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ABSTRACT
Streaming media has experienced explosive growth over the
last few years and will continue to increase in popularity as
individual users can easily produce digital images and video.
Large scale streaming will require network operators to de-
ploy and manage a larger number of streaming servers within
their networks. In order to determine the number of servers
needed, and to design the appropriate management policies
for a particular workload, administrators will need to under-
stand the performance characteristics of those servers, how
to measure performance, and how different workloads can
affect performance. In this paper we make the case for a
more complete measurement methodology by showing that
streaming server performance can vary substantially based
on the type of streaming workload, and, as a result, affect
the end-user quality of service.

1. INTRODUCTION
As broadband deployment continues to grow, streaming

media is increasingly gaining in importance as a communi-
cation and entertainment medium. According to a recent re-
port by AccuStream iMedia Research [4], “... content distri-
bution networks (CDNs) doubled – and in some cases tripled
– revenue derived from their streaming media operations in
’04 compared to ’03, coinciding with an 80% jump in video
streams served for the year and a 75% increase in Internet
music hours.” In addition to the growth of revenue associ-
ated with streaming media, the sheer number of streams is
also on a steep growth curve. Figure 1 presents growth of
the annual number of streams served in the US.

Streaming media companies are required to reconcile the
demand for high quality end-user experience with the need
to minimize cost and make the best use of their server infras-
tructure. In the past, servers have been managed simply by
examining simple performance metrics like CPU, disk, and
network utilization. Unfortunately, such metrics only par-
tially capture an end user’s experience and can often mislead
a streaming provider either in under- or over-provisioning
their infrastructure. We look at end-user experience through
measurements of client-side metrics (i.e. failures, startup
delays and re-buffering, jitter and thinning/loss of packets).
Our goal is to understand if and how deterioration of an
end-user’s experience is tied to the observable server-side
metrics.
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Figure 1: Annual number of streams served in the
US for the 1999-2004 period.

In this paper, we propose an exhaustive methodology for
evaluating performance of streaming media servers, covering
both server and client-side measurements and a wide range
of workloads. We illustrate and validate our methodology
by extensively measuring the performance of an industry
standard server over a comprehensive workload evaluation
matrix. While it is intuitive that server behavior is workload
dependent, we show exactly how the server behaves under
different loads, and what parameters lead to server overload.
Server performance is one of the critical components that
affect end-user quality of service; the other being network
effects. In this paper we have chosen to study server perfor-
mance in isolation since it is independent of network effects
(and vice-versa) and we believe this is the best approach to
gain a full understanding of the server performance compo-
nent.

Our evaluation shows wide disparities in server saturation
points for the different workloads. We also show that while
for some workloads, deterioration of end-user experience can
be attributed to the saturation of a particular hardware re-
source, other workloads exhibit suboptimal end-user expe-
rience even when all hardware resources on the server are
well below their full utilization. This discovery implies that
looking at server-side metrics in isolation will either result



in conservative provisioning approaches that will increase
infrastructure costs, or end up causing deterioration of end-
user experience in some cases when the server is close to
full hardware resource utilization. We have successfully ap-
plied this methodology to multiple servers, but due to space
constraints in this paper we present just one. In a separate
paper we apply the same methodology to another industry
standard server, and for both servers demonstrate how the
server-side and client-side metrics can be used to produce
a performance model that accurately predicts an end-user’s
quality of service, based on the current server state and the
set of incoming client requests [9].

The rest of this paper is organized as follows: Section 2
discusses the performance metrics and workloads with which
we characterize a streaming server. Section 3 shows an eval-
uation of the Darwin streaming server [6] using our method-
ology. We discuss the general lessons learned from this eval-
uation in section 4. We present related work in section 5 and
we conclude and present ideas for future work in section 6.

2. METRICS AND WORKLOADS
In this section we discuss our choice of metrics and work-

loads and present arguments as to why such an extended set
of metrics and workloads is necessary in order to understand
the relationship between streaming server performance and
end-user experience.

2.1 Server side performance metrics
Server side metrics are by far the easiest ones to identify

and understand. CPU, memory, disk, and network iden-
tify the critical resources of any modern computer system.
Each of those metrics can reach a saturation point indepen-
dently. CPU utilization indicates whether the server proces-
sor can keep up with the tasks associated with serving the
streams. A saturated CPU will miss tasks, fail to process re-
quests, and result in a suboptimal user experience. Memory
exhaustion in streaming workloads is an unlikely problem
in modern systems. However, if the main memory of the
server is exhausted, and the system starts paging, perfor-
mance deteriorates rapidly and CPU utilization spikes. Disk
and network utilization indicate how much of the available
bandwidth from these two subcomponents is being used by a
particular workload. It is possible to saturate either of those
components before CPU utilization reaches 100%, and thus
they have to be monitored independently rather than be
proxied by the CPU utilization of the server.

