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C or C++ programs relying on the pthreads interface for concurrency are required to use a
specified set of functions to avoid data races, and to ensure memory visibility across threads.
Although the detailed rules are not completely clear[10], it is not hard to refine them to a simple
set of clear and uncontroversial rules for at least a subset of the C language that excludes
structures (and hence bit-fields).

We precisely address the question of how locks in this subset must be implemented, and
particularly when other memory operations can be reordered with respect to locks. This impacts
the memory fences required in lock implementations, and hence has significant performance
impact. Along the way, we show that a significant class of common compiler transformations are
actually safe in the presence of pthreads, something which appears to have received minimal
attention in the past.

We show that, surprisingly to us, the reordering constraints are not symmetric for the lock and
unlock operations. In particular, it is not always safe to move memory operations into a locked
region by delaying them past a pthread mutex lock() call, but it is safe to move them into such a
region by advancing them to before a pthread mutex unlock() call. We believe that this was not
previously recognized, and there is evidence that it is under appreciated among implementors of
thread libraries.

Although our precise arguments are expressed in terms of statement reordering within a small
subset language, we believe that our results capture the situation for a full C/C++ implementation.
We also argue that our results are insensitive to the details of our literal (and reasonable, though
possibly unintended) interpretation of the pthread standard. We believe that they accurately reflect
hardware memory ordering constraints in addition to compiler constraints. And they appear to
have implications beyond pthread environments.
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Abstract

C or C++ programs relying on the pthreads interface for concur-
rency are required to use a specified set of functions to avoid data
races, and to ensure memory visibility across threads. Although the
detailed rules are not completely clear[10], it is not hard to refine
them to a simple set of clear and uncontroversial rules for at least
a subset of the C language that excludes structures (and hence bit-
fields).

We precisely address the question of how locks in this subset
must be implemented, and particularly when other memory opera-
tions can be reordered with respect to locks. This impacts the mem-
ory fences required in lock implementations, and hence has signifi-
cant performance impact. Along the way, we show that a significant
class of common compiler transformations are actually safe in the
presence of pthreads, something which appears to have received
minimal attention in the past.

We show that, surprisingly to us, the reordering constraints are
not symmetric for the lock and unlock operations. In particular,
it is not always safe to move memory operations into a locked
region by delaying them past a pthread mutex_lock() call, but
it is safe to move them into such a region by advancing them to
before a pthread mutex_unlock() call. We believe that this was
not previously recognized, and there is evidence that it is under-
appreciated among implementors of thread libraries.

Although our precise arguments are expressed in terms of state-
ment reordering within a small subset language, we believe that
our results capture the situation for a full C/C++ implementation.
We also argue that our results are insensitive to the details of our
literal (and reasonable, though possibly unintended) interpretation
of the pthread standard. We believe that they accurately reflect
hardware memory ordering constraints in addition to compiler con-
straints. And they appear to have implications beyond pthread en-
vironments.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Concurrent programming structures; D.3.4 [Program-
ming Languages]: Optimization

General Terms Languages, Performance

Keywords threads, locks, memory barriers, memory fences, code
reordering, data race, pthreads, optimization

1. Introduction

Due in large part to the rise of multi-core and hardware-multi-
threaded processors, explicitly parallel applications are increas-
ingly essential for high performance, even on mainstream desktop
machines. Multi-threaded applications are perhaps the most com-
mon way to achieve this, at least when it is not useful to simply
run multiple copies of applications. Multiple threads are also often
used for structuring even uniprocessor applications to make it eas-
ier to deal with multiple event streams. As a result, most processes

on a typical Microsoft Windows desktop are already composed of
multiple threads' as are a large and increasing number of server
applications.

Most multi-threaded applications are written in C or C++ with
the aid of a thread library. For the purposes of this paper, we will
assume that the thread library obeys the pthread[13] specification.
We believe that much of the discussion here is applicable to other
platforms, but the issues there are often less clear.

The fundamental rule governing shared variable access under
Posix threads prohibits data races, i.e. simultaneous access to the
same location by multiple threads, when one of the accesses is a
write. The pthread specification[27] states:

“Applications shall ensure that access to any memory
location by more than one thread of control (threads or pro-
cesses) is restricted such that no thread of control can read
or modify a memory location while another thread of con-
trol may be modifying it. Such access is restricted using
functions that synchronize thread execution and also syn-
chronize memory with respect to other threads. The fol-
lowing functions synchronize memory with respect to other
threads:

pthread mutex lock(),

pthread mutex_trylock(),
pthread mutex_unlock(),
pthread_spin_lock(),
pthread_spin_trylock(),
pthread_spin_unlock(),

We believe that, aside from the specific synchronization func-
tions, this also reflects the intended programming model for some
other multi-threaded environments, e.g. Microsoft’s win32 threads.

All implementations of which we are aware ensure that the
above ‘“synchronizing” functions either contain memory fences
(sometimes called barriers) to restrict reordering of memory oper-
ations by the hardware, or the corresponding reordering constraint
is implicit in other instructions inside the function.

These implementations also ensure that these functions are
treated as opaque by the compiler. The compiler must assume that
all such functions potentially read and/or update any variable in the
program. Thus the compiler cannot safely move references to po-
tentially global variables across calls to such functions. Movement
of references to globals across synchronization calls is avoided,
even though the compiler operates as though it were targeting a
single-threaded environment.

! On the author’s Windows 2000 desktop, only 3 out of 37 processes were
single-threaded. One of those was the system idle process.

