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Abstract. Entanglement has been termed a critical resource for quan-
tum information processing and is thought to be the reason that certain
quantum algorithms, such as Shor’s factoring algorithm, can achieve ex-
ponentially better performance than their classical counterparts. The
nature of this resource is still not fully understood: here we use numer-
ical simulation to investigate how entanglement between register qubits
varies as Shor’s algorithm is run on a quantum computer. The patterns
in the entanglement are found to correlate with the choice of basis for
the quantum Fourier transform rather than with any crucially quantum
aspect of the algorithm.

1 Introduction

Quantum computation is generally regarded as being significantly more pow-
erful than classical computation. There are numerous possible routes forward
for quantum hardware [1], however, progress in the development of algorithms
has been slow, in part because we don’t yet fully understand how the quan-
tum advantage works. Few quantum algorithms promise an exponential speed
up over classical algorithms, of those that do, Shor’s algorithm [2] is perhaps the
most important because it can be used to factor large numbers and hence has
implications for classical security methods.

The improvement that Shor’s algorithm provides is generally attributed to
entanglement enabling the algorithm to run efficiently. In fact, there are two
key characteristics of the quantum resources used for computation. The first is
that a general superposition of 2n levels may be represented in n 2-level systems
[3], allowing the the physical resource to grow only linearly with n (quantum
parallelism). The second aspect is best explained by considering the classical
computational cost of simulating a typical step in a quantum computation. If
entanglement is absent then the algorithm can be simulated with an equivalent
amount of classical resources. In recent work, Jozsa and Linden [4] have proven
that, if a quantum algorithm that cannot be simulated classically using resources
only polynomial in the size of the input data, then it must have multipartite en-
tanglement involving unboundedly many of its qubits – if it is run on a quantum
computer using pure quantum states. However, the presence of multipartite en-
tanglement is not a sufficient condition for a pure state quantum computer to



be hard to simulate classically. If the quantum computer is described using sta-
bilizer formalism [5, 6], there are many highly entangled states that have simple
classical descriptions, for instance the Bell and GHZ states. Moreover, a quantum
computer using mixed states may still require exponential classical resources to
simulate even if its qubits are not entangled, and it is not known whether such
states may be used to perform efficient quantum computation. Parker and Plenio
[7] have presented a version of Shor’s algorithm using only one pure qubit, the
rest may start in any mixed state. They found that entanglement was present
when the algorithm ran efficiently for factoring 15 and 21 (tested numerically).

There is also no proof that an equally efficient classical algorithm cannot exist
for Shor’s algorithm4, though for quantum walks an algorithm with a proven ex-
ponential speed up is known [8]. It is difficult to draw general conclusions about
how such a speed-up comes about with few examples to work from. Nonetheless,
a better understanding of how quantum algorithms and the entanglement within
them work may help us to design new quantum algorithms. Given that entan-
glement is necessary (though not sufficient) for pure state quantum computation
with an exponential speed-up over classical computation, we might instead ask
whether the entanglement provides a quantitative resource during the compu-
tational process. We try to answer this question by investigating the level of
entanglement within Shor’s algorithm as it proceeds, gate by gate.

2 Shor’s Algorithm

We begin with a brief overview of how Shor’s algorithm works. We wish to
factor a number N = pq where p and q are prime numbers. Classical number
theory provides a way to determine these primes with high probability (not unity
generally) by finding the period r of the function fa(x) = ax(mod N) where a
is an integer chosen to be less than N and co-prime to it. It is easy to check
whether a is co-prime to N using Euclid’s algorithm. If a happens not to be
co-prime then their common factor gives a factor of N and the job is done but
this happens only rarely for large N . Once the period r is found the numbers

m± = ar/2 ± 1 (1)

generally share either p or q with N as a common factor. The remaining factor
can be found efficiently using standard techniques. Not all choices of a give
periods r which yields a factor p or q. For instance, sometimes the period r will
be odd, whence the numbers from Eq. (1) can be non-integer. When the chosen
a does not lead to a valid factor, the procedure can be repeated with a different
choice a small number of times until a factor is found.