2.2 Client side performance metrics
We have chosen five client-side metrics to determine whether

a streaming server is failing to handle a particular workload:
play failures, rebuffering, startup latency, thinning percent-
age and jitter.

• Play failures experienced by a client indicate either
that the server is so overloaded that it can no longer
handle requests.1 Play failures are visible to the end-
user and may appear as initial startup failures as the
request for content is being made, or as in-play failures,

1It may also indicate a problem with the network link be-
tween the client and server but this is beyond the scope of
defining a performance model for the server and in a con-
trolled experimental setting, we can ensure problem-free net-
work links.

which may happen at any point during the content
playback.

• Rebuffering on the client indicates that the server is
experiencing overload and is failing to send packets to
the client on time. When a client buffer underflows,
play stops until sufficient data is received again. Re-
buffering will often precede play failures and tends to
be an earlier indicator of server overload. However, it
is possible for a server to perform admission control
and refuse to accept extra connections rather then fail
to serve them adequately. In this case we may end up
seeing play failures instead of rebuffering events.

• Startup latency is the elapsed time from the moment
a request for content is made to the moment when the
first packet arrives. This latency may not be visible
to the end-user, as it is often masked by the initial
buffering of content. However, increased startup la-
tency experienced by a client indicates that the server
is falling behind in processing new requests. Depend-
ing on server policy, overload behavior may result in
either increased startup latency (when deprioritizing
new requests), rebuffering (when deprioritizing exist-
ing stream serving in favor of handling new requests),
or both.

• A high thinning percentage indicates that the client
is receiving the stream at a bitrate that is lower than
the one at which the stream was encoded. One would
expect a client to rebuffer when it is not receiving ad-
equate data from the server, however, in certain cases
a client will continue to play even though it is not
getting a full stream from the server. These cases in-
volve streaming formats that can degrade gracefully,
either in the time domain or the quality domain. In
the first case, the server only sends certain frames of
a stream and drops others; for example an overloaded
server can send just the keyframes of a stream. This
will result in the client displaying something akin to
a slideshow, but not in rebuffering. Streaming media
can also be encoded into multiple quality layers, where
each additional layer improves the quality perceived
by the client. Only the first or base layer is required
to be decoded by the client for continuous playback.
The server may drop additional or enhancement layers
based on available resources.

• Jitter captures the delay in packets sent by the server
as seen by the client. For a stream encoded at a par-
ticular rate, each packet is expected to be sent by the
server and arrive at the client with a predetermined
deadline. Late packets indicate that something could
be going wrong and may be an early sign of more se-
rious problems. Specifically, a small amount of delay
in packets will have no effect on the end-user experi-
ence due to the buffer that clients build before they
start playing. However, as delays increase the client
buffer can be depleted and rebuffering events may oc-
cur. Therefore, large jitter is a necessary but not suffi-
cient condition for rebuffering and can perhaps aid us
in identifying safe operating regimes more reliably.

Even though there is no consensus on what constitutes an
acceptable operating regime from a client metrics perspec-
tive, we have chosen conservative thresholds for our metrics



to ensure that we catch problems earlier rather than later.
Our choices are outlined and explained in section 3.

2.3 Workloads
In selecting our workloads we have identified three dimen-

sions that have an important effect on how resource utiliza-
tion interacts with end-user experience. The three dimen-
sions are: streaming type, content popularity and encoding
rate.

2.3.1 Stream Type
The first dimension (henceforth referred to as the Stream

Type Dimension) concerns the type of streaming requested.
Live streaming has very different properties than on-demand
streaming for a number of reasons [13]. First and foremost,
live streaming imposes no demand on the disk subsystem of
a server since all data is received via a network connection.
Second, every client receives the same data at the same time,
while this is not the case for on-demand streaming, even if
clients request the same stream. Finally, servers have to
prioritize the receipt of streams from live sources over the
sending of streams to clients. Losing packets from a source
will affect all clients and thus data receipt is critical for live
streaming.

In contrast, for on-demand streaming, reading data from
a disk does not have the same real time constraints and a
loaded server can choose on whether to prioritize disk access-
ing or client serving. At the same time, the offset in time for
different requests requires the server to manage each request
independently.

