

Extensible layout in functional documents♦

John Lumley, Roger Gimson, Owen Rees
Digital Media Systems Laboratory
HP Laboratories Bristol
HPL-2005-223
December 22, 2005*

XML, XSLT,
SVG, document
layout, functional
programming

Highly customised variable-data documents make automatic layout of the
resulting publication hard. Architectures for defining and processing such
documents can benefit if the repertoire of layout methods available can
be extended smoothly and easily to accommodate new styles of
customisation. The Document Description Framework incorporates a
model for declarative document layout and processing where documents
are treated as functional programs. A canonical XML tree contains nodes
describing layout instructions which will modify and combine their
children component parts to build sections of the final presentation. Leaf
components such as images, vector graphic fragments and text blocks are
'rendered' to make consistent graphical atoms. These parts are then
processed by layout agents, described and parameterised by their parent
nodes, which can range from simple layouts like translations, flows,
encapsulations and tables through to highly complex arrangements such
as constraint-solution or pagination. The result then becomes a 'molecule'
for processing at a higher level of the layout tree. A variable and
reference mechanism is included for resolving rendering interdependency
and supporting component reuse. Addition of new layout types involves
definition of a new combinator node and attachment of a suitable agent.

* Internal Accession Date Only
♦ IS&T/SPIE Symposium Electronic Imaging, January 2006, San Jose, CA, USA
 Approved for External Publication
© Copyright 2006 Society of Photo-Optical Instrumentation Engineers. This paper is made available as an electronic
reprint with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple
reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or
for commercial purposes, or modification of the content of the paper are prohibited.

1

Extensible layout in functional documents
John Lumley, Roger Gimson, Owen Rees

Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, BRISTOL BS34 8QZ, U.K.

ABSTRACT

Highly customised variable-data documents make automatic layout of the resulting publication hard. Architectures for
defining and processing such documents can benefit if the repertoire of layout methods available can be extended
smoothly and easily to accommodate new styles of customisation. The Document Description Framework incorporates a
model for declarative document layout and processing where documents are treated as functional programs. A canonical
XML tree contains nodes describing layout instructions which will modify and combine their children component parts
to build sections of the final presentation. Leaf components such as images, vector graphic fragments and text blocks are
'rendered' to make consistent graphical atoms. These parts are then processed by layout agents, described and paramet-
erised by their parent nodes, which can range from simple layouts like translations, flows, encapsulations and tables
through to highly complex arrangements such as constraint-solution or pagination. The result then becomes a 'molecule'
for processing at a higher level of the layout tree. A variable and reference mechanism is included for resolving render-
ing interdependency and supporting component reuse. Addition of new layout types involves definition of a new com-
binator node and attachment of a suitable agent.

Keywords:Document layout, functional programming, XML, XSLT, SVG

1. CONTEXT - DDF AND ITS LAYOUT MODEL

The production of highly customised publications, such as personalised brochures, tuned marketing collateral and cus-
tom-branded templates, presents many interesting challenges within document engineering. The customisation required
can often involve incorporation into the publication of variable elements whose 'size' is not fixed, which can be used
selectively in different document instances and where 'layout' could involve rather complex decisions. This paper
describes an approach to defining and processing publication layout in a particular document engineering architecture,
based around considering documents as functions of variable data and content.

The Document Description Framework (DDF) is a representation for variable data documents
1

, which was designed
from the outset to support an extensible family of layout techniques. Briefly, a DDF document is a self-contained XML
object with application data, logical document structure and graphical presentation spaces, these being linked via XSLT
functional programs. The document is also considered a function of external variables. Binding an instance of the docu-
ment to a particular variable value ('customisation') involves evaluating the programs contained within the DDF docu-
ment to build new data, structure and presentation components progressively.

The DDF architecture is intended to act as an 'encapsulator' of presentation instructions from a variety of other formats,
which can be rendered and potentially manipulated within combinator instructions acting as declarations of layout. It
was considered crucial that this set of combinators could be extended to meet new demands from new document applic-
ations, in a way that will not disturb previous implementations. In effect we require that the layout repertoire can be
extended smoothly.

This paper describes the model of layout within DDF documents and how it can support many forms, such as simple
flows, grids, tables, constrained geometry, pagination into a set of containers, resizing, packing, optional inclusion and
choice and more esoteric methods like guillotine rearrangement, within a single framework. We'll start by discussing
what we mean by layout, some of the overall requirements and some of the main assumptions. We'll then discuss briefly
current alternative technologies and then proceed to describe the model used within DDF. This will be illustrated
through simple examples and then extended through discussion of how more complex arrangements such as declared
constraints and pagination can be supported. Finally we'll illustrate how re-use and rendering interdependency can be
supported.

