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We describe a practical quantum repeater protocol for long-distance quantum communication.
In this scheme, entanglement is created between the intermediate nodes of the quantum channel
by using a weak dispersive light-matter interaction and distributing the outgoing intense coher-
ent light pulses among the nodes. Noisy entangled pairs of electronic spin are then prepared with
high success probability via homodyne detection including postselection. The local gates for entan-
glement purification and swapping are deterministic and measurement-free, based upon the same
coherent-light resources and weak interactions as for the initial entanglement distribution. Finally,
the entanglement is stored in a nuclear-spin-based quantum memory. Simulations of the system
show qubit-communication rates approaching 100 Hz and fidelities above 99% for reasonable local
gate errors.

PACS numbers: 03.67.Hk, 42.25.Hz, 42.50.Dv

In a quantum repeater, long-distance entanglement is
created by distributing entangled states over sufficiently
short segments of a channel such that the noisy entangled
states in each segment can be purified and then connected
via entanglement swapping [1, 2]. The resulting entan-
glement between the distant nodes can then be used, for
example, to teleport quantum information [3] or transmit
secret classical information [4]. Existing approaches to
quantum repeaters include a protocol based upon photon
storage in atomic ensembles [5] and a scheme that uses
solid-state photon emitters as the intermediate nodes of
the channel [6, 7]. In these proposals, like in most propos-
als for quantum communication, single photons or very
weak coherent pulses are being sent through the quantum
channel. The single-photon schemes, however, naturally
lead to very low communication rates.

More efficient schemes, compatible with existing classi-
cal optical communication networks, would involve multi-
photon signals, i.e., light pulses of 104 or more photons.
There are indeed various quantum communication pro-
tocols based on multi-photon Gaussian states [8]. How-
ever, entanglement purification, the essential step in a
quantum repeater protocol, cannot be achieved within
the realm of Gaussian states [9–11]. Similar to universal
quantum computation [12], long-distance quantum com-
munication requires a non-Gaussian element.

This non-Gaussian or nonlinear element may be intro-
duced in at least two possible ways in order to achieve
optical quantum computation. The first method uses
only linear transformations, but a measurement-induced
nonlinearity [13]. In the second approach, linear gates
are supplemented by a weak nonlinear gate where the
nonlinearity is effectively enhanced through a sufficiently
strong probe beam [14]. Here we will apply the concept
of weak nonlinearities to quantum communication via an
optical electronic-spin and nuclear-spin hybrid system.
For this purpose, we will be using intense coherent pulses

of about 104 photons. A significant advantage of our pro-
posal over the single-photon or weak coherent-state based
protocols [6, 7] is that we can achieve high success prob-
abilities via efficient homodyne detection of the intense
coherent light pulses including postselection. Moreover,
compared to the atomic-ensemble based schemes [5], we
will avoid the complication of purifying an atomic en-
semble and directly distill the entanglement from sev-
eral copies of noisy entangled electronic-spin pairs. The
electronic and nuclear spin systems may be achieved, for
example, by single charged semiconductor quantum dots
[15] or donors bound to semiconductor impurities [16] in
high-Q microcavities.

In our proposal, every coherent “probe” pulse is sub-
ject to a reasonably weak nonlinear interaction with an
electronic spin in a cavity. This interaction induces a
conditional phase shift of the order of 10−2, thus entan-
gling the probe and the spin. After traveling over the
communication channel, each probe will interact with
a second spin. Noisy entangled pairs of distant elec-
tronic spins can then be prepared with success proba-
bility Psuccess ≈ 0.36 via homodyne-detected postselec-
tion. The resulting initial fidelities Finitial ≈ 0.77 may
be increased by entanglement purification in advance to
a nested entanglement swapping protocol with a num-
ber of qubits in each repeater station growing only log-
arithmically with communication distance [2]. For both
purification and the Bell-state analysis required by the
swapping procedure, we propose to use a determinis-
tic measurement-free controlled-phase gate on the elec-
tronic spins based on the same conditional phase shifts
with intense coherent light pulses [17]. This gate, though
less tolerant to loss than the post-selected measurement-
based gate used to generate initial entanglement, requires
no postselection and may allow final end-to-end fidelities
exceeding 0.99 with sufficiently small local optical losses.
The entire quantum repeater protocol, including the en-
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tanglement distribution, entanglement purification, and
deterministic entanglement swapping is all based on the
same intense coherent-light resources and weak interac-
tions. The resulting quantum repeater system is very tol-
erant to losses along the long-distance channel and can
allow qubit-communication-rates of nearly 100 Hz over
1280 km with realistic optical fibers.