It is also important to consider situations where a server
provides a mixture of Video-on-Demand and live streams,
thus having to make complex tradeoffs.

2.3.2 Popularity
The second dimension (termed the Popularity Dimension)

covers the popularity of the streams being served. In the
case of on-demand streaming, high popularity streams im-
pose less demand on server resources, since they can be
served out of a buffer cache, rather than requiring disk ac-
cesses. For live streaming, high popularity streams imply
less buffer management overhead and less memory pressure
on the server. A server that has to support a large number
of different on-demand clips is expected to experience much
higher load. Unpopular live content could be the result of
video instant messaging, or personal ‘web-casts’ (e.g. birth-
day parties). The workloads covered in this paper belong
to the two extremes in terms of stream popularity: a case
where all requests are for the same stream and a case where
all requests are for different streams.

2.3.3 Encoding Rate
The final dimension (henceforth termed the Encoding Rate

Dimension) covers the encoded bitrate for the streams be-
ing served. It is important to look at the encoded bitrate
for the streams being served rather than just the aggregate
bit demand by the clients. The reason is that a server ex-
periences overhead for each additional stream that it has to
manage and also experiences overhead for every packet it
has to send to clients regardless of the actual packet pay-
load. In order to achieve the same aggregate bit rate with
a stream encoded at a lower rate, a server would have to
manage additional connections, and often send more pack-

Popular Streams Unpopular Streams
High Rate Low Rate High Rate Low Rate

VoD VPH VPL VUH VUL
Live LPH LPL LUH LUL
Mixed MPH MPL MUH MUL

Table 1: Streaming workload matrix

ets since packets for streams encoded at lower rates tend
to be of smaller size. Hence, one would expect that, for a
fixed CPU budget, a server handling low bitrate streams will
achieve a smaller aggregate bitrate than a server handling
high bitrate streams.

3. PERFORMANCE EVALUATION
In this section we look at the different workloads we pro-

posed in section 2 and show how they affect server and
client-side metrics as the server reaches saturation. On the
server side we measure the CPU, memory, network and disk
utilization. On the client side we measure errors (startup
and play failures), rebuffering events, startup delay, thin-
ning and loss statistics and packet arrival jitter. We consider
the client side metrics to be in the acceptable range if there
are no failures in play. In addition, we consider a streaming
session as having acceptable performance when total wait-
ing time (spent in startup, initial buffering, and rebuffering
events) represents less than 3% of total play time and thin-
ning/packet loss is no more than 3% of the encoded con-
tent. This definition is based on what is expected in order
to receive the highest score in certain professional streaming
measurement services [12]. We demonstrate that, depending
on the workload, a different server-side resource may become
a bottleneck.

In order to make it easier to refer to each workload we
use the following naming scheme: The first letter describes
whether the workload is live, video-on-demand, or mixed
(L,V, or M respectively), the second letter describes whether
the workload is for popular or unpopular streams (P or U),
and the final letter captures whether the workload is based
on high or low bitrate streams (H and L).

Since our workloads have three dimensions, with two pos-
sible choices for two of the dimensions and three choices
for the third dimension, we end up with a workload matrix
with twelve entries. This is summarized in table 1. We have
organized the rest of the section across the Stream Type Di-
mension for the sake of clarity.

3.1 Experimental Setup
We have developed a client application that can request

an RTP [14] stream (we only looked at true streaming as
opposed to streaming over HTTP) from a media server, ac-
cept the packets and report statistics about play failures,
startup delay, packet delays, and lost packets. Our client
application does not render the received packets and thus
is significantly less CPU intensive than typical streaming
players. We can therefore run a large number of clients on a
single machine and put substantial demand on a server with
only a modest number of client machines. We configure the
test clients to wait 500 milliseconds between initial requests
during the ”ramp up” period when starting the tests. We
ignore data until the full concurrency level is achieved.



Loading
Clients

Live Source

Loading
Clients

Probing 
Clients

      Server
Streaming Media

Live Source

RTSP/RTP

...

...

Figure 2: Experimental setup, Streaming Media
Server with Live Source generators, probing and
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The physical hardware for our experiments consists of a
number of hp Netserver lp1000r machines, with dual 1.4 Ghz
Pentium III processors, 1 Gbyte of memory, running unmod-
ified SuSE Linux 8.2. The server machine runs the Darwin
Streaming Server [6]. The content is on a single SCSI 36 GB
hard drive with a throughput of 50Mbytes/sec as reported
by hdparm(8). Logging is done on a separate 18GB SCSI
hard drive. The server is connected to an hp Procurve 5304XL
switch via Gigabit Ethernet connection. The client machines
are connected to the same switch using 100 MBit connec-
tions.

