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Abstract

Imaging products are continuously increasing their optical resolution, resulting in
higher perceived noise levels due to increased sensitivity to noise and graininess in the
original image and to the decreased signal-to-noise ratio in the smaller pixel sensors.
Denoising images requires accurate noise estimates; too low an estimate and too much
noise remains in the image, too high an estimate and too many details are erased from
the image. In addition, the noise level is often not constant over natural images, par-
ticularly images from grainy negatives. We present a novel noise estimation algorithm
for scanned images, based on the statistical prior that the color channel gradients are
highly correlated in natural noise-free images, extend it to provide local noise estimates,
and then extend a denoising algorithm to utilize the spatially variant noise estimates
for improved denoising while retaining details in the original image.

1 Introduction

denoising algorithms usually assume a-priori knowledge of the noise level in the image to
control the amount of denoising. In practice, this knowledge does not exist, and is usually
replaced by manual tuning of the noise parameter. Some denoising algorithms, e.g. Donoho
[1], tune the denoising parameter based on the input image statistics, but these are usually
based on statistics of the luminance channel, and they can easily confuse high frequency
texture with noise. Since scanners take three independent samples (usually R, G, and B) at
each pixel, and since the color channel derivatives in natural, noise-free images tend to be
highly correlated [2], we may utilize the redundant information to estimate the noise in the
sampled images. High correlation in the color channel derivatives indicates low noise, while
low correlation indicates high noise.

We extend this approach to mosaic images by first pre-processing the mosaic image to obtain
a full-color image using simple bilinear interpolation of each color channel independently. We
treat the two greens in the mosaic pattern as two separate colors, giving us a four color image



rather than the three color image for scanned inputs. In addition, since the actual distance
between same-color pixels in the input mosaic image is two, we use derivatives with a distance
of two pixels.

2 Prior work

Noise level estimation is typically the first step in image denoising, as the noise estimates
are used to control the activity of the denoising algorithms. Most prior work, described
below, concentrates on information obtained from high frequency variations in the luminance
channel, whereas we propose using the correlation between color channels to evaluate the
noise level. The basic idea behind most prior methods of noise estimation is that noise
frequencies are typically higher than feature frequencies. Several of those approaches include
analysis of the distribution of the local gradient amplitude [3], and analysis of the power
spectrum of the image in order to estimate the variance of additive white noise [4, 5]. High
frequencies are characteristic to noise, but also to texture, which increases the error of the
noise estimator. One way of avoiding confusing texture with noise is to look only at smooth
image regions [6, 7]. Similar approaches include estimating the noise using the standard
deviation of unsharp mask values in pixels with low local gradients [8], or only in regions with
the smallest gradient values [9]. Additional approaches to luminance based noise estimation,
using wavelets or SVD, are described in [10, 11, 12].

3 Correlation versus scale

In natural, noise-free images, the derivatives of the color channels tend to be highly correlated
[2], so in noisy images with color-channel independent noise, one would expect this correlation
to decay as noise levels increase. We have attempted to verify this observation, both with
scanned images with naturally occurring noise and with artificially noised images.

Fig. 1(a) contains the contour maps of the density of the color correlations for three natural
images. These images were captured using a high quality digital camera with a 5Mpixel
sensor. The images were then downscaled by a factor of four using pixel averaging to reduce
the noise still further and to reduce the demosaicing effects on the image statistics. It is
readily apparent that the color channel derivatives are highly correlated.

For scanned images with naturally occurring noise, we do not have an ideal, noise-free version
of the image. However, by downscaling the image using pixel averaging we can see how the
correlation changes as the assumed noise levels decrease. (Assuming the noise is independent,
and each downscaled image is the result of the averaging of the NxN high resolution pixels,
then the average noise per-pixel should decrease by a factor of N.)

The naturally noisy images were scanned by a Nikon Super Coolscan 5000 ED negative and
slide scanner at 8bit and 4000dpi with no noise reduction option enabled. Color reconstruc-
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Figure 1: Correlation between color derivatives of images in various scales



tion and scratch reduction were enabled, and the scanned images were stored in a lossless
TIFF format. The scanned images were about 20MPixels each, for roughly 60MB images.
The negatives are about twenty years old using a standard Kodak film. Most of the noise in
the image is actually grain in the negative, as we have tried a number of experiments where
we scan the negative up to sixteen times each and use the average result, with little change
in the apparent image noise. In addition, numerous works have shown that film grain may be
modeled as luminance-dependent independent identically distributed (i.i.d.) Gaussian noise
[13, 14, 15, 16].