2006/9/26



Thus compilers may aggressively rearrange code between calls
to these “synchronizing functions”. Between synchronization calls
even shared variables may appear inconsistent to other threads. But
this would only be observable by client code if another thread were
to simultaneously access such shared variables, which the above
rule prohibits it from doing.

This approach is fundamentally different from that used in
Java[21]. No attempt is made to ensure type-safety or security
for sand-boxed code. On the other hand, it has some, probably
significant, performance advantages|[7].

As is pointed out in [10], this approach requires some more pre-
cision in the language specification to ensure correctness. For the
purposes of this paper, we will give more precise rules, which can
be viewed as refinements of the pthreads specification, and avoid
those issues. Furthermore none of the discussion here is dependent
on language features (e.g. bit-fields or atomic operations) which
might make those rules controversial and have made the develop-
ment of a C++ memory model interesting[5, 4, 7, 23]. Hence we
simply omit further discussion of such language features.

Instead we focus on another issue which really must be resolved
in order to correctly implement (our interpretation of) the current
pthread standard, and to allow meaningful discussion of the perfor-
mance of pthread implementations.

We ask the seemingly simple question of when memory opera-
tions may be reordered with locking operations.

Part of this has an obvious answer: It is clearly not generally
acceptable to move memory operations out of critical sections, i.e.
regions in which a lock is held; doing so would introduce a data
race. But it is far less clear whether it is acceptable to move memory
operations into critical sections, which is the question we pursue
here.

This affects the implementation in two distinct ways:

1. The  implementation  may  treat functions  like
pthread mutex_lock specially, and allow some com-
piler reordering around direct calls to them. Indirect calls may
still have to be treated as completely opaque.

2. It determines the memory fence (or memory barrier) instruc-
tions that must be included in the library implementations of
synchronization primitives.

Of these, we believe that the latter has by far the greatest per-
formance impact, primarily because memory fence instructions are
expensive on many current architectures.

Nonetheless, we choose to address this issue by looking at
allowable compile-time transformations of the source programs,
mostly because it is easiest to reason at that level. We apply ar-
guments that also apply to the reordering of particular instruction
executions. By doing so, we avoid the need to reason about the se-
mantics of specific hardware fence instructions, which are much
better defined for certain architectures than others.

In the next two sections, and in the appendix, we argue that
the performance impact of this issue on lock-intensive applications
can be large, and that this is an issue that impacts current pthread
implementations.

We then define a small multi-threaded language, which we
claim is sufficient for modeling C/pthread behavior. We define its
semantics to be consistent with the pthread definition.

Finally, we show that the rules for reordering memory op-
erations across locking primitives are in fact different from
what we believe most implementors would have expected.
In particular, a memory operation immediately following a
pthread mutex_unlock operation may always be moved to just
before the pthread mutex_unlock. But the corresponding re-
ordering of a pthread mutex_lock with a preceding memory op-
eration is not generally safe. More general movement into critical

sections is possible in the absence of the pthread mutex_trylock
call.

As we point out in section 3, many current implementations ei-
ther do not follow these rules, or add extra fences. Nor is it com-
pletely apparent that they should, since these semantics appear to
have been largely accidental. On the other hand, an understanding
of these issues does seem to be essential to any revision of the cur-
rent rules.

2. Performance Impact

The impact of adding memory fences to lock implementations can
be substantial. In particular:

e The cost of locking can significantly affect program execution
time, even when there is little lock contention[22]. In some
cases, this is due to questionable programming practice. In other
cases, such as the examples in [10], or reference counting in
[11], or in many implementations of the C++ standard string li-
brary such as [19], or in memory allocator implementations[8],
it is inherent in the problem, and sufficiently serious to have
forced significant pieces of software to include non-portable
code to reduce locking overhead.

Although multi-threaded C or C++ benchmarks appear to be
rare, the same effect has been regularly measured in Java bench-
marks (cf. [6]), though there it is sometimes aggravated by un-
necessary synchronization.

The locking cost is often strongly affected by, or even largely
determined by, the number of memory fences (or related in-
structions that have that effect) in the lock implementation.
Thus the cost of a lock-unlock operation pair can vary by
roughly a factor of two depending on whether a fence is needed
in the unlock operation. This can be true for spin locks on some
common X86 processors. The impact of memory fences was
also observed in a Java context in [6].

We present an example of a program dominated by locking, to-
gether with some simple measurements, in appendix A, to illustrate
the last point.

Based on the above, it appears critical to understand require-
ments for memory fences before attempting to, for example, bench-
mark such multi-threaded applications.

Note that both the examples cited above and at least half the
measurements in the appendix, exhibit little or no lock contention.
The performance of locks under contention is an orthogonal issue,
which has been well studied (see e.g. [25] for some recent work
and references), and is not addressed here. As the cited examples
illustrate, applications may acquire locks with great frequency, but
acquire sufficiently many different locks that contention becomes
an issue only with very high processor counts.

3. Common Implementations

Our experience is that in practice there is a great deal of confusion
surrounding ordering requirements for lock implementations. Since
any resulting failures are likely to occur extremely rarely, and per-
haps not at all on specific hardware implementations, we attempted
to confirm this by inspecting some open source pthreads implemen-
tations.

Perhaps the most commonly used modern pthreads implemen-
tation is the NPTL implementation distributed as part of glibc. We
also suspect that its treatment of fencing requirements in locking
operations is fairly typical, and probably relatively carefully con-
sidered.