This document describes the layout of document - as such it is of course written in itself. The layout examples are them-
selves buried in the document source, and all other parts are laid out by the system described herein...

2

1.1. What Is Layout?
It's worthwhile trying to define what we meant by the term 'layout' as used in this paper. Sometimes it could be con-
sidered synonymous with 'rendering', but for the rest of this discussion we mean the modification, placement and com-
bination of a series of rendered components to produce a composite presentation. The critical idea is that normally a set
of 'parts' are combined geometrically to produce a composite section which will usually appear as a single visual group
in the final presentation. (Other parts of DDF are concerned about supporting the generation of appropriate logical struc-
tures in the document which can be mapped into suitable visual 'scopes').

Usually when a designer builds a document he starts with a set of pieces and groups which he'll arrange and modify rel-
ative to each other to achieve the necessary effect. This can involve designing sets of containers and page layouts, sizing
components like pictures, selecting from palettes of permitted styles, and crucially of course selecting which compon-
ents should go where. This process can happen in two directions simultaneously - bottom up, where components are fit-
ted together and top-down where pieces are packed within containers.

1.2. Automating Layout In High Variability Documents
A major problem in automating such processes is that in variable content documents, the 'size' of a component may
change as a result of different data bindings: consequently the layout of this component and its siblings (or other relat-
ives) may also vary, but this cannot be determined until rendering has been carried out.. This is very much the case with
text blocks, where normally the height of the block can depend crucially on the actual characters involved, not just their
numbers. Similarly image aspect ratios can easily alter by a factor of two with landscape and portrait swaps. (Figure 1
shows extreme examples where the number of characters is constant in the text and the images have the same width.)

Narrow
characters: iii
jjj lll iii jjj lll iii jjj
lll iii jjj lll iii jjj lll

Wide
characters:
MMM NNN
WWW MMM
NNN WWW
MMM NNN
WWW MMM
NNN WWW
MMM NNN
WWW

Figure 1. Extreme post-rendering size variation with constant input text length or image width

In documents with high levels of customisation, even the number of components required to be placed may be variable,
or some pieces may be entirely optional. In these cases the use of a 'copy-hole' to accept substituted variable data would
lead to excessive whitespace and poorly presented final documents.

These factors make it essential that a variable data document system needs a model for layout of sets of component
parts, which can be processed automatically and produce effective presentational forms. The goal of course would be to
have final presentations which are judged to be of good 'quality' by comparison with those that a professional designer
could achieve. For some document types, such as reports and similar ones where layout is based primarily on flows, this
is already possible, through the developments in typography, compositing and word-processing technology of the last 30
years. Our interest however is in that set of publications which arenot flow-based.

1.3. Assumptions & Choices
Whilst a human designer can produce any arbitrary layout of parts, in practice layout involves mostly the following
assumptions

Few components overlap

Most components are generally rectangular in nature and oriented parallel to the page edges

Many group layouts involve orthogonal alignment of pieces

These assumptions are not hard and fast of course, but they do handle a majority of cases that designers use and which
help clue the reader to intended meanings in the viewed presentation. Indeed many classes of layout, such as the table,
rely on this. With this in mind our principal model of geometry is:

3

The geometry is Euclidean x-y, subject to y +ve downwards of SVG
2

SVG is used as the canonical representation form, including geometric transformations.

Pieces have explicit 'width' and 'height' attributes, or implict sizes dependent upon type - these are used to define the
bounding rectangle for that part.

Most layout occurs between pieces merely on the basis of their bounding rectangle. This means that: i) the type of a
component doesn't usually affect its sibling-relative layout and ii) overlap will not occur unless requested intention-
ally.

Most layout occurs in orthogonal directions - i.e. x-relative layout is usually separate from y-relative.

In addition we make the following design choices:

Most of the layout will be defined with 'bottom-up' semantics - the combination of principally unmodified pieces to
build larger assemblies. Top-down actions (like pagination) will be handled within the scheme by specialist func-
tions.

It should not normally be an error for sequences to be empty

As we will see later, our design against these choices involves the declaration of a constructional tree, coded in XML
syntax, which describes all the pieces involved in the document and how they should be combined or otherwise modi-
fied to put this together. We use the tree to contain both primitive pieces, combinators, constraints and guides, larger
scale document constructs (like paginations) and as importantly, use the tree scope to control the extent of effect.