Fig. 1(b) shows a sequence of contour maps of the density of the color channel derivatives for
a natural scanned image. In Fig. 1(b), there appears to be little or no correlation between
the color channel derivatives at the original resolution, while as we reduce the image size via
pixel averaging, the correlation increases.

For an artificially noised image, if one looks at the color plane derivative correlations versus
the downscale factor, one may see that the correlations increase as the scale (and noise) are
reduced. Fig. 1(c) shows a sequence of contour maps of the density of the color channel
derivatives. A diagonal line on a forty five degree slope would indicate perfect correlation,
while a ball centered around zero indicates no correlation. In point of fact, the color channel
derivatives in noise-free natural images are not perfectly correlated, else we would have a
grayscale image rather than a color image.

As one may notice, the artificially noised images behave in a fashion similar to the naturally
noised image, with much lower correlations at higher resolution, and increasing correlation
as the noise is gradually reduced via pixel averaging.

4 A model for using color information for noise esti-
mation

An overly simplified image model is that the color channel derivatives are perfectly correlated
in natural images, and that noise is i.i.d. Gaussian. Under this model the color derivatives
in 3-space would lie on the identity line. The experimental results from the previous section
show that as noise is added to an image, the color derivatives tend to drift further from the
identity line. Conversely, the average amount of drift away from the identity line should give
us a measure for the amount of noise in the image. More formally, we can estimate the noise
at a pixel as the distance between the deviation of the local derivatives 64 = (du,, dug, 6ub)T
from the identity line €= (1,1,1)” as:

Deca = |[6d— < 04, > ¢ (1)

where <> is the inner product and é = ﬁ We call this measure the CCA distance. Notice
that a similar expression is obtained when calculating the (biased) standard deviation of the



three differences:

o — \l Zie{r,g,b} (:fuz - E)2 (2)

where du is the mean of Ju;.

The per-pixel mean CCA distance is measured by the average of Equation 1 over the eight
directional derivatives with the pixel’s eight nearest neighbors. In some cases, discussed in
the next section, we prefer the minimum of the pixel’s eight nearest Dcca values, instead
of the average. We refer to this value as D%, . Also, while Equations 1 and 2 use the first
derivative, we can also use the second derivative since if the first derivatives are correlated,
then the second derivatives should also be correlated. The directional first derivative at x;
is 0r; = x; — x;_1, while the directional second derivative is 00x; = x;_1 — 2x; + x;11. We
refer to Doy calculations using the second derivative as Decao and DI, respectively,
depending on whether mean or min is used for the per-pixel values.

Let us denote a 3D volume element by dv, and by r the difference between two independent
noisy pixels, both with an i.i.d. Gaussian noise with standard deviation o. The distribution
of 7 is Gaussian with standard deviation o, = v/20. The expectation value of the per pixel
mean CCA distances, E {Dcca (0,)}, is then given by:

E{Dcca(or)} (3)
= /V P, 9., (0,) (rsin®) dv

7,2
ﬁﬁ L2 rie 27 dr Jo—o sin?0 do f —o dy

o Urmf Xor%e 2”r dr [p—o sint do [; °m dep
\/? o
—= _O-T' ~
2 0.564

Dcca is the norm of a vector in 3-space (Equation 1), which has 3 components, one for each
color channel. Given a three dimensional Gaussian i.i.d. noise,

; w;vgzgexp(—éwﬁ—ﬁfii1®ﬁ—ﬁ0 (4)

Where 5 is the covariance tensor:
Q=r{0i-pei-pn"} (5)

and /i = (0,0,0)” for zero mean noise. One can calculate the projections of the CCA distance
on each of the color channels, denoted by D% 4, D&y, D%e 4, for the red, green and blue
colors, respectively, and extract the three eigenvalues of the covariance matrix.



In the isotropic case, substituting Equation 4 in the Expecation value in Equation 6 leads
to:

2
E, = / Prag (07) |y 575in (0 = 6o) cos (o = o) o (6)

= Vo f \/:a 10854

with x € {r, g,b} for the red, green and blue axes respectively, where E, is E{D%., (0,)},
dv is a 3D volume element, and |\/gr sin (6 — 6y) cos (¢ — goo)‘ is the value of the projection
of the distance from the measured point d% to the unity line'.

r 3

Figure 2: 3D angles

5 Results

We tested the use of the CCA distance for both global noise estimation and local noise
estimation. The experimental results presented in this section are based on the data obtained
by the following procedure: We used 145 high quality digital camera images, downscaled