We ensure that resource utilization on the clients stays
comfortably low (CPU, network and memory utilization be-
low 50%; there is no appreciable disk activity on the clients).
This way any errors reported are guaranteed to be due to
server overload rather than client artifacts.

For our experiments, servers are subjected to different
workloads and levels of concurrent requests from our client
machines. The client machines maintain logs for each re-
quest including completion times, errors, thinning, missed
deadlines, and startup times. We use statistics from a “probe”
client after an experiment has reached steady state. The
probing client collects the same set of statistics as the clients
used to induce load and the results from those probes are
the ones reported in this paper. Server performance met-
rics for the duration of each experiment are collected on the
server itself using statistics collected by the Linux kernel and
reported under the /proc filesystem. The clips used dur-
ing experimentation were encoded at 300Kbps for the high
bitrate, and at 78Kbps for the low bitrate. Each experi-
ment lasted 20 minutes, during which client side statistics
were collected from 20 sequential probes, lasting 60 seconds
each. The numbers presented in the subsequent sections for
startup latency and jitter are averages of those values.

The particular choice of bitrates is motivated by the as-
sumption that, in the future, video content will be more
and more viewed and created on thin mobile clients such
as cellphones and PDAs. Content produced by traditional
sources like television broadcasts or training videos would
be adapted to the downstream bandwidth and screen size of
the device. Content originating from camera phones would
be even more constrained, since transmitting data requires
more power than receiving it. In addition, pure audio streams
also tend to have a lower bit-rate. Presently, the lower bi-
trate content is also very much present in the content served
by various content providers. The deployment of broadband
access to homes will help migrate content to higher bitrates,

but that has not happened yet.
For our video-on-demand experiments the clips reside on

the local disk. For our live experiments the clips reside on a
separate machine, where a pseudo-encoder reads them and
sends them to the server over the network, emulating the
behavior of a live streaming setup. Figure 2 show the logical
experimental setup.

In the next subsections we present results of experiments
from video-on-demand, live and mixed workloads. While we
collect data for four server side metrics and five client side
metrics, we chose to present only plots of CPU utilization,
startup delay and jitter. We found those metrics to be the
most interesting to monitor as the concurrency level of the
workload changes.

3.2 Video-on-Demand Workloads

3.2.1 Popular Streams
We measured the performance of popular streams by con-

figuring our loading clients to all request the same video clip.
For the popular high bitrate tests (VPH) shown in Figure 3
we see no client errors for up to 438 concurrent requests.
Low bitrate popular clips (VPL) have no errors until reach-
ing 780 requests (Figure 4). These results affirm our earlier
hypothesis that low bit rate clips put a higher demand on
the server than high bit-rate clips, for the same aggregate
network throughput. This is particularly important with
wide scale adaptation of mobile wireless clients, that would
typically request low bit-rate clips.

The behavior of other client side metrics is more nuanced.
Startup latency increases with the level of concurrency and
jumps by more than a factor of two as the server approaches
its saturation point. Jitter appears to be bimodaly corre-
lated with load as it starts high on a lightly loaded server,
is reduced for medium loads, and then increases again as
the server approaches saturation. Our analysis of the client
logs indicates that the higher jitter at low loads is due to
packets that arrived too early. Since jitter is defined as the
standard deviation of the difference between actual and ex-
pected packet arrival times, it is affected just as much by
early as well as late packet arrival. Given that early packet
arrival is unlikely to have any adverse user effects on most
computer platforms, we would encourage the community to
re-evaluate the definition of jitter and only take into account
late arriving packets.

Rebuffering does not appear to be of particular concern
as few occurrences are observed when the number of client
increases. This is in contrast with a previous study [8] that
showed rebuffering as the client side metric to be first af-
fected by an overburdened server. Since different media
servers prioritize different tasks differently, it is possible
(even likely) that a different part of the client experience
gets affected when the server reaches saturation.

Observing the server side metrics for these workloads shows
that the CPU and memory utilization of the server increases
as the number of clients increases. However, at least for
the VPH workload, client experience deteriorates while CPU
utilization is still around 70% and no other server side re-
source shows saturation either. This lends credence to our
hypothesis that monitoring four basic server-side resource
alone is insufficient in guaranteeing good end-user experi-
ence. One can set very conservative thresholds for hardware
resource utilization that would guarantee quality of service
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Figure 3: VPH, Video-on-Demand, popular, high bitrate (300Kbps).