2. OTHER RELEVANT TECHNOLOGIES

Most document processing systems and languages have a defined model of the layout of combination of pieces, the
majority of which are concerned with 'flow' layouts of sequences of text words. The Scribe-influenced formats (Scribe,
Troff, TeX

3
) all pioneered the notion of explicit document layout markup with limited extension mechanisms such as

macros, traps and diversions, some with extensive libraries built on top of these base facilities. Some aspects of these
models for text flow have influenced significantly commerical products such as MSWord and Framemaker.

2.1. Recent XML Formats
In more recent times there have been a number of XML document formats which take a different approach. Scalable
Vector Graphics

2
(SVG) defines a canonical model for a set of graphical objects, with appropriate fixed transformations

such as translation, scaling, rotation, clipping as well as colour combination models. It also uses an encapsulation mech-
anism defining new 'molecules' with its own relative co-ordinate system, akin to those of Postscript or PDF. As all
pieces are of defined size and position, layout of parts relative to each other can be 'calculated' prior to rendering.

XSL-FO
4

is a model developed primarily for paginated, flowed documents, though like most others it can be 'pushed' to
generate other forms through suitable programming. Its layout model is principally that of a 2D flow of areas (usually
text/words) into page containers. For our purposes it has an attractive model for text definition.

Personalized Print Markup Language
5

(PPML) is a model for the construction of paginated documents by the superpos-
ition of pictures of defined size. A PPML document contains a descriptions of pages where a set of leaf elements (the
'pictures') are combined with simple geometric transforms of translation, scaling, rotation and cropping. The leaf ele-
ments contain instructions for making the 'picture' of itself, as well as an indicator of the type of agent required to inter-
pret those pictures. PPML defines the semantics of how those resulting picture elements are to be combined to make the
completed page. Additionally PPML defines an orthogonal scoped mechanism for defining and using Reusable Objects ,
including some constraints to improve implementation efficiency over extremely large variable print jobs. But crucially
the relative layout of PPML pieces is not defined programmatically by PPML and hence it doesn't support variable con-
tent layout in itself.

2.2. Automated Non-flow Layout
Several recent research projects have explored automatic layout of non-flow documents, for both print and electronic
form. One approach declares constraints between component parts and couples the form of these constraints with suit-
able runtime solvers, either in a publishing stage or dynamically within a browser. Constrained SVG

6
is major example,

which adds declared constraints between various values (usually dimensions) to a fragment of SVG. This constraint net-
work can connect to external parameters if required, or other variables such as animation trajectories. Solution of the

4

constraints dynamically within a renderer can reposition or size various components in response to changes. The con-
straints are limited to linear inequalities: using an effective Simplex solver means quite large problems can be addressed.
CSVG doesn't have a scoping mechanism - rather a solution to the whole SVG is computed at once. Later work

7
added a

library of common 'lookup functions' within the renderer to attach to component properties such as position and size,
making building constraint equations easier and supporting dependency analysis.
Hurst

8
shows using 'one-way' constraints within a web browser where relationships between top-level display compon-

ents are declared and solved. Recently Hurst et al
9

have shown an approach to describing the layout of textual tables as
the solution of a large convex constraint set - this is an example of composite layout of a whole set of independent
flows, adjusting the text blocks to meet global optimisation. Jacobs

10
describes laying-out grid-based documents which

adapt to variable device formats. This is acheived through inferred constraints from examples and automated selection
from a suite of potential templates, this search being capable of working over a paginated document.

These presented so far are examples where the topological arrangement of the parts is preserved, but there are important
classes of documents (brochures for example) where this need not be preserved, at least globally, and geometric reorder-
ing is permitted to get more pleasing layout. Purvis

11
explores generating layouts by searching a space of guillotined

layouts with genetic algorithms.

3. HIERARCHICAL LAYOUT

Throughout this paper our main focus is on viewing the presentation of a document as a hierarchical assembly of sub-
components. This hierarchy typically descends from pagesets through sub-page assemblies, such as columns and frames
to groups of primary components like images, text blocks and graphics. As one aspect of successful message communic-
ation is a visual correspondence between the intended document structureand the presentation, using the hierarchy as
the primary description will make preserving that correspondence easier.

Our basic model thus treats layout mainly as a tree of components and assemblies, and declares the assembly instruc-
tions as a parent node over a set of child subcomponents. Thus in the following tree:

Layout#1

partA partB Layout#2

partC partD

Figure 2. A simple compound layout tree

there are four primitive parts A, B, C and D. Of these C and D are combined, through whatever semantics Layout#2 has,
to give some composite molecule which is then treated in a similar manner to A and B. Presumably parts C and D are
considered to be more tightly bound (or less separable) than A and B, and this is expected to be clued by the layout.
[Whether this is actually the case, and what the originator intended is entirely a matter for the document engineer.] Note
that this approach doesn't require the leaf parts to be immutable - whilst Layout#1 might be a simple translator of its
children, Layout#2 might be a packing layout which may resize its children (i.e. partC may be resized in the final result)
or even reform them if necessary (e.g. it might change colours in children to increase contrast...)