We examined its implementation of pthread_spin_lock and
pthread_spin_unlock in glibc-2.4, and confirmed some of our
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Environment type lock fence | unlock fence
glibc 2.4 NPTL Itanium spin full release”
glibc 2.4 NPTL X86 spin full release”
glibc 2.4 NPTL Alpha spin acquire release
glibc 2.4 NPTL PowerPC | spin acquire release
glibc 2.4 NPTL Itanium mutex full full
glibc 2.4 NPTL X86 mutex full full
glibc 2.4 NPTL Alpha mutex acquire release
glibc 2.4 NPTL PowerPC | mutex acquire release
FreeBSD 6.1 Itanium spin acquire acquire®
FreeBSD 6.1 X86 spin full full

“The ordering is enforced both with st.rel and a blatantly redun-
dant fence.

b This makes the common assumption that ordinary X86 stores have
release semantics

“Based on what appeared to be the intent of the source. The dis-
assembled code actually enforces no ordering for a lock release at
all, probably due to an error in an assembly code specification, ap-
parently allowing an xchg operation to be optimized away. The in-
correct ordering constraint for pthread_spin_unlock does not ap-
pear to be limited to Itanium, though it does not arise on X86. The
FreeBSD mutex code is relatively long and opaque, and we did not
attempt to analyze it.

Table 1. Fences used by some pthread implementations.

conclusions for X86 and Itanium with a debugger. We also in-
spected the corresponding FreeBSD code.

The results are presented in table 1. Lock operations should at
least ensure that later memory operations may not become visible
before the lock operation. An entry of “acquire” in the table indi-
cates that the implementation obeys this constraint. Similarly, lock
release operations should ensure that preceding memory operations
may not become visible after the unlock. An entry of “release” in-
dicates that this constraint is enforced. A table entry of “full” in-
dicates that a stronger, and usually more expensive, constraint is
enforced, which prevents reordering of all memory operations with
respect to the lock. We argue below that this is technically required
for lock acquisition, but not release.

On X86, it is difficult or impossible to implement lock acqui-
sition without ensuring “full fence” semantics. Hence these entries
do not correspond to additional overhead. A full fence on X86 spin-
lock release can easily be avoided. For X86 mutex unlock, there is
a tradeoff involved.

(On Alpha and PowerPC, “acquire” and “release” are imple-
mented with a trailing and leading memory fence, respectively.
This gives marginally, but we believe uselessly, stronger semantics,
which are not otherwise distinguished here.)

Based on the results we give below, all entries should read
“full release” (or possibly “full full” for an X86 mutex). But we
observe little consistency in practice. In fact, the higher level code
is generally written to provide “acquire release” semantics, and
deviations from that tend to result from implementation details of
the low level atomic memory operations.

4. Foundations

Our arguments are generally insensitive to the specific non-
synchronization primitives we allow in our programming language.
But to keep the discussion as precise as possible, we will define a
specific programming language, modeled on the relevant aspects of
C.

Nothing here should be the least bit surprising to the reader.
Our only goals are to convince the reader that this could all be

completely formalized, if we chose to do so, and to establish the
terminology we use later.
Define a statement to be one of the following>:

<

=7r;
= v;
r = F;

r = in();
out (r);
lock(l;);
unlock(l;);

r = try_lock(l;);
while (r) S

S S

<

Here S denotes another statement, r denotes one of a set of
thread-local variables or registers, which we will normally write as
ri, and v denotes one of a set of global variables (written v;). We’ll
assume that both kinds of variables range over integers, though
allowing other variable types does not impact our arguments.

The first two kinds of assignments simply copy variables be-
tween globals and registers. We’ll refer to the former as a store,
and the latter as a load operation.

The third form of assignment statement describes a computation
on registers. We do not precisely define the expressions £ that may
appear on the right sides of such assignments, but we assume that
all such expressions mention only register variables. Thus a real C-
language assignment would often correspond to one or more loads,
followed by a computational assignment, followed by a store.

The statements » = in(); and out (r) ; read a value from an
input stream, and write a value to an output stream, respectively.

The 1ock and unlock statements acquire and release a lock, re-
spectively. They correspond to the pthread pthread mutex_lock
and pthread mutex_unlock primitives. They can operate on
locks I;. In order to keep things as specific and simple as possi-
ble, we will require that threads may not reacquire a lock they
already hold.

The trylock statement behaves like lock and returns 1 if the
lock is not currently held. But if the lock is held, it simply returns
0 instead of blocking. It models pthread mutex_trylock, except
that we use a different return value convention to simplify matters
later. The presence of trylock affects our results.

A program is a finite sequence of statements. Informally, the
ith statement describes the actions executed by the ith thread.> We
will assume that the register names used in the different statements
(effectively by the different threads) are disjoint.

We will assume that the individual sub-statements of a program
have associated labels, so that we can easily distinguish textually
identical sub-statements.

A thread action is a pair consisting of a program statement label
and the value assigned, tested, read, or written, as appropriate, if
any.

Since every statement label is associated with a specific thread,
it also identifies the executing thread. Since there is generally no
ambiguity, we will normally fail to distinguish between a statement
and its label.

2We do not explicitly consider condition variables. This is not a sub-
stantive restriction, since pthread_cond wait() can be treated as a
pthread mutex_unlock() followed by a pthread mutex_-lock(), to-
gether with a scheduler hint. And the other primitives can be viewed as
purely scheduler hints. While these scheduler hints are of critical practical
importance, they do not affect correctness.