Figure 1 illustrates the mechanism for the entangle-
ment distribution among the nearest nodes of the chan-
nel. The electron spin system is treated as a Λ-system,
with two stable or metastable states |g〉 and |e〉, only
one of which (|e〉) is resonant or nearly resonant with
the cavity mode. Local rotations between states |g〉 and
|e〉 may be achieved via stimulated Raman transitions or
ESR pulses; in particular, we suppose the state is initially
prepared in the state (|g〉 + |e〉)/

√
2. The probe light is

sufficiently detuned from the cavity to allow a strictly
dispersive light-matter interaction. The finite probabil-
ity for spontaneous emission of the qubit and for light to
leak from the cavity add a small correction to channel
losses, which we consider shortly. For clarity, let us first
discuss entanglement distribution in the absence of loss.
When the probe beam in coherent state |α〉 reflects from
the cavity, the total output state may be phenomenolog-
ically described by

Ûint [(|g〉 + |e〉) |α〉] /
√

2 =
(

|g〉|α〉 + |e〉|αeıθ〉
)

/
√

2 , (1)

where θ = κt with κ equal to the coupling strength of
the light-spin system and t the interaction time. After
acquiring such a conditional phase shift at one node, the
probe beam is sent to a neighboring node and interacts
with a second spin in a similar way. Applying a further
linear phase shift of −θ to the probe will yield the to-
tal state (

√
2|Ψ+〉|α〉+ |gg〉|αe−iθ〉+ |ee〉|αeiθ〉)/2, where

|Ψ+〉 = (|ge〉+ |eg〉)/
√

2. Thus, by discriminating a zero-
phase shift from a ±θ phase shift for the probe, one can
project the two spins onto a maximally entangled state
[14, 18]. Assuming α real, such a projection can be ap-
proached via a p quadrature measurement (i.e., along the
imaginary axis in phase space), postselecting the desired
|Ψ+〉 state.

The conditional state of the spin system for a measured
p value of the probe beam may now be written as

|ψ(p)〉 =
1

2

[√
2G0(p) |Ψ+〉 +G−(p) |gg〉 +G+(p) |ee〉

]

,

(2)
where G0(p) ≡ f0(p)g0(p) is a Gaussian amplitude func-
tion with f0(p) = (2/π)1/4 exp(−p2) and a phase factor
g0(p) = exp(−2iαp), depending on the measurement re-
sult. Similarly, we have G±(p) ≡ f±(p)g±(p) with the
displaced Gaussians f±(p) = (2/π)1/4 exp[−(p∓d)2] and
g±(p) = exp[−iα cos θ(2p ∓ d)]. Here, our ability to dis-
tinguish the desired |Ψ+〉 state (around zero phase shift
of the probe) and the two unwanted terms corresponding
to the two phase-rotated probe beams shifted along the
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FIG. 1: (Color online). Schematic for the generation of
spin-entanglement between two qubits at neighboring stations
via homodyne detection discriminating between conditionally
phase-rotated coherent probe beams.

p axis by ±d is determined by the distance of the corre-
sponding Gaussian peaks, d = α sin θ. In the following,
this parameter d is referred to as the distinguishability.
The maximally entangled state is postselected by keeping
the state only when the measured result p is within some
finite measurement window, |p| < pc. Were it not for op-
tical losses, a very large window could be chosen, because
by increasing α, the distinguishability could be made
even larger, resulting in nearly perfect post-selection with
probability of success 1/2. However, in the presence of
loss, there will be a trade-off between distinguishability
and decoherence. Let us now consider this realistic case
including losses.