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

P
er

ce
nt

Offered Concurrent Requests

CPU

total
user

system

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800

M
ill

is
ec

on
ds

Offered Concurrent Requests

Startup Delay

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800

M
ill

is
ec

on
ds

Offered Concurrent Requests

Jitter

(a) (b) (c)

Figure 4: VPL, Video-on-Demand, popular, low bitrate (78Kbps).

but that is undesirable for obvious economic reasons.
Another interesting observation is the fact that the VPH

workload achieves a much higher bit throughput than the
VPL workload (131.4 Mbits/sec vs. 60.8 Mbits/sec), de-
spite the lower client count saturation point (438 clients vs.
780 clients) and while serving approximately an equal num-
ber of packets (20,361 packets/sec vs. 20,438 packets/sec).
Two effects account for the difference. The first is the in-
creased overhead that the server incurs when dealing with
more connections as is the case in the low bitrate experi-
ment. The second is that lower bitrate connections tend to
send packets of smaller payloads, consistent with design of
many codecs which tend to put a frame into each packet.
Therefore, a larger number of packets needs to be sent by
the server in order to send the same number of bits. The
per packet overhead consumes a significant fraction of CPU
resources resulting in reduced bit throughput.

3.2.2 Unpopular Streams
To measure the performance of unpopular streams, we

configured the clients to request a unique clip for each re-
quest. As expected, the VUH (Figure 5) and VUL (Figure
6) workloads start experiencing failures much earlier than
their popular counterparts, because the content cannot be
cached and must be retrieved from disk.

In particular, the VUH workload encounters errors at 37
concurrent requests with a very abrupt cliff behavior; i.e.
an experiment with 36 concurrent requests experiences no
errors, but one with 37 concurrent requests results in all re-
quests failing. Such reduction in serving capacity is much
more than would be explained by disk accesses alone. By us-
ing the oprofile [1] performance analysis tool we were able

to determine that most of the CPU was spent in copying
data between kernel and user space. We traced this behavior
to thrashing in the server management of user level stream
buffers. The Darwin server performs aggressive prefetching
of clips it serves from the disk. However, the default amount
of user level buffer space allocated to clips is not sufficient
to accommodate the prefetching necessary for high bitrate
clips. Therefore, data from the user level buffers is replaced
by the newly prefetched data before it has a chance to be
used, forcing the server to re-read it multiple times. These
re-read requests do not actually access the disk system as
they can be satisfied by the kernel buffer cache, but result in
excessive data copying and CPU saturation at a relatively
small number of requests. Of our other client metrics, the
startup time and jitter are significantly affected by the in-
crease in the number of request (Figure 5). However we saw
no thinning or rebuffering for this workload.

Low bit rate streams do not suffer from the read ahead
anomaly and as such do exhibit higher concurrency capacity.
More specifically the server appears to reach saturation at
175 concurrent requests with 4% of all requests failing at
that level. Startup latency increases drastically once we
hit the 160 concurrent requests level, more than doubling
from 12 milliseconds to 33 milliseconds and continues to
increase further as offered load increases. Jitter, rebuffering,
and thinning show little change as the load on the server
increases even as it reaches overload levels. With respect
to server-side metrics, this particular workload shows very
light CPU utilization (21%). Disk bandwidth utilization is
also far from peak disk bandwidth, even though it is clear
that disk is the bottleneck resource. We have discovered
that the explanation for this behavior lies in the nature of
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Figure 5: VUH, Video-on-Demand, unpopular, high bitrate (300Kbps).
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Figure 6: VUL, Video-on-Demand, unpopular, low bitrate (78Kbps).

disk reads which include substantial amounts of seek time.
This significantly reduces the disk utilization and limits the
throughput of the system. Obviously, this problem can be
mitigated by using multiple disks and better file layout, but
our goal was in studying an off-the-shelf server rather than
designing a hardware architecture optimized for streaming
tasks.

3.3 Live Workloads

3.3.1 Popular Streams
To measure the performance of popular live streams we

set up an encoding station which relayed the same clips that
was used in the VPH and VPL experiments to the streaming
server. We then configured our clients to request this clip
from the server. Upon receiving a request the server accepts
any incoming packets from the encoder and relays them to
the requesting clients.