3 This is admittedly a very simplistic view in that it does not allow dynamic
thread creation. But that again appears to have no bearing on our results.
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We will say that a sequence of thread actions is register consis-
tent if values assigned by store statements, written by output state-
ments, computed by expression evaluation statements, or tested by
loops, are consistent with the values assigned to the input registers
by the last prior assignments to that register in the sequence, or with
a value of zero if there was no prior assignment to the register.*

A statement generates sets of possible candidate thread exe-
cutions, which are possibly infinite sequences of thread actions.
Specifically, all statement types, except the last two, describe all
sequences consisting of a single action involving that statement. A
composite statement describes all possible concatenations of thread
executions generated by its components. >

Similarly, the candidate thread execution of a while loop con-
sists of alternating thread actions corresponding to the while loop
(which reflect the tests) and thread executions generated by the
loop body, such that the values of all loop tests except the last are
nonzero, and the last is zero.

A candidate thread execution is called a thread execution if it is
also register consistent.

Hence the statement 72 = v1; 7r3 = 2 * ro generates all can-
didate thread executions of the form

(ro = v, ), (rg =2 * ra, y)
with any values of x and y, and thread executions of the form
(ro = v, ®, (r3 = 2 * r2, 27)

with any value of x.

In most cases, we will write sequences of thread actions (or
just actions) simply as comma-separated lists of sub-statements,
and leave the value components either implicit, or to be discussed
separately.

5. A Basic Semantics of Multi-threaded Programs

The definitions we use here are similar to those used by others,
notably Adve’s[1, 3] definition of Data-Race-Free-0.

A sequentially consistent program execution[16] or just pro-
gram execution of a program P is an interleaving® of finite pre-
fixes of thread executions generated by the statements making up
P, such that

e Global variables which are read or tested prior (in the interleav-
ing) to being assigned a value are treated as holding the value
Zero.

The value associated with every other load of a global variable
is the value associated with the last prior store to that global
variable.

e For a given lock [;, lock(l;) and unlock(l;) actions must
alternate in the program execution, starting with a lock(l;)
action. For this purpose, r; = try_lock(l;) is treated as
lock(l;) if the operation succeeds, i.e. if the associated as-
signed value is zero.

4 For brevity, we keep this definition informal. We claim that it would be
extremely straightforward, and uninteresting, to make it completely precise.

5 We technically allow infinite thread executions, but the reader may ignore
that fact. We will not allow infinite program executions, since they are
composed of finite prefixes of thread executions.

6 More formally a sequence consisting of all the actions in each prefix, such
that the ordering of the actions in each prefix are preserved

7The definition of thread execution enforces a similar rule for registers.
Since we assume that register names are distinct among threads, it does not
matter whether we impose this requirement on each thread execution or on
the program execution.

e For a given lock(l;), the next unlock(l;) action must be
executed by the same thread, i.e. it must correspond to a sub-
statement of the same statement in the program.

e Ar; = try_lock(l;) statement succeeds, i.e. has an associ-
ated zero value, if and only if there are either no prior operations
on [;, or the last preceding operation on /; is unlock(l;).

We refer to the first two conditions as globals consistency, and the
last three as lock consistency.

The input read by a program execution is the sequence of values
associated with in statements in the execution. The output gener-
ated by a program is the sequence of values associated with out
statements in the execution.

Two thread actions conflict if they both access the same global
variable, at least one of them is a store (the other being either a
load or a store), and they are performed by different threads, i.e.
the statements in the actions correspond to different threads.

A (sequentially consistent) execution has a data race if and only
if it contains two adjacent conflicting operations.

A program P has a data race on input /I, if it has an execution
with a data race which reads input /.

A program P may generate output O on input [ if

1. It has a data race on I, or

2. There is an execution of P on I which generates O.

We intentionally allow programs to have any effect whatsoever, i.e.
produce any output, for inputs on which they have a data race.

This represents a reasonable interpretation of the pthreads[13]
rules. We have interpreted the pthreads restriction on simultaneous
access to mean the absence of a data race under a sequentially
consistent program execution. The pthreads notion of a “memory
location” is taken to mean a single global variable in our simple
scenario.

The pthreads statement that locking operations ‘“‘synchronize
memory with respect to other threads” is more problematic, as
is pointed out in [10], since it doesn’t even clearly prohibit the
compiler from introducing reads and writes of unrelated variables
between locking calls, which is clearly unacceptable. Hence that
statement has been reinterpreted here to mean that data-race-free
programs should behave as expected, i.e. as though the execution
were sequentially consistent. If anything, this is a stronger restric-
tion than pthreads, and thus allows fewer reorderings. But it will
become clear below that our main negative results holds for any
reasonable interpretation of the Pthread rules.

Note that, as in the pthreads case, this allows the implementation
a large degree of freedom in reordering load and store operations
executed between lock operations. Any thread that could observe
such reordering would introduce a data race, and would thus render
the program semantics undefined.

Although we have made frequent reference to Lamport’s defini-
tion of sequential consistency, and have used it to define the notion
of a data race, our actual semantics are far different from those
originally advocated by him.

6. Allowed Reorderings

The central question we now wish to answer is: Under what cir-
cumstances can load and store operations be moved into a critical
section?®

8 We will address purely the correctness issues associated with such trans-
formations, with an eye towards reducing fence requirements. Compiler
movement of operations into a critical section may aid instruction schedul-
ing, but sometimes also negatively impacts performance and fairness, par-
ticularly if adjacent critical sections are combined. The lock may clearly be
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As mentioned earlier, we will address this in terms of “com-
piler” transformations on the source program. In our setting this
has the large advantage that we can avoid discussion of the more
complicated memory visibility rules that are likely to apply at the
hardware level, and reason entirely in terms of sequentially consis-
tent executions and absence of data races.