In the presence of channel loss (and a small contri-
bution from cavity losses and spontaneous emission),
the distinguishability cannot be made arbitrarily large
without suffering from intolerable decoherence. We may
model the photon loss by considering a beam splitter in
the channel that transmits only a part of the probe beam
with an intensity transmission η2. The lost photons split
from the channel by this beam splitter provide “which-
path” information, and tracing over them introduces the
decoherence. After the homodyne detection of the probe,
the spins are described by an unnormalized conditional
density matrix ρ̂(p) which depends on the measurement
result p and has the following diagonal elements:

ρΨ±,Ψ± = |G0(p)|2Reλ±(ξ)/2, (3)

ρΦ±,Φ± = (|G−(p)|2 + |G+(p)|2)/8
±e−γRe[eiξG+−(p)],

written in the Bell basis {|Ψ±〉, |Φ±〉}, with |Ψ±〉 =
(|ge〉 ± |eg〉)/

√
2 and |Φ±〉 = (|gg〉 ± |ee〉)/

√
2, and using

λ±(ξ) ≡ (1 ± e−γ+iξ)/2 and G+−(p) ≡ G+(p)G∗
−(p)/4,

etc. In the functions g0(p) and g±(p), α is replaced by ηα,
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and the distinguishability now becomes d = ηα sin θ ≈
ηαθ. The decoherence in the channel leads to a damping
factor determined by

γ = α2(1 − η2)(1 − cos θ) ≈ 1

2
(1 − η2)d2/η2 , (4)

and an additional phase factor with ξ ≡ α2(1− η2) sin θ.
The off-diagonal elements are given by

ρΨ±,Ψ∓ = i|G0(p)|2Imλ±(ξ)/2, (5)

ρΦ±,Φ∓ = (|G−(p)|2 − |G+(p)|2)/8
±ie−γIm[eiξG+−(p)],

ρΨ±,Φ± = ρ∗Φ±,Ψ± = G0−(p)λ±(ξ) + G0+(p)λ±(−ξ),
ρΨ±,Φ∓ = ρ∗Φ∓,Ψ± = G0−(p)λ±(ξ) − G0+(p)λ±(−ξ).

Here we see that in order to maximize the distinguisha-
bility of the probe states (and hence the fidelity of the
resulting entangled state), we cannot simply make d ar-
bitrarily large. An arbitrarily large d value would be
accompanied by an arbitrary increase of the decoherence
effect. This is reflected by the d-dependence of the loss
parameter γ and may, at worst, lead to a separable out-
put state ρ̂(p). The parameter ξ determines a fixed (mea-
surement result-independent) and known phase rotation
which can be easily removed via static phase shifters.
Thus, in the above matrix elements, we set ξ ≡ 0.

Since we cannot make d arbitrarily large, we are forced
to choose a sufficiently small window for the postselec-
tion, thus making pc sufficiently small. This will lead to
a decreasing success probability. As a result, there will
also be a trade-off between the success probability after
postselection and the fidelity of the outgoing entangled
states [19]. The success probability can be calculated as

Psuccess = Tr

∫ +pc

−pc

dp ρ̂(p) =

∫ +pc

−pc

dpTrρ̂(p) (6)

=
1

4

[

2 erf(
√

2pc) + erf(b+) + erf(b−)
]

,

where Trρ̂(p) is the “single-shot” probability for obtain-
ing the quadrature value p with the diagonal elements
of ρ̂(p) from Eq. (3). Here, we used b± ≡

√
2(pc ± d).

The desired entangled output state is |Ψ+〉. Hence, the
average fidelity after postselection becomes [20]

F =

[
∫ +pc

−pc

dp 〈Ψ+|ρ̂(p)|Ψ+〉
]

/

Psuccess

=
erf(

√
2pc)(1 + e−γ)

2 erf(
√

2pc) + erf(b+) + erf(b−)
, (7)

using Eq. (3).
We assume that loss is dominated by fiber loss in the

quantum channel. A practical length for the individ-
ual segments of the quantum repeater system would be
l0 = 10 km. Assuming a transmission loss of about
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FIG. 2: (Color online). On the right: the fidelity of the out-
going entangled state as a function of the distinguishability
parameter d′ ≡ αθ and the size of the postselection window
pc. On the left: the maximum fidelity Fmax and success prob-
ability Psuc as a function of the postselection window pc. For
all plots, η2 = 2/3.