The tree nodes are the points at which the combinators are declared and to which all necessary parameters for control
are attached. Most of these tend to be attributes in the XML sense, though it is possible to attach identifiable control
structures as children (we'll illustrate this more when we describe how a constrained layout may be described.) The main
point is that the bulk of the children are considered to be graphical components which will be adjusted (translated,
scaled, modified) according to the semantics of the given layout, to produce a new graphical view. And of course some
of these children parts themselves might be layouts, as shown in Figure 2.

This is basically how we declare the layout requirement but doesn't say how it should be evaluated. For some of the
constraint-based technologies outlined earlier the intention is to attempt to 'flatten' large sections of the document into a
single canonical form and solve for all unknowns (e.g. piece positions) in a single operation, then back-applying results

5

to drive final rendering. Indeed in CSVG the underlying solver can be driven incrementally so this can be very effective
for derivative-modification of a document. Our approach to implementation is different: we use the tree to act as a guide
to locality of effect, solving pieces mostly separately and combining part results. Both approaches have their own mer-
its, but we believe ours can support extensibility more easily.
With such a scheme the evaluation of layout, that is the construction of the final result, is primarily one of tree-walking,
visiting a node and taking action dependent upon the node requirements. In Figure 3 we have a case of a simple combin-
ation of text and graphics through vertical and horizontal flows. A simple recursive descent process evaluates children
successively, generating a graphical atom or molecule corresponding to whether the child is a primitive or an embedded
layout. Figure 3 shows successive stages of this evaluation:

flow(x)

fo:block flow(y)

svg:polygon svg:circle

flow(x)

A block of
text

flow(y)

svg:polygon svg:circle

flow(x)

A block of
text

flow(y)

flow(x)

A block of
text

A block of
text

Figure 3. Successive evaluation of a composite layout

(The shadowed portion shows the limits of the evaluated piece returned.) This method can work and be extensible if
there is a canonical form for the results of a layout. In our case, as given in the assumptions earlier, components are
generally 'rectangular' for purposes of layout: most layouts need no knowledge of the component beyond its position and
/or size. We'll show later on how specialist requirements which require type-specific knowledge can be handled by
appropriate wrapping functions .

3.1. Simple Layouts
This canonical form of 'bottom-up' layout (evaluate all the children to graphical molecules, treat them as atoms, arrange
them relative to each other and work out composite width and height) is suprisingly powerful. Flows can be defined
simply over different types of children as shown in Figure 4

flow(y)

one three four

one

three

four

flow(x)

one three four
one three four

flow(y)

align(right)

one three four

one

three

four

Figure 4. Simple 'bottom-up' layouts; a) vertical flow, b) horizontal flow, c) vertical flow after right alignment

Other more complex computed layouts can be defined, such as that shown in Figure 5 where for some reason we wish to
lay pieces out around the circumference of a circle. Again this layout is agnostic to the type of its component children,
so we can use different primitives and compounds and still get a robust result.

centre()

circle()

1 2 3 4 5 6 7 8 9 10 11

ddf:clock

centre()

1
2

3

4
567

8

9

10
11 ddf:clock

1
2

3

4
567

8

9

10
11

ddf:clock

Figure 5. A computed layout of pieces around a circle

6

3.2. Modifying the Results.
In the previous examples component parts have been translated and agglomerated into higher-level components: such
use tends to be very common in layout. But many other useful operations can be described in this 'tree-functional' form,
with results that are sequences of components. For example if we wish to have a flow of pieces that is ordered in size
(Piagetian serration) then we can define a reordering function and use it as a preprocessor for the set of children of the
layout as shown in Figure 6:

flow(y)

sort(width)

one two three five six

flow(y)

one six two five three

one

six
two
five
three

Figure 6. Sorting a set of pieces by width

The point to note is that this manipulation occurs on the graphical components after they have been evaluated and thus
gives logical capability within the 'visible' presentation space. Similarly a suite of appropriate filters and manipulators
can be used in any particular function. In Figure 7 we sort the pictures by height, rotate each one and then lay out only
those that are smaller than a given size:

flow(y)

height < 10

rotate(30)

one two three five six seven eight nine ten

flow(y)

height < 10

one two
three five six

seven
eight

nine ten

one

two

five

six

ten

Figure 7. A post-rendering filter, removing 'tall' components

4. COMPLEX LAYOUTS

The layouts we have shown so far are comparatively simple and 'bottom up', though by suitable nesting of layouts fairly
complex forms can be created. However an approach to arbitrary document layout should be capable of processing
much more complex forms. In this section we consider in some detail how two types of complex layout, constrained
geometries and pagination may be declared and supported and then briefly summarise approaches to other types such as
grids and tables. In the following section we'll show how information can be shared between layouts to achieve more
complex effects.