The following lemma is straightforward, and basically outlines
our proof approach:

LEMMA 6.1. Consider a program transformation T' such that ev-
ery program P is transformed to a program T'(P), such that

1. T preserves data-race-freedom. More precisely, if T(P) on
input I contains a data race, then so does P on input I.

2. Whenever T(P) is data-race-free on input I and Erppy is
a sequentially consistent execution of T(P) on I, there is a
sequentially consistent execution Ep of P on I that generates
the same output.

Then the transformation preserves meaning, i.e. the transformed
program T'(P) can generate output O on input I only if the original
program P can.

Proof If T'(P) has a data race on input I, then so can P on
input /. Hence both have undefined semantics, and can generate
any output whatsoever.

Now consider the case in which T'(P) on I does not have a
data race and generates O. There must be a sequentially consistent
execution Ep(py which reads I and generates O. Thus there must
be an execution Ep of P on I that generates O. Thus the original
program could generate the same output. e

We will show that transformations preserve data-race freedom
by showing how to map an execution of the transformed program
which contains a data race to a corresponding execution of the
original program with a data race.

As we stated earlier, it is easy to show via simple examples that
transformations which move memory operations out of a region
in which a lock is held do not generally preserve meaning. For
example, the program section

Threadl: lock(11); r1 = vi1; unlock(l1);

is clearly not in general equivalent to
Threadl: 1lock(11); unlock(1l1); r1 = vi;

since the latter introduces a race when run concurrently with
Thread2: 1ock(11); vl = r1l; unlock(l1l);

while the former does not. Thus we must in general both prevent
the compiler from performing such movement, and insert memory
fences to prevent the hardware from doing so.

Our first goal will be to show that it is unnecessary to prevent
movement of memory operations into a critical section past the
unlock() call.

In order to do so, some lemmas, and a fairly general theorem
about allowed compiler reorderings will be helpful:

LEMMA 6.2. Consider an execution E of P on I, and another
sequence of thread actions E' which differs from E only in that two
adjacent thread actions have been reordered, and the two actions
satisfy the following conditions:

e [fone of them is a load, expression, or input statement, then the
other action is not a load, expression, input, output, or while
statement that mentions (i.e. alters or depends on) that register.

held longer than the programmer intended as a result of such transforma-
tions.

e [f one of them is a store statement, then the other may not be a
load or store statement on the same global variable, i.e. the two
actions do not conflict.

e [f one of them is a lock, unlock, or trylock statement, then
the other action is either not a lock operation or applies to a
different lock.

Then the resulting sequence remains register, globals, and lock-
consistent, i.e. all values associated with thread actions in E' may
remain unchanged. If the exchanged actions correspond to different
threads, and the exchanged actions are not both input actions, then
E' is also an execution of P on I. If output operations are not
exchanged, the output is preserved.

Proof It follows from the first assumption that the resulting se-
quence is register-consistent, and from the second that it is globals-
consistent. Based on the last assumption, we know that the se-
quence of operations performed on any single lock is unaffected,
and thus the resulting sequence is lock-consistent.

If the exchanged operations correspond to different threads,
then E’ also remains an interleaving of the same thread executions,
and hence an execution of P. If no input actions are exchanged, the
same input is consumed by corresponding input actions. @

Note that the above lemma deals with reordering actions in
executions, not statements in programs. In particular, if we reorder
two actions corresponding to the same thread, it is quite possible
that the corresponding program reordering, if it even exists, would
introduce a data race.

We now consider specifically reordering of actions correspond-
ing to different threads:

LEMMA 6.3. Consider an execution E of P on I, and another
sequence of thread actions E' which differs from E only in that
two adjacent thread actions corresponding to different threads have
been reordered, they are not both input or output actions, and they
are also not both 1lock, unlock, or trylock statements operating
on the same lock. Then either E contains a data race, or E' is also
a sequentially consistent program execution of P on I producing
identical output.

Proof Since we are reordering actions of different threads, the
first condition of the preceding lemma is satisfied; the two actions
cannot mention the same register. Since there is no data race, the
second condition of lemma 6.2 must also be satisfied. And we
explicitly require the third condition. Since I/O operations are not
exchanged, I/O behavior is preserved. Hence the conclusion holds
by lemma 6.2. e

By repeated application of the above lemma we can conclude
that if we have an execution £ of P on I, and P on [ allows no data
races, then we can repeatedly reorder a non-locking, non-10 action
in E with those of other threads, without impacting the validity of
the execution.

We are interested in program transformations that reorder state-
ments, specifically locks and memory operations. The following
theorem strengthens lemma 6.1 to simplify our proofs for the cases
we are interested in:

THEOREM 6.4. Consider a program transformation T which ex-
changes the order of a pair of adjacent non-loop statements S,
and Sy, i.e. whenever a program P contains S.; Sy meeting cer-
tain constraints, then the resulting program T'(P) will contain Sy;
Sa. Assume further that

1. T preserves data-race-freedom, i.e. if T'(P) on input I contains
a data race, then so does P on input I.

2. Sq is not a lock statement. If S, is an unlock or trylock
statement, then Sy is not a lock, unlock, or trylock state-
ment.
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3. Neither Sq nor Sy is an input or output statement.

4. T does not exchange two statements that both access the same
register or global, unless the accesses are both reads. Since the
preceding two conditions handle the lock and I/O constraints,
we have effectively ensured that statements are not exchanged
is they conflict in the sense of lemma 6.2. (This and the preced-
ing constraints together also imply that the transformation is
sequentially correct.)

Then the transformation preserves meaning.

Proof In order to apply lemma 6.1, we must show that if 7'(P)
is data-race-free on input I and E7(p) is a consistent execution of
T(P) on I, then there is a consistent execution Ep on I with the
same output. We proceed to construct Ep.