The LPH workload achieves much higher throughput than
any of the Video-On-Demand workloads with the server be-
ing able to handle 996 requests before encountering any er-
rors (see Figure 7). Startup latency again grows with the
number of clients, and the rate of increase becoming more
pronounced as the server approaches overload conditions.
Live workloads show a linear increase in the amount of jit-
ter as the number of requests increases. Since increased
jitter implies packets that could be arriving late we would
expect rebuffering and thinning to also be present. To our
surprise this was not the case with both metrics showing no
adverse effect. The reason for this is that the server starts
each streaming session with a burst of packets sent at a much
higher rate than the encoded rate of the stream. This allows

clients to build enough of a buffer to cushion the effects of
late arriving packets down the road.

As expected, CPU is the limiting resource on the server-
side. However, network utilization approaches 300Mbits/sec
and would easily overwhelm a Fast Ethernet interface card,
indicating that many typically configured servers would run
out of network bandwidth before saturating other resources.

The LPL workload scaled beyond our testing capacity.
At 1000 clients CPU utilization was only around 60%. It is
therefore difficult to establish the scalability limitations for
this workload. However, we see that the server is less effi-
cient in moving bits through the network for reasons similar
to those encountered with the VPL workload. Additional
connection and per packet management overhead results in
a reduction of the server bit throughput. For equivalent
points of CPU utilization, the server can push more than
three times as many bits under the LPH workload than it
can under the LPL workload.

3.3.2 Unpopular Streams
For this benchmark we had to setup a number of encod-

ing stations each producing a separate live stream that was
then sent to the server. Since sending a live stream to the
server incurs some overhead for the server even if no client
is requesting this stream we ensured that the number of en-
coded clips matched exactly the number of requested clips
for every experiment we run.

Live streaming of unpopular high bitrate streams (LUH)
saturated our server at approximately 205 concurrent streams
(Figure 9) at which point we started encountering errors.
This number is almost a factor of five smaller than the equiv-
alent number achieved under the LPH workload. The per-
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Figure 7: LPH, live stream, popular, high bitrate (300Kbps).
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Figure 8: LPL, live stream, popular, low bitrate (78Kbps).

formance discrepancy can be explained by two causes. By
far the most important is the fact that the server has to
read a significantly larger amount of data from the network
since there is a separate encoded clip for every client making
a request. Second, the server has to read this data over a
larger number of sockets (one per clip) which is known to
cause some performance problems with the Linux select(2)

implementation. None of the client side metrics show any
marked deterioration during the ramp-up to server overload.

Unpopular low bitrate streams (LUL) exhibit behavior
quite similar to that of their higher bitrate counterparts.
Since the graphs for this workload are quite similar to those
of the LUH workload we have omitted them for brevity.
Saturation is reached at 405 concurrent requests with peak
CPU utilization reaching 96% before errors occur.

3.4 Mixed Workloads
Mixed workloads demonstrate significantly different be-

havior than pure live or pure Video-on-Demand workloads.
For an equal mix of Video-on-Demand and live popular high
bitrate requests (MPH) the server reaches a saturation point
at 552 concurrent streams (Figure 10). However, instead of
seeing outright failures as was the case in the pure work-
loads, we see a large reduction in the number of bytes re-
ceived by live streams due to lost packets. Since network
conditions are carefully controlled we can be certain that
the packet loss is due to server overload rather than net-
working artifacts. This implies an internal server scheduling
problem that penalizes live stream requests relative to the
on-demand ones when the server is under stress. Similar to
the other workloads however, this significant reduction in
received bytes is presaged by a sharp increase in the startup

latency of the streams. We also see a significant increase
in the amount of jitter experienced by the live streams, but
much less so for the on-demand ones. Finally, we observed
rebuffering events for majority of the live probe requests as
the server reaches the saturation point. While we had evi-
dence that server side metrics are an insufficient indicator of
client side experience from our pure workloads, mixed work-
loads provide additional proof that this is indeed the case.
Overall, out of a total of nine workloads presented in this pa-
per at least two had pre-overload ranges just prior to stream
failures becoming visible and end-user quality degradation,
even though no server side resource was clearly saturated.
That number would rise higher if we were to focus mostly
on mixed workloads but it is sufficient in making the case
that probes used to obtain client side observations are a nec-
essary tool for establishing a streaming server performance
model.

4. DISCUSSION
We summarize the saturation points we encountered for

each of our workloads in table 2. To-date our experiments
are characterized by the emergence of the following lessons:

• Different workloads affect server capacity differently.
In particular we find that all dimensions of our work-
load matrix –type of streaming, popularity of streams,
and encoding rate– are significant in trying to assess
media server capacity. As a general rule however,
live streams produce higher network throughput than
Video-on-Demand streams, popular streams produce
higher network throughput than unpopular ones, and
high bitrate streams produce higher network through-
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Figure 9: LUH, live stream, unpopular, high bitrate (300Kbps).
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Figure 10: MPH, Video-on-Demand (50%) and live (50%) streams, popular, high bitrate (300Kbps).

put than low bitrate ones.