4.1. Geometrically Constrained
As mentioned earlier, there have been several systems that describe layout in terms of geometric constraints between
components. Useful concepts such as alignment, spacing and order can be described as constraints between co-ordinates
of component boundaries. (This is illustrated well in Juno-2

12
and has been part of CAD systems since Sketchpad

13
.)

Our implementation within DDF also includes an ability to layout components to satisfy constraints between them. As
with others (like CSVG) we restrict ourselves to sets of linear inequalities between pieces, exploiting existing powerful

7

solvers to produce results on relatively large problems. In the general case the layout is a function:
 constrained-layout(constraints*,contents*) -> composite+

where:

constraints* is a set of constraints between the pieces to be laid out.

contents* is the set of parts to be laid out. Each of these parts may need to be constructed to reveal both its presenta-
tional form, and as a size measure. (It is not an error for this set to be empty)

composite+ is the resulting graphical molecule.

Effectively the argument to the function is a set of graphs where the nodes are the pieces and the edges describe con-
straint relationships. We need to represent this within the tree syntax we use. Usually this involves giving nodes names
attached to the relevant component (as an XML attribute) and the edges represented as special-type children which
name their end-nodes. For example in Figure 8 we define abutting relationships between two pieces, using a simple set
of declarative tags, which are expanded to constraints between relative edges of the pieces. (ddfl: is a namespace pre-
fix used to identify DDF layout elements).

<ddfl:layout function="linear-constrained">
 <svg:circle name="red" fill="red" r="4"/>
 <svg:ellipse name="yellow" fill="yellow" stroke="black"
 rx="4"
 ry="2"/>
 <ddfl:constraints layout="abut(below) abut(left)" parts="red yellow"/>
</ddfl:layout>

Figure 8. Components and constraints

ddfl:layout

ddfl:constraints

Figure 9. The resulting layout from the constraints of Figure 8

The tag forms in Figure 9 between red and yellow have the following equivalences (SVG has y +ve downwards):

abut(left) => red.x + red.width = yellow.x

abut(below) => red.y + red.height = yellow.y

In many cases all the component parts have defined size and the constraints really act as a 'one-way' network setting
positions from sizes, and the dependency order to solve could be derived statically. But constraints can also be used to
determine size. For example in Figure 10 we declare the circle to have the same height as the text block:

<ddfl:layout function="linear-constrained">
 <svg:circle name="red" fill="red"/>
 <svg:rect name="green" fill="green" width="12"
 height="8"/>
 <fo:block name="text" font-family="Helvetica"
 font-size="2"
 width="20">A block of text that will probably indulge in a spot of line-wrapping</fo:block>
 <ddfl:constraints layout="same(height)" parts="text red"/>
 <ddfl:constraints layout="align(middle) abut(left)" parts="red green"/>
</ddfl:layout>

Figure 10. Constraints on the size of a component

8

A block of text that will
probably indulge in a
spot of line-wrapping

But if the block of text
becomes much longer
then the size of the
resultant block will
increase, the red
circle will also grow
and as a direct
consequence the
rectangle moves
rightward.

Figure 11. Resulting presentation from Figure 10, with two different bindings of the text

This technique (where the unknowns in the simultaneous equations declared by the constraints include component sizes)
is very useful for simple components like circles and images or rectangles. Here the 'self-constraints', those imposed
between width and height by the component itself, are either non-existent or fixed and linear (e.g. aspect ratio for
images). Unfortunately the important class of text-block does not obey this (width-height is non-linear, potentially dis-
crete and even non-monotonic in the extreme) and other measures are required to solve arbitrary constraint systems
involving 'free-width' text. This is a subject that has started to receive some early attention

9
.

In our example we've needed to give the components specific names in order to label the constraint graph edges.
However for many situations, especially in deeply nested and scoped designs, the graph is implicit, really being a con-
stant set of edges between successive children. Thus in Figure 12(a) we offset the top-left corners of successive children
- this can be described as a set of edges between child1and child2 and the same set between child2 and child3 . Simil-
arly in Figure 12(b) we have defined a constant size proportion between pieces.

