. To obtain these range values, we com-
puted histograms of the values of each attribute. The rel-
ative query range is 1 when the range of each attribute in
the query equals the smallest inter-dectile (10 percentile)
range of that attribute. Thus, larger values on the x-axis
imply lower query selectivity. We observe from the figure
that for the synthetic dataset, the query hops increase much
faster than for the PlanetLab dataset. To understand this
phenomenon, we compute the ratio of the smallest inter-
dectile range to the total range of the first nine dectiles.
We leave out the last one, namely values over the 90th per-
centile, since many of these distributions have a long tail,
and very few queries overlap that region. For the synthetic
dataset, this ratio is 0.016 for all attributes, since we gener-
ated them from the same Pareto distribution. For the Plan-
etLab dataset, this ratio was at most 0.009 for 5 attributes,
and 0.02 for only 1 attribute. Clearly, for the same relative
query range, a query for the synthetic dataset gets replicated
more than the query on the PlanetLab dataset.

Figure 6 shows the variation in the number of attributes
used by NodeWiz for the PlanetLab dataset. When we re-
duce the number of attributes from 6, the baseline in our
experiments, to 3 and then to 1, the average number of hops
taken by a query increases. This is to be expected, since
each query specifies a range for each attribute. As the num-
ber of available attributes decreases, the range owned by
a single node decreases for fixed number of nodes. As a
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Figure 7. Effect of Routing Diversity Optimization

result, the query gets flooded to more nodes. The adver-
tisements specify a single value, rather than a range. Hence
they are insensitive to the number of attributes. Further-
more, we did not find any sensitivity of the routing table
size to the number of attributes. Hence, that data has not
been plotted. From Figure 6, we may also conclude that
NodeWiz has an advantage over systems that support range
queries using a single attribute. Unless the query has an ex-
tremely selective attribute, and a distributed index, such as
a DHT, is available for that attribute, these systems will re-
sult in the query being flooded to a large number of nodes.
On the other hand, our system can result in the query be-
ing flooded to a large number of nodes, only if a very large
range or wildcard (any value acceptable) is specified for an
attribute. This problem exists in DHT-based systems also.
We can address this problem by limiting the query to some
reasonable range on any attribute where a wildcard or very
large range is specified.

Figure 7 shows the effect of the routing diversity opti-
mization described in Section 3.3. We plot the average mes-
sage count of used links, including both queries and adver-
tisements, against the number of nodes. Here we are consid-
ering only overlay links on which messages were sent. As
can be expected, the average number of hops decreases sig-
nificantly. The reduction is by a factor of 2 for a NodeWiz
deployed on 10 nodes, while it can be as much as a factor

of 14 for 1000 nodes. There are two factors that contribute
to this reduction. Firstly, by sending the message to the last
recipient recorded in the routing table entry, we increase
the probability that the message will be sent closer to its
destination on the first overlay hop, as long as there is some
locality in the traffic. Secondly, and more importantly, there
is a significant increase in the number of overlay links that
are utilized as a result of this simple optimization.

5 Conclusion

In this paper, we presented NodeWiz, a distributed and
self-organizing information system for grid infrastructures.
Our focus is to enable efficient execution of multi-attribute
range queries, which are expected to be an important and
common class of queries. NodeWiz allows for informa-
tion service nodes to be dynamically added and removed
from the information system to address scalability and per-
formance concerns. More specifically, the algorithms de-
scribed as part of the NodeWiz system have the capabil-
ity to balance the load across multiple information service
nodes while optimizing the performance for popular multi-
attribute range queries in a distributed manner. The prior
work on this problem does not provide a natural way to deal
with these kind of queries.

In NodeWiz, advertisements from service providers are
placed strategically into the information system such that
queries from the service consumers are routed efficiently
(with minimum number of hops) to the nodes where the
matching advertisements reside. We evaluated our algo-
rithms using simulations on synthetic and PlanetLab data.
We presented results on the average number of hops for
a query or advertisement as the network size (number of
nodes), number of attributes and query selectivity are var-
ied. We also evaluated load imbalance and a routing op-
timization. The preliminary results obtained indicate that
NodeWiz has an advantage over systems that consider sin-
gle attributes in isolation.

Our future work includes deploying NodeWiz on Plan-
etLab and obtaining real world performance data. We also
intend to do a comprehensive evaluation and tuning of the
proposed algorithms.
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A Comparison of NodeWiz with Other Ap-
proaches

Table 1 shows a comparison of NodeWiz with 3 other
systems which we have briefly described in Section 2.1.
These are SWORD [17], Mercury [3] and Brushwood [23].
We compare them on 4 points. The first one is ”Index distri-
bution”, which refers to how the multi-attribute space is di-
vided among the nodes of the system to create a distributed
index. In SWORD, each attribute is assigned to a different
sub-region of a common DHT. This is done by the choice
of the DHT’s hash function. It segments the keyspace by
encoding the attribute in the higher-order bits. Mercury’s
overlays are called routing hubs. There is one per attribute
logically, so that each node can potentially participate in
multiple overlay. Each node in a logical overlay is respon-
sible for a range of values of that attribute. It maintains
neighbor links, and also long-distance links that are adapted
according to load distribution. In NodeWiz, the attribute
space is divided according to a tree data structure, and each
leaf node of this tree is assigned to a node of the NodeWiz
system. Each NodeWiz node maintains an overlay routing
table for efficient routing. Brushwood has an architecture
in which nodes of any tree data structure can be subjected
to a linear ordering, and skip-graph pointers are added for
efficient routing. For multi-attribute range queries, Brush-
wood is instantiated with kd-tree. The next two columns
of the table compare these systems on how advertisements
and range queries are routed. Both SWORD and Mercury
make the design choice that advertisements will be repli-
cated for each attribute that is indexed. This allows queries
to be routed to only one set of nodes, namely those respon-
sible for the most selective attribute. The alternative is to in-
dex the advertisements on only one attribute, and send each
query to all the overlays. NodeWiz and Brushwood do not
need to make this tradeoff. They can treat queries and ad-
vertisements symmetrically, sending them only to the nodes
intersecting the relevant parts of the attribute space in the
query. NodeWiz accomplishes this using its overlay rout-
ing tables, while Brushwood utilizes its skip-graph pointers.
The final column of the table compares the systems based
on their load-balancing approach. The randomization ob-
tained from a DHT’s hash function, such as in SWORD, is
not enough since skewed distribution of advertisements or
queries will overload a small set of nodes. To address this
problem, adapting to the dynamic distribution is necessary.
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Table 1. In this table, the Index Distribution column indicates how the multi-attribute space is divided
to create a distributed index

SWORD employs a leave-rejoin protocol, based on Karger
and Ruhl’s algorithm [14]. Mercury and Brushwood also
employ a leave-rejoin protocol, but depend on propagated
load information rather than random key generation as in
SWORD. NodeWiz also depends on propagated load infor-
mation, and adaptation to the load has been studied only in
the context of new nodes joining. The leave-rejoin protocol
is part of our future work.
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