• Of our client side metrics, startup delay is most often
affected by changes in the level of concurrency. This
metric can easily be obtained through self-probing at
the server side. However, it is important to look not at
the absolute value of startup delays since that varies
quite a bit between different workloads, but at the
change in value as the load on the server increases. For
example, absolute values for Video-on-Demand clips
tend to be much lower than for live clips, but all work-
loads show marked increases in startup latency as the
load gets higher. We do see increased jitter and re-
buffering for some of our workloads, especially as the
server reaches saturation. To our surprise, none of
our experiments demonstrated the existence of thin-
ning. As it turns out thinning can occur only when
the client indicates that it is capable and willing to
accept thinned content. We verified that thinning can
indeed occur by starting a Quicktime player against a
loaded server and observed the slideshow effect.

• Of the server resources we monitored, three – CPU,
disk, and network – have shown the ability to be bot-
tlenecks for the workloads we tested (although network
bandwidth would only be a problem with a 100 Mbit
Ethernet card and not with a Gigabit card). Memory
in general never appeared to be much of an issue with
utilization staying comfortably below the 1 Gbyte of
memory available on our server. Furthermore, depend-
ing on the workload it could be a different resource
that becomes the bottleneck. More interestingly, we
discovered that for certain workloads we encountered

errors before any resource was fully saturated. This
implies some inefficiencies in the server scheduler and
showcases the need to have access to client side met-
rics when designing server management and scheduling
policies.

• Disk resources may appear severely underutilized for
certain workloads even though in reality there are at a
saturation point. The reason is that streaming work-
loads that are disk intensive have a heavy component
of disk seeks, rather than being pure disk reads. This
limits disk utilization by almost an order of magnitude.

• Logical resources can be just as much a bottleneck as
physical resources (i.e. the amount of user level buffers
available for the VUH workload). While those can of-
ten be resolved through appropriate server configura-
tion, it is unclear that a single server configuration can
accommodate all types of workloads. It may therefore
become important for a cluster or CDN environment
to have multiple servers configured specially for each
workload and funnel requests to the appropriate server
based on the request characteristics.

Using the lessons learned we can come up with a few sim-
ple rules and insights for managing clusters of streaming
servers. Our first rule is that monitoring server-side met-
rics is not a sufficient indicator of end user quality, and that
periodic streaming probes are a valuable addition to perfor-
mance monitoring. A second rule is that maximizing stream
popularity by carefully assigning requests for a stream to
servers already servicing that stream can greatly enhance
server efficiency. We have also found that server efficiency



Popular Streams Unpopular Streams
High Rate Low Rate High Rate Low Rate

VoD 438 or 131.4Mbps (VPH) 780 or 60.8Mbps (VPL) 36 or 10.8Mbps (VUH) 170 or 13.3 Mbps (VUL)
Live 996 or 298.8Mbps (LPH) 996++ or 77.7++Mbps(LPL) 200 or 60Mbps (LUH) 405 or 31.6Mbps (LUL)
Mixed 552 or 165.6Mbps (50% VPH, 50% LPH)

Table 2: Saturation points for workload matrix, maximum concurrent streams and maximum bandwidth
throughput without errors.

depends more on the stream packet rate than the stream
bit rate. Encoding low bit rate streams to also exhibit low
packet rates can increase server capacity. Finally, additional
performance benefits can be had by separating requests for
on-demand and live streams to different servers and by con-
verting on-demand requests to live streaming whenever pos-
sible (e.g. by regular scheduling of live streaming for the
very popular content).

5. RELATED WORK
Cherkasova et al. [7, 8] provide one of the first analysis of

media workloads and performance under video-on-demand
workloads of popular and unpopular content. They identify
important client side performance metrics, namely jitter and
rebuffering. The paper also recognizes the need to measure
the basic capacity of the server under different workloads.
Our work extends both the workload space by examining
live streams in addition to video on demand, as well as con-
sidering their mix, and the client metrics space by looking
into failures, startup latency, and thinning. Our premise is
that one needs to look at all important client side metrics
since it may be a different one that gets affected under a
different workload or even a different streaming server.