A block of text
that will probably
indulge in a spot
of line-wrapping

A block of text
that will probably
indulge in a spot
of line-wrapping

Figure 12. Constant constraints between successive children: a) top-left alignment with an offset of 5; b) centred vertically,
abutting horizontally and successive heights in ratio 1:1.25

4.2. Pagination
Printed documents (unlike scrolls) are usually divided into specific sections called 'pages', often a sequence of constant
sized physical entities, for reasons of production and reading practicality. Such page sets can of course be filled piece by
piece, identifying all components for page 1, then for page 2 and so forth. (Later versions of SVG contain such a
model). However an important class of documents include linear 'flows' of material that continue from page to page,
such as this document. Almost all document creation tools and formats support such flows - indeed for most the flow
model is actually at the core of layout. In XSL-FO for example the basic ideal is a sequences of blocks that flow into a
set of containers defined by a page-sequence generator. (It is possible to constrain XSL-FO to finite sets of pages and
control placement into a specific page by appropriate manipulation and decoration of the block sequence, but the page
set is still the core description.)

As pagination is likely to be an important requirement, how can we define and implement such functionality within our
overall model, whilst still preserving the extensibility and generality of our approach to layout? This is made more com-
plex by expectations of whole-document pagination supporting richer functionality such as floating, orphan/widow and
page cross-reference, which seems to conflict with our 'combine components' usual approach. However, as we'll show,
with suitable programming 'meta-layers', many of these features, which are the exception rather than the rule, can be
supported whilst not compromising the general layout philosophy.

First we must realise that 'pagination' is, to first order, a one-dimensional, sequence preserving, bin packing problem,
and one for which very simple linear algorithms exist. But in our case we won't know the size of the parts to be packed

9

until they have been 'rendered'.
We can think of a pagination 'function':

 paginate(container*,contents*) -> packed-containers*

where:

container* is a sequence (or lazy sequence generator) of one-dimensional containers. What these are is perhaps
immaterial at least to first order - but they should provide at least a 'length' (in practice height) to denote their space
budget. There is of course no requirement that they are all the same size, nor a finite sequence.

contents* is the set of parts to flow into these containers. Each of these parts may need to be constructed to reveal
both its presentational form, and as far as this pagination is concerned, a length measure (again in practice its
height).

packed-containers* is the set of resulting containers, in sequence, each packed with the pieces that will fit.

So in this representation, using our tree-based description, we have to distinguish between the container* and contents*
arguments. There are a number of ways we can do this. The simplest is to identify specially the containers as they are
rarer. We can do this with special child class, for example <ddfl:container/>, whose children are assumed to be
graphical pieces which act as containers. In Figure 13 the grey and white rectangles act as containers into which the
sequence of other children are flowed after they have been themselves evaluated. In its purest form the pagination func-
tion only requires these to provide an appropriate length measure, but with suitable embellishment the function could
use them to act as 'backgrounds' to the filled container.

flow(x)

ddfl:layout

ddfl:container fo:block svg:circle svg:image

flow(x)

A block of text that will
probably indulge in a
spot of line-wrapping

A block of text that will
probably indulge in a
spot of line-wrapping

Figure 13. A paginated layout

The result of this pagination is itself a sequence of filled containers, with no defined geometrical relationship between
them - normally a higher-level mechanism will place these 'children' as required, perhaps in (horizontally-) parallel
rows, or spread across separate pages. Note that it is possible to have the filled containers returned in two different
views of size: either the original container or a 'shrink-wrap' of the actual contents that fill it.

The implementation of this paginator is relatively simple. The first stage is to identify non-containers and evaluate them
to a sequence of graphical molecules. Then the sequence of containers (or more accurately their lengths) is determined
and a simple linear packing operation takes place, allocating and translating successive children into the target container
until no more will fit. The partitions are then encapsulated and the sequence returned for some high-level processing.

For long sequences of text, described as paragraphs, this approach isn't entirely satisfactory, as our mechanism would
focus on a paragraph as an atomic child component of a paginated flow; ordinarily it would be evaluated into a graphical
molecule through line-wrap semantics before the pagination. The consequence is that no paragraph would flow across a
page boundary. However, this can be solved by a fairly simple and rather general technique. Graphical molecules can be
marked with breakability properties (we use @ddfl:can-break) to indicate cases where, if required, the piece can
be broken into an individual sequence of parts. In this case the implementation of the pagination algorithm, when faced
with a piece that 'won't fit', checks for such marking and if found breaks into a sequence of constituent parts and pro-
ceeds to reprocess. Of course if the sequence of constituent graphical atoms didn't constitute a flow this will produce
nonsense, and the piece shouldn't have been so marked.