IThe projection is calculated as follows: in Fig. 2 the line OP is the three dimensional identity line. All lines which are
orthogonal to the identity line lie on a surface, illustrated by the rectangle. This surface intersects the three axes at the points
A,B and C. The line PT = rsin 0 is the distance from the measured point T' = §u to the identity line. We find the projection
of PT on the OA axes by moving to the rotated (cosfy = 1/v/3, ¢o = 0) set of coordinates: ¢’ = PA = (2,—1,—1)T //6,

=(0,1,-1)T /v/2 and 2/ = OP = (1,1,1)T /+/3: Angle POA equals acos(1/+/3), which is the inner product between #' and

%, and hence the cosine of angle PAO is \/_ and the projection of PT on the axis OA is \/_r sin (6 — 6p) cos (¢ — ¥o)-
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Figure 3: Image noise estimation errors

them by a factor of four to essentially eliminate noise, JPEG artifacts and de-mosaicing
affects, added i.i.d. Gaussian noise with known standard deviation o to each image, clip to
[0...255], and calculated the per-pixel CCA distance for all pixels in the image.

Testing the use of the per-color CCA distance noise estimator (Equations 3, 6), averaging
over 1 out of each 10 pixels in the image, we empirically derived the equations:

g = (0.570 £ 0.008) Dcca — (0.771 4 0.537) (7)
and

5" = (1.099 =+ 0.015) D, 4 — 0.910 £ 0.582 (8)
59 = (1.094=+0.011)D%, — 0.525 % 0.433
5" = (1.099 + 0.013)D% , — 0.880 = 0.599

While the slope of the calculated fit agrees with the predicted slope, the entire line is shifted.
This shift, common to all noise level, is probably hidden in the supposedly noise free images,
which either contain a tiny amount of noise or contain colored edges which are interpreted
as noise by the CCA distance. We return to this discussion later in this section.

In addition, each pixel has eight directional first derivatives and four directional second
derivatives. We have at least two options for choosing the “representative” value of these
per-pixel values: mean and min. Equation 9 shows the relevant polynomials used to convert
the mean of the per-pixel CCA values from Equation 2 to the image noise estimate. Note

the slope differs from Equation 7 due to the % in Equation 2.

& = 1.00Dcea — 0.94 (9)
= 2.53 D% % —0.86
= 0.96 D%, — 0.58
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Fig. 3 shows the standard deviation of the prediction errors as a function of the injected
0. The prediction errors are computed using leave-one-out evaluation of the linear fitting
process. In other words, when computing the prediction error for a test image, the curve
fitting is done using the CCA distance measurements from the other images. It is clear that
using the second derivative gives more accurate results, and that for smaller noise levels it
is better to use the minimum rather than the mean of the various directional derivatives at
each pixel.

Fig. 4 shows the standard deviation of the prediction errors for 13x13 windows for various
configurations similar to Fig. 3, except that in this case the noise prediction and resulting
error calculations are done per window rather than per image. As expected, the errors are
generally higher than those of Fig. 3, but they are still small. However, using two prediction
methods, local minimum for small noise levels and local mean for larger noise levels, appears
to be more useful as the difference between them is much larger than in the per-image noise
estimates.

Fig. 5 shows how the standard deviation of the prediction error shrinks as the neighborhood
size increases. In practice, a 9x9 window should provide sufficient accuracy.

The reason for the larger variances at smaller noise levels is probably that natural images do
generally have some color and hence some small, natural variation in the color derivatives. It
is hard to tell whether the original images, which we assumed to be noise free, still contained
some small level of noise, or if our noise estimation method confuses some of the colored
texture and edges in the image with noise.

6 Localized Correlation between noise and color-noise
estimation

A photograph captured on a chemical film may have different amounts of noise in different
regions due the way the film reacts to different colors and light exposures. Fig. 6 is a 4000
dpi scan of a negative photograph captured on a chemical film (the printed images are, of
course, down sampled). Fig. 7 is the CCA-based noise estimate according to Equation 1
convolved with an 11 x 11 averaging kernel. To make the result more visible, the grey levels
are 15X the actual noise level estimate. Especially near the top left of Fig. 7 there are some
visible thin dark lines. These are a result of the dust and scratch reduction algorithm used
in the scanner driver which identified some mold on the negative and filled in those regions,
which correspond to the dark lines.