0.17 dB/km, the transmission parameter η2 is about 2/3.
In Fig. 2, the average fidelity is shown as a function of
d′ ≡ αθ and pc for a transmission of η2 = 2/3. The plot il-
lustrates the trade-off between distinguishability and de-
coherence, leading to an optimal value for d′ for each pc.
However, the maximum average fidelity of F ≈ 0.8 can
be achieved only at the expense of a vanishing success
probability. Now by choosing a slightly larger postse-
lection window and sacrificing a little bit of the fidelity,
F ≈ 0.77, we can attain a reasonable success probability,
Psuccess ≈ 36%. This high rate of successful entanglement
generation is in sharp contrast to the low efficiencies of
single-photon or weak-coherent-state approaches [6, 7].

Our initial fidelities, Finitial ≈ 0.77, will be insufficient
for entanglement swapping; some entanglement purifica-
tion must first occur. For both purification and swap-
ping, local two-qubit gates are needed. For this pur-
pose, we propose to use measurement-free determinis-
tic controlled-phase gates [17]. The advantage of such
gates is that they can be implemented using the same
intense coherent-light resources and weak interactions as
employed in the above entanglement distribution proto-
col. The controlled-phase gate can be realized via the
following sequence of conditional rotations and uncondi-
tional displacements of a coherent-state probe interacting
with the two spins [17],

Û2(θ)D̂(β)Û1(θ)D̂(−β∗)Û2(θ)D̂(−β)Û1(θ) , (8)

where Ûk(θ) corresponds to the interaction in Eq. (1),
leading to a controlled phase shift of the probe condi-
tioned upon the state of the kth qubit. The operator
D̂(β) describes a phase-space displacement of the probe
where β ≡ α(1− i). After the entire sequence in Eq. (8),
the probe will be nearly disentangled from the spins. Af-
ter tracing over the probe and removing single-qubit Z-
rotations, the qubits have undergone a controlled rota-
tion of angle φ ≈ α2θ2(6T1T2T3 − T1T2 − T1), where Tj

is the transmission for the jth cavity-probe interaction.
For a desired phase shift of the order of π, we must satisfy
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α2θ2 ≈ 1, which is exactly the regime we have been using
for the entanglement distribution. A small amount of de-
coherence is also introduced due to the finite probe-qubit
entanglement and any finite optical loss. The details of
this decoherence mechanism will be discussed elsewhere
[21]. Two-qubit coherences are damped by factors similar
to exp(−θ2 + ε), where ε = 1− Tj . For optical losses be-
tween ε = 0.01% and ε = 0.1%, errors caused by this gate
saturate due to the finite probe-qubit entanglement; in
a practical implementation, the gate’s performance will
likely be limited by optical losses rather than the θ2 term.

This controlled-sign gate, in addition to single-qubit
rotations and measurement (which may also be done by
homodyne detection of an intense optical probe, or by
other methods) are sufficient resources for the standard
purification protocol introduced in Ref. 22. This protocol
was analyzed in terms of density matrices ρ̂ that are ex-
actly diagonal in the Bell-state basis. The ρ̂ described in
Eqs. (3-5) is very nearly so, and the small off-diagonal
elements quickly vanish after a few purification steps.
It was previously noted [2] that this protocol converges
faster than protocols based on Werner states [23].

Several protocols for combining entanglement purifi-
cation and swapping to connect large distances have
been previously considered. At one extreme in the num-
ber of qubit resources is “scheme B” of Dür et al. [2].
This scheme uses as many qubits as are needed to al-
low rapid parallel purification; for communication over
1000 km, hundreds of qubits are needed in each repeater
station. At the other extreme is the scheme of Chil-
dress et al. [6, 7] in which only two qubits are needed
in each repeater station, but the process of purification
and swapping is very slow and becomes impossible if the
initial pair-fidelities are too low and if gate errors are too
high.