10

This approach to paragraphs flowing across page boundaries illustrates the power of considering layout at a more gen-
eral level. We could have assumed all flows are primarily text (as in XSL-FO) and other graphical components are
treated as special 'characters' and base the implementation around the text-processing loop. But we take the other
approach - text pieces are just paragraphs expanded into long columns which are then treated like any other graphical
part, and 'fix' the rarer occasions where we need to break the molecule. Examining the pagination of this document
should reveal cases where the current semantics and implementation aren't completely adequate.

4.3. Other Complex Forms
In discussing constrained layout and pagination we've tried to show how, with the addition of various special purpose
children, structures and attributes, we can declare reasonably complex layouts which generally can combine a lot of
arbitrary pieces of content. We can use similar techniques to support other mechanisms, such as tables and grids and
other forms of packer. Tables are often used when items being displayed have 'record' characteristics, that is a series of
items which each have similar flat internal structure and for which it is intended that the reader makes comparision
 between items based on subcomponents. They can also be used for denser display of a series of items (the table is often
used in HTML for this purpose). To support these forms we would need to decide whether we wish to declare the two-
dimensionality within the children (i.e. table rows and cells as in HTML) or enumerate the number of columns or rows
and partition the child sequence accordingly. In practice we can easily support both forms, albeit with different function
'names' or a smart agent which inspects the form used. As before the normal practice would be to evaluate children as
individual atoms before combination in suitable groupings. Some methods can use inequality constraints to solve the
result, which would permit additional constraints to be added. In this way we could, for example leave a square 'hole' in
the middle of a table to act as a future copy-hole.

5. INTERDEPENDENCY - REUSE AND REFERENCE

Thus far we have dealt with cases where each child component can be evaluated in isolation from other pieces, under
parental control. Some parents (such as constrained layout with size-variable pieces like images) can modify one child
dependent upon its siblings. However there are cases where theevaluation of one piece cannot proceed until another part
has been 'rendered'. This is often the case where a text 'container' has a width that depends upon some other piece, such
as an accompanying picture.

The ideal of course would be for such dependencies to be detected and suitably processed automatically. This is clearly
a 'hard' problem. However with suitable tools the document engineer can achieve results when the dependencies aren't
circular. The key is to be able to evaluate (and store) part of a layout, examine properties of it to determine some para-
meter of the layout of another component, perform that layout and then re-combine partial results. This can be achieved
explicitly by a system of single-assignment variables and references, modelled on that of XSLT, but acting in the space
of geometric 'rendering'. Figure 14 shows a simple example of the technique.

flow(x)

flow(y)

part1 =

ddfl:layout

fo:block flow(y)

svg:rect

@width=$part1/@width

$part1

flow(x)

flow(y)

part1 =

A block of text
which of
course might
have a
variable width

svg:rect

@width=$part1/@width

$part1
A block of text
which of
course might
have a
variable width

Figure 14. A composite layout using variables

Those familiar with XSLT's variable system will recognise the constructs we use:<ddfl:variable/>,
<ddfl:copy-of select="expression"/> , <ddfl:attribute/> etc. which follow the XSLT scoping
rules for visibility and usual XPath expression semantics though with layout variables substituting for XSLT variables.
For ease of implementation, reference is supported in reverse document order only (c.f. XLST where 'global' variables

11

can be in mixed order, provided they don't involve circularity). Test and choices on such variable expressions can also
be supported, permitting layout variations to be declared based on post-rendered results. Of course a suitable macro pro-
cessor, or other form of compiler, could be used to project dependencies declared explicitly or implied within other
forms, into variables and references.
This system of variables and references can also of course be used to support reuse of part-results in situations such as
common sub-assemblies, page templates and the like. No alteration to the underlying mechanism is required to do so -
the common component is assigned to a variable in evaluated form and this variable interpolated as required within the
appropriate nesting scope. If the final 'rendered' form already has facilities for encoding reuse (such as
REUSABLE_OBJECT in PPML ordef in SVG) then in many circumstances variables which are multiply interpol-
ated may be projected into these forms.

6. IMPLEMENTATION AND EXTENSIBILITY

The model for layout we have used so far is reasonably independent of how its evaluation should be implemented. In the
context of DDF we tend to use XSLT2.0 as much as possible, given its suitability for push- and pull- driven transforma-
tion of XML trees. This is also the case with processing layout. The program is written as a set of
<xsl:templates/> which match the given 'function' nodes. Figure 15 shows a simple example for a flow, declared
by a node <ddfl:flow-y/>which illustrates the most common 'bottom-up' methodology - evaluating all the chil-
dren, manipulating the sequence of results and then encapsulating the result as an SVG 'molecule':