The hard part of the algorithm is determining the period r of the function
f a(x) = ax(mod N). Shor found a very elegant and efficient means of doing this
quantum mechanically, depicted schematically in Fig. 1. Consider that one has

4 A polynomial factoring algorithm is now known but there is still no classically effi-
cient order-finding algorithm, which is the core of Shor’s algorithm.
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Fig. 1. Schematic circuit diagram of Shor’s algorithm for factoring 15 implemented on
a 12 qubit quantum register. The initialisation I is done with single qubit Hadamard
(H) and bit-flip (Z) gates. Controlled-U(j) gates are used to produce ax(mod N). The
inverse quantum Fourier transform uses controlled rotations (Rm) The last quantum
step is the measurement (M), which is followed by classical post-processing to obtain
a factor of N .

two quantum registers (one of size 2n where n = dlog2 Ne qubits and the second
of size n qubits. We will denote the basis states of a quantum register by |x〉,
with x ∈ {0 . . . 2n− 1}. The binary representation of x indicates which register
qubits are in state |0〉 and which are in state |1〉. A general state of a 2n qubit
register |Ψ(t)〉 at time t can thus be written as a superposition of basis states,

|Ψ(t)〉 =
2n∑

x=0

ax(t)|x〉, (2)

where ax(t) is a complex number, normalised such that
∑

ax(t)2 = 1. The algo-
rithm begins by preparing the larger quantum register in an equal superposition∑2

2n

−1

x=0
|x〉 of all possible 2n basis states while the smaller register is prepared

in the definite state |1〉. The total initial state of the system is hence

|Ψ(ti)〉 =
1

2n

2
2n

−1∑

x=0

|x〉|1〉 (3)

The next step is a unitary transformation which acts on both registers according
to U |x〉|b〉 = |x〉|bax(mod N)〉 giving the output state

|Ψ(ta)〉 =
1

2n

2
2n

−1∑

x=0

|x〉|ax(mod N)〉 (4)
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Fig. 2. Entanglement in Shor’s 12 qubit algorithm as a function of gates sequence
according to Fig (1) with the co-prime chosen as a = 13. E is the entanglement between
the registers and A is the entanglement within the smaller register. The entanglement
within the larger register is zero throughout.

Then an inverse quantum Fourier transform (IQFT) defined by

Q−1|y〉 =
1

2n

2
2n

−1∑

z=0

e−2πiyz/2
2n

|z〉 (5)

is applied, which transform the state |Ψ(ta)〉 from Eq. (4) into

|Ψ(tq)〉 =
1

22n

2
2n

−1∑

x=0

2
2n

−1∑

z=0

e−2πixz/2
2n

|x〉|ax(mod N)〉. (6)

By measuring the larger register in the computational basis we obtain an integer
number c. Now c/22n is closely approximated by the fraction j/r and so r can be
obtained classically using continued fractions. Choosing the larger register to be
2n qubits provides a high enough accuracy for c such that r can be determined
from a single measurement on all 2n qubits. It is possible to use fewer qubits
in this first register but the probability of determining r decreases, and the
algorithm may need to be repeated correspondingly many more times.

3 Factoring 15

We start our analysis of the entanglement by studying the circuit for factoring
15 (3x5), though we need to be careful when drawing conclusions as it is not
necessarily typical of factoring larger numbers. With the benefit of hindsight,
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Fig. 3. Maximum amount of entanglement in Shor’s algorithm for factoring 15 on a 12
qubit quantum computer versus co-prime a. Values of a co-prime to 15 are shown in
green, while a = 3, 5, 6, 9, 10, 12 (not co-prime) are shown in blue/violet. Symbols are
E for entanglement between the registers and B for entanglement in the larger register.
The lower register has no entanglement within it at this stage of the computation.

rather than tracking the entanglement as each basic gate is applied, we choose
to look at certain key points in the algorithm, since many gates make no changes
to the entanglement. We restrict our attention to controlled composite gates: the
U(j) gate which is implements the operation aj(mod N) for j ∈ {1, 2 . . .22n},
and the rotations in the IQFT. Details of how to efficiently construct these
composite gates from a universal set of one and two qubit gates may be found
in, for example, [5]. There are 8 of the U(j) gates (in general 2n, one for each
larger register qubit), which is manageable, but for the IQFT there are 27 (in
general (2n+1)(n−1) for a 2n qubit register) rotation gates, so we have treated
the whole IQFT as one unit. Along with single qubit gates as necessary, the
circuit using these composite gates is depicted in Fig. 1.