Er(py will, in general, contain subsequences of actions

Sb, Eother, Sa

corresponding to the transformed code in thread ¢. Here Eoiper
is a possibly empty sequence of intervening actions executed by
threads other than the transformed one. (If the execution instead
contains an .Sy without the corresponding S,, we can append S,
while preserving consistency of the execution, returning us back to
this case. This requires the assumption that .S, is not a lock or I/O
statement, and hence cannot be blocked from executing, or affect
1/0 behavior.)

Assume temporarily that S is not a locking statement (lock,
unlock, or trylock). By lemma 6.3, the execution obtained by
replacing each such instance by

Eothery Sb’ Sa

is another consistent execution of T'(P). (We’ve excluded the
problematic case in which S is a locking or I/O action and is
exchanged with another like action.) By lemma 6.2, if we further
replace each such sequence by

Eother, Sa, Sb

the result remains register, globals, and lock consistent. And the
actions in this sequence corresponding to thread ¢ clearly corre-
spond to the untransformed program P. Hence this sequence can
serve as the desired execution Ep.

This leaves the case in which S is a locking statement. In that
case we know, based on our assumptions, that S, is not. In that
case, we instead replace the sequences

Sb, Fother, Sa
in Erp) by

Sb, Sas Eother
and then

Sas S, Eother

to obtain Ep. The remainder of the argument remains un-
changed. o

Note that in addition to reducing our proof obligations in the
rest of this section, and partially justifying out intuition that com-
piler transformations which preserve sequential correctness and do
not introduce data races are generally safe, this more precisely jus-
tifies a number of standard compiler transformations that are nor-
mally performed in a pthreads environment. (As Boehm points out
in [10], not all commonly performed compiler transformations are
actually safe in a pthreads environment, so this result is not com-
pletely trivial.)

We now focus on the specific transformations of interest.

THEOREM 6.5. A transformation which alters the input program
P only by reordering a program section

unlock(l); memop;
to
memop; unlock(l);
where memop is a load or store statement, preserves meaning.

Proof Clearly all but the first requirement of theorem 6.4 are
satisfied.

We now show that 7" preserves data-race-freedom. Assume
T(P) on the given inputs allows a data race. Let E1(py be a short-
est execution exhibiting this data race, subject to the constraint
that it includes the unlock (/) if it includes the memop from a
transformed code section. (Note that unlock(l) can always be
appended to an execution that includes memop.)

To help in the construction, we first define E'p as in theorem 6.4.
Wherever Er(p) contained actions

memop, Eothe'rs unlOCk(l)
of the transformed code, we substitute
Eother, unlock(l), memop

As we showed in theorem 6.4, the result is a consistent execu-
tion of P on the same input. We now show how to transform Ep
into an execution E' that preserves the data race in E1(P)

If the data race in Er(py does not involve the transformed
memop, then E'p preserves the race, and we’re done. Thus we may
assume that £ (py ends with the unlock(l) of a transformed sec-
tion of code and the race involves memop in the trailing sequence

prev_action, memop, FEother, unlock (1)

Assume again that the thread executing memop and unlock (1)
ist.

If there is a race between prev_action and memop, we instead
let E% be Ep, but with the final

prev_action, memop, Eother, unlock(l) ;
in E7(p) instead replaced by
unlock(l), prev_action, memop

This corresponds to first removing the actions in Eoy¢her and
then performing the unlock(l) action earlier. The first step gener-
ates another valid execution of T'(P), since the actions in Eoiher
are the final ones for their respective threads in Er(p), and their
removal cannot violate lock-consistency. By lemma 6.2, and the
fact that prev_action and memop must be memory operations,
performing the unlock(l) earlier leaves the action sequence con-
sistent, and the original values associated with the actions remain
valid.”

Since the resulting sequence contains the actions of ¢ in an order
consistent with the original P, and the other threads’ actions were
not reordered, this gives us an execution of P that preserves the
data race.

Hence E’% is an execution of P that exhibits the same race as
ET( P)-

If the first race is between memop and the first operation in
Eother, a similar argument applies for the execution of P ending

m

9 The same could not be said without dropping E ¢ e, since it may contain
trylock(l) calls. That does not matter, since we only have to exhibit an
execution with a data race.
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prev_action, unlock(l), memop, first_action_of _Fother

Thus a race in T'(P) always maps back to a race in P on the
same input, and hence data-race-freedom is preserved by 7. e

A similar result holds for moving memory operations into the
locked region past the initial lock, but only in the absence of
trylock:

THEOREM 6.6. A transformation which alters the input program
P only by reordering a program section

memop; lock(l);
to
lock(l); memop;

where memop is a load or store statement, and only when
there are no occurrences of trylock(l) in the program, preserves
meaning.

Proof Again the only nontrivial proof obligation remaining
from theorem 6.4 is that data-race-freedom is preserved.

Again consider a shortest execution Erpy of T'(P) on I con-
taining a data race If the race does not involve memop, then it is
present in the execution Ep of P, constructed as in theorem 6.4
and we are done.

If memop conflicts with the next action in E7(p), then E7(p),
since it is minimal, must end in

lock(l), Eother, memop, next_action
which would be transformed to
memop, Lock(l), Eother, next_action

by the construction of E'p in theorem 6.4.

The subsequence E,:p. consists entirely of actions performed
by other threads. If it contained 1ock or unlock operations on [, the
sequence could not be lock consistent. We assumed that it does not
contain trylock actions on /. We know that next_action is a load
or store. Hence by lemma 6.2, we obtain an equivalent execution of
P by moving the 1ock action to the end to obtain

memop, FEother, next_action, Lock (1)

If memop conflicted with an action in Eg,¢per, there would
have been a shorter execution with a data race. Hence by applying
lemma 6.2 once more, we see that this is equivalent to

Eother, memop, next_action, Lock (1)

which exhibits the race in an execution of P on the same input.