<xsl:template match="ddfl:flow-y"
 mode="ddfl:layout">
 <xsl:variable name="children">
 <xsl:apply-templates mode="#current"/>
 </xsl:variable>
 <svg:svg width="{max($children/*/@width)}"
 height="{sum($children/*/@height)}">
 <xsl:for-each select="$children/*">
 <xsl:copy>
 <xsl:sequence select="@*"/>
 <xsl:attribute name="y" select="sum(preceding-sibling::*/@height)"/>
 <xsl:sequence select="*|text()"/>
 </xsl:copy>
 </xsl:for-each>
 </svg:svg>
</xsl:template>

Figure 15. Template for simple flow function

Extensibility is then a matter of writing and including appropriate templates for new functions. By suitable use of prior-
ities it is possible to overload and add new functionality based for example on additional control attributes, or the pres-
ence of specially identified child components. Careful discipline is required of course, but in practice this hasn't proved
a problem, provided all produce a canonical result form (i.e. SVG components each presenting a 'rectangular' size) and
as is common practice in XML, 'unknown' attributes on a 'call' are copied onto the result. (This latter point is crucial as a
control parameter for specialist treament of the component by a higher layout must be preserved.)

Most leaf types are similarly described - a template matches the description and returns the primitive perhaps further
decorated with size information. Some primitive types, such as text blocks, or layout functions, such as constraint
declarations, need processing via other algorithms or libraries in other languages. In this case typically an XSLT2.0 tem-
plate wraps a call to an extension function, pre- and post-processing the argument trees and results to make the function
appear to be geometry components -> geometry composite .

When it comes to implementation performance, we have not yet carried out specific measurement studies. However the
layout of this document itself (which includes a wide variety of examples that are evaluated within this document)
takes just a few seconds on our unoptimised implementations. However, as in many of these techniques, the implement-
ation engineer must take care not to introduce high-order scaling algorithms inadvertently - whilst most methods used
have O(n)orO(n log n)complexity, very extensive use of deep XPath constructs can introduce higher-order scalings.

12

7. SUMMARY

We've demonstrated that with a suitably disciplined approach to describing layout as a nested set of functions, we can
combine a wide variety of layout types in a single document, and provide a framework for robust extensible document
construction tools. Such a system can work well with an XML-based variable data interpolation mechanism. Extension
of this idea with a variable-and-reference system akin to that of functional programs means that interdependency and
reuse can be supported. This approach to layout is adequate to lay out the entirety of this paper itself, including
examples evaluated within the paper construction, as the whole document is written as a variable-content input to a set
of DDF documents that constitute a template for SPIE report format.

8. ACKNOWLEGMENTS

The authors are grateful to Xiaofan Lin and Greg Nelson for layout techniques that have stretched our model, and
Giordano Beretta and Hui Chao for some specific challenging application examples.

REFERENCES

1 Lumley, J., Gimson, R. and Rees, O. A Framework for Structure, Layout & Function in Documents . InProceedings
of the 2005 ACM symposium on Document engineering . 2005.

2 W3C, World Wide Web Consortium Scalable Vector Graphics (SVG) 1.1 Specification .
http://www.w3.org/TR/xsl/. 2003.

3 Knuth, D. TEX the program . Addison-Wesley Pub. Co., Reading, Mass. 1986.

4 W3C, World Wide Web Consortium Extensible Stylesheet Language (XSL) . http://www.w3.org/TR/xsl/. 2001.

5 PODi, Print On Demand InitiativePersonalized Print Markup Language (PPML) Version 2.0 .http://www.podi.org.
2002.

6 Badros, G. et al. A constraint extension to scalable vector graphics . In Proc. 10th World Wide Web Conference,
Hong Kong . 2001.

7 McCormack, C., Marriott, K. and Meyer, B.Adaptive layout using one-way constraints in SVG .
http://www.svgopen.org/2004/papers/ConstraintSVG/. 2004.

8 Hurst, N., Mariott, K. and Moulder, P. Cobweb: A COnstraint-Based WEB browser . In Twenty-Sixth Australasian
Computer Society Conference . 2003.

9 Hurst, N., Mariott, K. and Moulder, P. Towards Tighter Tables . In Proceedings of the 2005 ACM symposium on
Document engineering. 2005.

10 Jacobs, C. et al.Adaptive Grid-Based Document Layout . 2003.

11 Purvis, L. et al. Document formatting: Creating personalized documents: an optimization approach . InProceedings
of the 2003 ACM symposium on Document engineering . 2003.

12 Heydon, A. and Nelson, G.The Juno-2 constraint-based drawing editor .DEC SRC Technical Report 131a. 1994.

13 Sutherland, I.Sketchpad: A Man-Machine Graphical Communication System . PhD Thesis, Massachusetts Institute
of Technology. 1963.