As we are only considering the evolution of pure states we can measure the
entanglement between the two registers using the entropy of the subsystems

Ec = −
∑

i

λi log λi, (7)

where the {λi} are the eigenvalues of the reduced density matrix of either of the
registers (both have the same eigenvalues). To quantify the entanglement within

each register is not so straightforward. To restrict our attention to the qubits
within a single register, we first trace out the other register leaving a mixed state,
ρL or ρS . Most entanglement measures for mixed states are computationally
intractable in practice for more than a few qubits; we also need to consider all
the possible divisions of the qubits into different subsets in order to locate all of
the entanglement. A reasonable approximation to quantifying the entanglement
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Fig. 4. Pattern of entanglement during Shor’s algorithm factoring N = 15 with co-
prime a = 13. After the U(j) gates the top two qubits in the larger register (blue) are
entangled with the four qubits in the smaller register (red). After the IQFT, the entan-
glement is transfered to the lower two qubits in the larger register. Qubits represented
by open circles are not entangled.

within a register can be obtained by applying a partial transpose to each subset
of qubits and calculating the negativity [9, 10] given by η = Tr|ρT | − 1 i.e.,
the sum of the negative eigenvalues of the transposed matrix ρT

L or ρT
S . If the

negativity is zero for all possible subsets of qubits in the register, then we can say
that at most the register has bound entanglement [11], which is not generally
considered useful for quantum information tasks (though see [12]). Non-zero
negativity definitely implies the presence of entanglement.

In Fig. 2 we plot the entanglement in Shor’s algorithm using the entropy
of the subsystem where possible (full state is pure) and the negativity where
the single register state is mixed. The negativity turns out to be zero for both
registers throughout the algorithm (except the measurement leaves the smaller
register entangled, but this cannot be useful for the remaining classical steps of
the algorithm). The entanglement between the registers builds up to a maximum
during the first two U(j) gates, then stays constant until the measurement.

Next we ask whether this pattern/degree of entanglement is affected by the
choice of co-prime, or even (for comparison) whether a is actually co-prime or
not. The maximum entanglement between the two registers at time ta, after
applying the U(j) gates but before applying the IQFT, is plotted in Fig. 3. Also
shown is the average negativity for the larger register (for the lower register it
is always zero at this stage of the algorithm). When a is not co-prime, there is
entanglement within the larger register but when a is co-prime there is none.
Otherwise, it is clear that there is no real pattern between the maximum amount
of entanglement and the chosen value of a.



large register large register
size of subsystem small register after U after IQFT difference ∆E

1 qubit 0.811 1.000 0.938 -0.062
2 qubits 1.538 1.600 1.599 -0.001
3 qubits 2.151 1.843 2.020 +0.177
4 qubits 2.585 1.972 2.283 +0.311
5 qubits 2.585 2.081 2.447 +0.366

6 qubits 2.184 2.547 +0.363
7 qubits 2.285 2.602 +0.318
8 qubits 2.385 2.589 +0.204
9 qubits 2.485 2.619 +0.134

Table 1. Average entropy of subsystems for factoring 21 with a = 2.

Even though the entanglement between the registers, as measured by the
entropy of the subsystems, does not change during the IQFT, the distribution
of the entanglement between the individual qubits does change. If we return to
our first example, factoring 15 with a = 13, and look at the entropy of subsets of
qubits from the larger register, we can deduce that only two of the eight qubits
are entangled with the four qubits in the smaller register. During the action of
the IQFT, this entanglement is transfered from the top two qubits to the bottom
two in the larger register. We represent this in a diagram shown in Fig. 4.

However, we cannot draw general conclusions from the process of factoring
15 since 15 is actually extremely easy to factor. It is straightforward to see that
at least one of ar/2 ± 1 is divisible by 3 or 5 for nearly all choices of a, r > 1,
regardless of whether a is co-prime to N or even whether r is the period of
xa(mod N). We need to look at larger N .

4 Factoring 21

We next look at factoring 21 (3× 7). To do this on a quantum computer in the
same manner as the circuit for factoring 15 shown in Fig. 1 requires a total of
15 qubits, 10 in the larger register and 5 in the smaller. For co-prime a = 13,
we find a similar pattern of entanglement to that shown in Fig. 4 for 15 with
a = 13, except that for 21 there is only entanglement between one qubit in the
larger register and two qubits in the lower register. Again, the IQFT step shifts
the entanglement from the top qubit to the bottom qubit in the larger register.

The larger register is now at the limit of our computational resources for
calculating the full analysis of the negativity. By using random samples of cuts,
instead of calculating all possible cuts, we find that for co-prime a = 13 there is
no entanglement within either register, but for other choices of co-prime such as
a = 2 and a = 4, entanglement is generated within the larger register during the
IQFT. For these co-primes we also find a more complex pattern in the entropies of
the subsystems: the entanglement now involves all the register qubits. The details
are shown in Table 1: essentially the entanglement becomes more multipartite
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(the average reduces for one and two qubit cuts, while for larger cuts it increases).
We will provide an explanation for this observation in the next section where we
examine larger examples.