This leaves the case in which memop is the second operation
involved in the race. By lemma 6.2 that is equivalent to the execu-
tion ending in

lock(l), Eother-except_last, memop, last_of Eother

which gets us back to the first case. ®

7. Disallowed Reorderings

In Theorem 6.6, we assumed that there are no trylock operations
on the lock in question. We now show that this assumption is in fact
essential, and the theorem does not hold without this assumption:

THEOREM 7.1. There exist programs involving try_lock for
which the above is not safe.

Proof Recalling that our version of try_lock returns a nonzero
value on success, i.e. if it acquires the lock, consider the following
program:

T1: vl 1; lock(1l1l);

T2: rl = try_lock(1l1l);
while (r1 /* was unlocked */) {
unlock(1l1); rl = try_lock(1l1l);
}
r2 = vl; out(r2);

Although few would defend this as good, or even reasonable,
programming style, it is data-race-free. T2 can only read v1 after
the loop terminates. This can only happen once T1 acquires the
lock. Hence this program has sequentially consistent semantics,
and therefore r2 and the output are guaranteed to be 1.1

Now consider this program after it has been transformed as in
Theorem 6.6. Thus we now have for the first thread:

T1: lock(l); vl = 1;

The resulting program clearly has a data race, and hence com-
pletely undefined semantics.'' o

Note that the same applies if the loads and stores of v1 are
interchanged, so that we are transforming

Ti: r2 = v1; lock(1l1l); out(r2);
to
T1: lock(1l1); r2 = vi; out(r2);

while the second thread assigns 1 to v1 after waiting for the lock
to be acquired by the first thread.

With our semantics the same race would be introduced.'

Note that this transformation clearly fails to preserve the mean-
ing of this example under any reasonable interpretation of Pthread
rules. Unlike our positive results it does not rely on a very specific
interpretation of those rules.

8. Related Work

Much has been published about hardware memory consistency
models (cf. [2, 12]). Probably the closest to our work in that arena
is the development of the Data-Race-Free-0 synchronization model
by Adve and Hill[1, 3], which we previously mentioned.

However that work addresses the issue at a lower level. By
viewing synchronization operations as generic memory operations,
and not as locking operations that provide very restricted kinds of
access to special lock locations, the kinds of issues discussed here
do not arise.

Another thread of work has focused on compiler optimizations
that allow removal of memory fences while preserving a sequen-
tially consistent programming model for the programmer, a much
stronger guarantee than is made by other us or pthreads. See for ex-
ample [26], [15] and [18]. This work addresses compiler analysis
techniques to minimize memory fences in specific programs, but it
does not address the questions addressed here, dealing with cases
in which reordering is always safe, or fences are needed in generic
library routines.

The closest related work at the programming language level ap-
pears to be that by Manson, Pugh, and Adve on the Java memory

10Posix does not guarantee memory “synchronization” when a function
fails, as the final try_lock call does. But the example could easily be made
Posix conforming by adding a lock(12); unlock(12); immediately
after the while loop, where 12 is otherwise unused.

' Even if we guaranteed sequentially consistent execution, the transformed
program would clearly still not preserve meaning, since it would allow the
case in which the output is zero.

12 With sequentially consistent semantics, this would again allow an output
of zero, where the original does not.
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model.[24, 21, 20]. Among other things, they prove the safety of
a large set of compiler reordering transformations under the Java
model. (See theorem 1 of [21].) However, the model and proof
methodology are different. In particular, the Java model allows re-
ordering of memory operations with monitor entry, in contradiction
to our Theorem 7.1.

It is important to note that this s caused by Java’s notion of a
data race being different from ours, and does not correspond just
to the simulataneous execution of two conflicting operations. The
equivalent of the example used in the proof of Theorem 7.1 in fact
has a Java data race,'> and hence the programmer is not allowed to
expect sequentially consistent semantics.

9. Conclusions

We have shown that if we take the pthreads specification at face
value (except for necessary adjustments to prohibit compiler-
introduced races), high performance implementations must exhibit
an asymmetry:

e In the general case, they cannot allow any reordering
of memory operations across pthread mutex_lock() or
pthread_spin_lock(). This will generally imply that on ar-
chitectures on which atomic memory updates do not completely
inhibit reordering (e.g. Itanium, Alpha, PowerPC, see [17]),
a suitable memory fence (affecting both loads and stores) is
needed.

e On the other hand, pthread mutex_unlock() and
pthread_spin unlock() do not require such conserva-
tive treatment. On architectures that do not allow mem-
ory operations to be reordered with a following store
(e.g. most X86 processors), it is acceptable to implement
pthread_spin unlock() with an ordinary store instruction,
as is often done.

It is completely unclear to us whether this was intended or
an accident. It comes about as a result of programs that essen-
tially invert the sense of a lock, by using trylock as in the
proof of Theorem 7.1. There are strong arguments for discour-
aging such programs. Supporting them by significantly penalizing
pthread mutex_lock(), which tends to be both pervasive and
performance-critical in multi-threaded code, in order to support
this idiom, appears to be a questionable trade-off.

If we do want to support the existing specification, this raises
the possibility of link-time optimizations to take advantage of the
absence of trylock in many programs.