Another study that deals with application level quality
measured the effect of network loss and bandwidth variation
on client metrics of rebuffering rates, rebuffering duration,
streaming data rate, and packets arriving after their dead-
line [16]. In this study the network conditions are manipu-
lated to go through a variety of loss and bandwidth rates.
Client statistics are gathered to measure how well the Win-
dows Media Player (WMP) adapts to the changing network
conditions. The client communicates with the WMP about
the network conditions which the server then uses to adapt
sending behavior. This study does not address the issue
of server load and performance, but rather network effects
on performance. But the authors did note that in general
the server could adapt play rates for a variety of network
conditions but occasionally noticed high server loads which
negatively impacted the ability to adapt to network condi-
tions.

Dalal and Perry [10] also focus on application level mea-
sures by collecting self reported performance data from the
Windows Media Player. These measures are collected by
either passive observation of these statistics when users ini-
tiate streams or by deploying active probes that periodically
cause the clients to request streams. Received bandwidth,
packet losses (arrival too late or missing), packet retrans-
mission successes, received packets and rebuffering events
are captured. These distributed performance probes are col-
lected for report generation by the measurement infrastruc-
ture. These probes were analyzed looking for early predic-
tors of rebuffering events. They found that small packet loss

intervals are not good predictors for rebuffering events, but
that very large packet loss intervals are.

Many efforts have put forth analyses of media traffic and
tools that can generate synthetic workloads that mimic real
traffic. Using these workload generators, a CDN or media
server could be evaluated under ”real” workloads. From
these tests we could generalize the behavior under real op-
erational use. GISMO [11] generates streaming access work-
loads which can be configured to generate requests that
follow distributions for object popularity, temporal corre-
lations of requests, seasonal access patterns, user session
durations, user inter-activity, and VBR long-range depen-
dence and marginal distribution. MediSyn [15] is another
workload generator for streaming media which focuses on
file duration, encoding rates, popularity, and file access pre-
fix (length of playout). They also cover temporal properties
such as new file introduction, life span, seasonal and daily
access patterns.

There are several commercial efforts to continuously mea-
sure CDN and streaming media performance. Akamai [5]
monitors its own proprietary streaming media CDN through
the continuous collection of performance statistics by con-
stantly probing from agents across the globe. Availability,
startup time, thinning, loss, and rebuffering rates are mea-
sured. This continuous collection of data allows Akamai to
audit their performance for their CDN management and re-
porting.

Independent monitoring and verification of performance is
also provided by several commercial services such as Keynote
[12], Streamcheck [3] and Broadstream [2]. Keynote is a
leader in the creation of world wide monitoring of web per-
formance, monitors streaming media performance measur-
ing startup times, audio and video bandwidth, and packet
counts (delivered, recovered, late). They also provide a
weighted scoring that gives a single number summary of
overall performance derived from low level metrics. Stream-
check does similar probing for performance while Broad-
stream focuses on their IP TV network and measures per-
formance at each receiver.

6. CONCLUSIONS
In this paper we have presented a methodology for evalu-

ating media server performance and capacity limitations and
conducted a case study of a commercial streaming server us-
ing this methodology. We have shown that in addition to
well understood server side metrics (i.e. CPU, disk, net-
work, and memory utilization), one needs to look at client
side metrics as well, in order to understand the real limita-
tions of such applications. We have identified five client-side
metrics of interest: startup and play failures, startup delay,
rebuffering, thinning, and packet arrival jitter. The presence
of failures provides the absolute breaking point for a server,



while the other four metrics serve as indicators of “softer”
failures associated with reduced quality of service.

We have also shown that failures can occur well before
server side metrics reach saturation, due to internal server
scheduling inefficiencies. Finally, we have demonstrated that
both server side and client side metrics are affected by the
workload imposed on the server and that server capacity
is greatly affected by the workload type. In particular we
have identified three important dimensions in the workload
space that affect performance, stream type (live, Video-on-
Demand, or mixed), stream popularity, and stream encoding
rate.

The lessons we learned through these extensive measure-
ments of a single streaming server are directly applicable
to the management of multiple servers (e.g. in a cluster
configuration). Some of the lessons we have learned is that
better throughput can be achieved by assigning requests and
content so that the popularity of clips is maximized, by sep-
arating requests for on-demand and live streams to differ-
ent servers and by converting on-demand requests to live
streaming whenever possible (e.g. by regular scheduling of
live streaming for the very popular content).

We expect to continue our work by understanding how
mixed workloads perform for different ratios of live and
video-on-demand streaming and hope to create a server per-
formance model for arbitrary mixtures of live, video-on-
demand, popular, unpopular, high, and low bitrate streams.
Our goal then is to use those models to build cluster server
management policies that optimize performance by carefully
assigning stream requests to the appropriate server based on
the request characteristics and the current server state.
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