5 Factoring larger numbers

We also studied semi-primes 32 < N < 64 and 64 < N < 128, which require
18 and 21 qubits respectively for the quantum registers. In these cases, though
we cannot easily calculate a full entanglement analysis, we have calculated the
entropy between one qubit and the rest of the qubits in both registers, this corre-
sponds to the quantities in the top line of Table 1. The difference in the average
entropy ∆E1 before and after the IQFT (corresponding to the last column in
Table 1), is shown in Table 2 grouped by the period r.

There is a clear pattern for ∆E1: the closer the period r is to a power of 2,
the smaller the value of ∆E1. For r = 2m, the IQFT is exact giving ∆E1 = 0
in all cases. This can be understood by looking at the measurement results on
the larger register, from which the period r is calculated. Figure 5 shows the
probability of measuring each possible number c in the larger register at the
end of running the algorithm for two examples factoring 119, with co-prime 92
(period r = 16) and co-prime 93 (period r = 24). When the period is exactly a
power of two, the fraction c/22n gives the period r exactly, whereas when r is not
a power of two, the peak probability tries to fall between two possible numbers
and thus spreads the wavefunction over several adjacent numbers. This spread
increases the entanglement in the upper register.



N r (number of co-primes with this r)
p× q −〈∆E1〉

15 2 (3) 4 (4)
3× 5 0.0 0.0

21 2 (3) 3 (2) 6 (6)
3× 7 0.0 0.706 0.624

33 2 (3) 5 (4) 10 (12)
3× 11 0.0 0.285 0.256

35 2 (3) 3 (2) 4 (4) 6 (6) 12 (8)
5× 7 0.0 0.869 0.0 0.788 0.706

39 2 (3) 3 (2) 4 (4) 6 (6) 12 (8)
3× 13 0.0 0.869 0.0 0.788 0.706

51 2 (3) 4 (4) 8 (8) 16 (16)
3× 17 0.0 0.0 0.0 0.0

55 2 (3) 4 (4) 5 (4) 10 (12) 20 (16)
5× 11 0.0 0.0 0.285 0.256 0.226

57 2 (3) 3 (2) 6 (6) 9 (6) 18 (18)
3× 19 0.0 0.869 0.788 0.080 0.071

77 2 (3) 3 (2) 5 (4) 6 (6) 10 (12) 15 (8) 30 (24)
7× 11 0.0 1.033 0.343 0.951 0.314 0.034 0.031

91 2 (3) 3 (8) 4 (4) 6 (24) 12 (32)
7× 13 0.0 1.033 0.0 0.951 0.869

119 2 (3) 3 (2) 4 (4) 6 (6) 8 (8) 12 (8) 16 (16) 24 (16) 48 (32)
7× 17 0.0 1.033 0.0 0.951 0.0 0.869 0.0 0.788 0.706

Table 2. Average decrease in entanglement −〈∆E1〉 between one qubit and the rest
during the IQFT.

6 Discussion

We have found that, as expected, the quantum registers become highly entangled
during Shor’s algorithm. The entanglement increases during the progress of the
algorithm, and during the IQFT in particular it can become more multipartite
in nature if the period being found is not an exact power of two. Thus, if we
performed the IQFT to some other base than two – for example, in base three,
perhaps using a quantum register made up of qutrits (three-state quantum sys-
tems) rather than qubits – the entanglement pattern would change completely.
Therefore the entanglement cannot be correlated in a quantitative way with the
success of the algorithm. While entanglement is certainly generated in significant
quantities during pure state quantum computation, this is best understood as
a by-product of exploiting the full Hilbert space for quantum parallelism: the
majority of quantum states are known to be highly entangled [13, 14].

We find no evidence that the entanglement generated during the execution
of the algorithm is used up in a quantitative way to fuel the computation pro-
cess, indeed, the overall entanglement does not decrease at any point before the



measurement. This is in complete contrast to quantum communications tasks
where maximally entangled pairs of qubits can perform a specific amount of
communication, during which the entanglement is used up. Entanglement is
used quantitatively in many practical proposals for implementations of a quan-
tum computer, notably [15], this use can be attributed to the communications
tasks carried out to move the quantum data around in the physical qubits.

We thank Stephen Parker, Martin Plenio and Ben Travaglione for valuable
discussions. VK was funded by the UK Engineering and Physical Sciences Re-
search Council grant number GR/N2507701 (to Sept 2003) and now by a Royal
Society University Research Fellowship. A Royal Society Research Grant pro-
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