As it stands, this asymmetry cooperates well with spin lock im-
plementations on processors with atomic exchange or compare-
and-swap instructions which include a full memory fence: The
fence is needed exactly where it is implicitly included, and not re-
quired where it would be expensive. It works less well on proces-
sors for which atomic memory updates do not completely enforce
memory ordering.

A. Cost of Fences in Locks: Measurements

In order to illustrate the performance impact of memory ordering
constraints on locking, we measured a very lock-intensive program,
with a variety of lock implementations.

Our test program is one that copies 10 million characters from
one file to another, one character at a time, with different types of
locking used to control per-character access to the I/O buffers.

13 There is no “release” operation in the example, and hence there can be
no “happens before” ordering between the store and the load, even though
there are intervening synchronization operations.

This clearly results in more frequent lock acquisition and re-
lease than anyone would like to see in production code though, in
our experience, something along these lines is sometimes used in
production code.'* However, since the example is so lock intensive,
it provides a convenient, and perhaps not completely contrived, way
to assess the performance impact of memory ordering constraints.

In order to minimize time spent in the OS kernel and on disk
accesses, we copy from the /dev/zero pseudo-file on a Linux
system to a file on /tmp, on machines with enough memory that
no actual disk access was required. We use the default stdio buffer
size of 16K. The resulting program is cpu-bound, with little time
(always < 20%, much less with locking) spent in the OS kernel.

We measured 8 variants of this simple program. The first four
of these are included to allow the reader to calibrate our results.
The latter four demonstrate the impact of allowing no reordering of
memory operations across synchronization primitives.

Unsafe The file copy is implemented using the Posix
getc_unlocked() and putc_unlocked() primitives.
The result is not thread safe. Attempting to run multiple copies
of this program concurrently on a multiprocessor is extremely
unlikely to result in a file of the right length, and, unlike
the other variants, running multiple copies often results in a
segmentation faults.

Default The file copy is implemented using the Posix getc () and
putc () calls. These each acquire and release a lock.

Mutex We call getc_unlocked() and putc_unlocked(), but
explicitly ensure thread safety by acquiring and releasing a
Pthread mutex around each of them. We use separate locks for
the input and output files. This is similar to what getc() and
putc () use internally.

Spin Identical to the preceding one, except that we use Pthread
spin locks instead of mutexes. In the contention-free case, these
generally perform better, largely because the lock release can be
implemented more cheaply. However they tend to be less robust
in the presence of contention. '’

None Identical to “Spin”, except that we use custom spin locks
implemented with our atomic operations library[9]. We add no
extra fences. Memory operations are only constrained to not
move out of the critical section. This appears to suffice for
all reasonably designed code. It corresponds to the guarantees
provided for Java locks[14], for example.

Lock Identical to “None”, except that we add a full memory fence
to the lock implementation.

Unlock Identical to “None”, except that we add a full memory
fence to the unlock implementation.

Both Identical to “None”, except that we add a full memory fence
to both the lock and unlock implementation. Thus the hardware
is also prevented from moving any memory operations into the
critical section.

We use gcc as the compiler in all cases. It does not move
memory references past locks. However, we can adjust the memory
fences used by the lock implementation.

All experiments were done on Linux machines using a recent
NPTL threads implementation and a 2.6.12 kernel. We give results
for two different machines:

141n particular, the “Default” variant below is arguably the most natural way
to copy a file in Posix code.

15 In our experiments, the mutex-based solutions were generally better and
much more predictably in very high contention situations, as expected.
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Figure 4. Msecs to copy 10MB/thread in 2 threads on 2GHz Pen-
tium 4 Xeon

Pentium 4 Xeon The results are presented in figure 2 and fig-
ure 4. This is a 2 GHz dual processor “hyperthreaded” machine,
on which both atomic memory update instructions (used here
for pthread mutex_lock(), pthread mutex_unlock() and
pthread_spin_lock(), but not pthread_spin_unlock())
and fences are expensive, and hence dominate the runtime. The
atomic memory update operations also act as a fence, and hence
adding a fence requirement only affects the unlock operation. It
would not affect the time required for mutex operations'®, but it
vastly increases the cost of releasing a spin-lock, thus roughly
doubling the cost of the file copy with spin-locks.!”

Itanium 2 The results are presented in figure 1 and figure 3. This is
a 1 GHz four processor machine. Both atomic memory updates
and memory fences are much cheaper. Atomic memory updates
never include a full memory fence, and thus we need to add
instructions to prevent reordering of memory operations around
these instructions, and hence around locks. However, the time
required to execute the memory fence instructions is highly
context dependent.

We report the times required for a single thread to perform the
copy in a multi-threaded context, i.e. when run from a thread other
than the main one. This is representative of the (hopefully typical)
low contention case. The reported measurements are averages of
three runs, but variations are very low.

For completeness, we give one set of measurements for two
threads performing the same copy operation concurrently. However
the exact contention level here seems very dependent on accidents
of compilation, and we did not find these very reproducible over
time.

Note that the scale on the y-axis varies appreciably across the
different graphs.

In all cases, we see that added fences have a substantial impact
on the performance of at least some locking primitives. In the X86
case, the effect is limited to spin locks, since mutexes implicitly

16 Some platforms avoid the atomic memory update for an unlock oper-
ation, even if a queue is involved. This gives rise to a rare lost wakeup,
from which it is possible to recover with a timeout, at some cost. If
pthread mutex_unlock() is implemented this way, its performance
would be closer to pthread_spin_unlock() on our platform.

17 Note that some X86 machines, including some from the same vendor,
provide much less expensive atomic update and fence primitives.
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provide the fence semantics. On Itanium, we expect that the effect
on mutexes is similar.'®
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