For comparison purposes, we also show in Fig. 8 the sigma map for a “noise-free” version of
the same image, shown in Fig. 9, obtained by denoising and then downscaling by a factor
of eight in each dimension by pixel averaging. This image supports the assumption stated
above that our noise estimator may mistake color edges for noise. One way to overcome this



Figure 6: Sample scanned im- Figure 7: Sample noise esti- Figure 8: Noise estimate for
mate clean image

Figure 9: Clean image Figure 10: Sample noise to Figure 11: Noise to signal es-
signal estimate timate for clean image

issue is to estimate the noise to signal ratio (Equation 10) instead of the noise:
Dcca

1
max (7 5u)
Nehannels’

N2SCCA = (10)

Fig. 6 shows noise to signal ratio values in the noisy image. The noise to signal ratio in the
sky is larger than in the skin tone regions, and edges are filtered out. Fig. 11 shows the
noise to signal in the clean image, multiplied by 32 in order to make the result more visible.
The residual noise to signal in the sky is bigger than the residual noise to signal on the skin,
and the edges are not visible. Research on using the information obtained from the local
derivatives (du) to improve per-image noise estimation is on-going.

7 Noise estimation in mosaic images

We extended the proposed noise estimation for mosaic images by calculating the second
derivatives of each of the colors in each of the four directions. The distance between
neighboring pixels in each of the directions and colors is doubled, relative to the dis-
tance between neighboring pixels in the same direction and color in the scanned image,
i.e., 00x; = w;_o—2x; + T;12. We treat the two greens in the mosaic pattern as two separate
colors, giving four colors rather than three. As in the scanned images, we calculate the CCA
distance in each direction and choose the direction that gives the minimal Dgeoaqo value,
denoted by D&%,. Fig. 12 shows the per-image noise estimation error in mosaic images,
which where created by mosaicing our 145 test images. As one can see, the best method
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Figure 12: Estimation error for per-image noise estimation in mosaic images

for calculating the per-image noise estimation out of the per-pixel D%, is by using the
a variant of the mode or most common value: the D7, histogram was prepared using
0.25 spaced bins, the most common value (mode) was found, and the median of the values of
Dyin,, whose density was at least 95% of the density of the mode was calculated. The reason
for using the median of the values whose density is at least 95% of the density of the mode
is that the mode for large noise levels is somewhat unstable due to random fluctuations in
the observed density, whereas the median of the densest portions of the histogram is much

more stable.

8 Application to spatially variant denoising

We previously developed [17] a bi-selective filter based on over complete DCT domain
processing which can selectively smooth and sharpen in a single pass. The heart of the al-
gorithm is a function that transforms the DCT coefficients: small coefficients are squashed,
large coefficients are (slightly) enhanced, and there is a smooth transition between the two
regimes. This function is governed by three parameters: L, a lower threshold below which all
coefficients are set to zero, S, a sharpening factor, and H, an upper threshold above which
the coefficient is increased by the sharpening factor. Between the lower and upper thresh-
olds the function uses linear interpolation. In our previous work [17], the three parameters
were set globally for the whole image, usually setting L to about two times the global noise
estimate, S = L, and H = 3 - L respectively generally gives good results.

Given the spatially variant noise estimates, however, we are able to extend this algorithm
to adaptively filter the image depending on the local noise estimates. To do this we take
the noise estimate at the central pixel, o;; in the DCT block and scale the three transform
coefficients by the local noise estimate. Experimentally we found that setting L = 2.5 - oy;
and S and H as before generally gives good results.

11



(a) original (b) weak denoising  (c¢) adaptive denoising (d) strong denoising

Figure 13: Sample image and noise estimate

Fig. 13 demonstrates the value of spatially variant, or adaptive filtering based on the spatially
variant noise estimates. It shows two fragments of the image in Fig. 6, one from the sky
just above the girl’s head (top), and one from her forehead (down). Fig. 13(a) contains
the original fragments, while Fig. 13(b) was processed with uniformly weak denoising to
preserve the texture. Fig. 13(c) were processed adaptively using the noise estimates from
Fig. 7, while Fig. 13(d) was processed with uniformly strong denoising to clear the noisy
sky. It is apparent that the adaptive filtering is able to preserve the texture in the relatively
clean and textured face while clearing the noise in the relatively noisy and flat sky.

9 Conclusions

We have demonstrated a simple method for estimating the noise in color images, assuming
that each color channel is fully sampled and that the noise is Gaussian and independent.
Perhaps surprisingly, using artificial data this method can estimate noise levels within a single
gray value across a whole image for many noise levels. In addition, a spatially-variant form
of the measure is able to estimate noise levels within a few gray levels for many noise levels.
We demonstrated a sample application of the spatially variant noise estimate by extending
an existing denoising method to control the amount of denoising at each part of the image
by the estimated amount of noise in the image, and demonstrated that it can potentially
perform much better than a denoising method with a single image-wide parameter setting.
We then extended the noise estimation method to mosaic images, which have only one of R,
G, or B samples at each pixel, and using a modified algorithm were able to determine the

12



noise level within a single gray value for most noise levels.
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