We consider a protocol in between these two extremes;
we find that with a number of qubits per station which
grows only logarithmically with distance, a reasonable
communication qubit-rate with reasonable gate errors
may be achieved. In this scheme, each repeater station
acts autonomously according to a simple set of rules. Af-
ter responding to communications received from other re-
peater stations, each station attempts to swap qubits so
as to double the distance over which pairs are entangled.
If no qubits are available for swapping, each attempts
to purify pairs entangled over the same distance at the
highest fidelities available. Then, any qubits not entan-
gled are immediately entangled with available qubits in
nearest-neighbor nodes. The minimum number of qubits
required at the endpoint and middle repeater stations
for this scheme to complete is N = 2 + 2 log2(L/l0),
where L is the total length of the channel and l0 is the
distance between stations. For example, for communi-
cation over 1280 km with repeater stations separated
by 10 km, this scheme requires 16 qubits per station
(with 8 parallel quantum channels connecting each ad-
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FIG. 3: (Color online). Achievable qubit communication re-
sults (in terms of qubit rates for different target fidelities)
vs. local optical losses (ε). Each point corresponds to a sin-
gle Monte-Carlo simulation of the nested purification protocol
over 9 complete qubit teleportations; each point is the aver-
age difference in time between teleported qubit arrival times,
and the error bar is the standard deviation.

jacent station) with fast optical switches to allow any
channel to interact coherent probes with any qubit in
each station. This scheme is similar to “scheme C” of
Dür et al. [2], except by putting N qubits at every station
the probabilistic generation of initial pairs and the pu-
rification of short-distance entanglement proceeds more
quickly. Since every long-distance purification step re-
quires a foundation of short-distance entanglement gen-
eration, speeding these initial steps can lead to substan-
tial speed-up for only a small number of added qubits.

The quantum communication rate achieved by this
scheme is calculated via Monte-Carlo simulation with
numbers of purification steps at each distance chosen by
threshold criteria designed to obtain final long-distance
fidelities in the vicinity of 99%. In these simulations it
is assumed that the limiting timescale is the time for
light to propagate over the 10 km distance between re-
peaters, about 50 µs. Larger fidelities are possible at
smaller rates, and larger rates are available at smaller fi-
nal fidelities. Of course, the rates and fidelities drop due
to local gate error; for our calculations we presume that
error is dominated by optical loss. Fig. 3 shows typical
rates for different target fidelities and different amounts
of local optical loss. Further discussion of the scaling
behavior will appear elsewhere [21].

Two more technical issues should be raised. First, the
time for optical information to propagate over 1280 km
in optical fibers, about 6 ms, is already longer than de-
coherence times observed in most solid-state electronic
spin systems; to this one must consider the additional
time required to await the entanglement purification and
swapping. While quantum error correction techniques
may in principle be employed to extend spin coherence
times, the introduction of nuclear memory is likely a
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sufficient and less expensive resource, as decoherence
timescales for isolated nuclei should be at least many
seconds [24] and probably longer. For isolated nuclei,
fast ENDOR (electron-nuclear double resonance) pulse
techniques may be employed for rapid storage and re-
trieval of the electron-spin state [25]. Nuclear ensem-
bles in quantum dots have also been considered [26],
but in this case the decoupling-limited memory time is
likely to be shorter. The second technical consideration
is that the loss-rates we have assumed over the long-
distance communication channel have assumed telecom
wavelengths, while the solid-state emitter is likely to op-
erate at shorter wavelengths, so efficient phase-preserving
wavelength conversion of the strong optical probe is re-
quired.

In summary, we proposed a full quantum repeater
system based upon weak dispersive light-matter inter-
actions between small numbers of solid-state electronic
spin qubits in microcavities and intense coherent light
pulses. Using a nested purification protocol, qubit-rates
up to 100 Hz and final fidelities of 99% are possible. The
practicality and efficiency of this proposal results from
its high success probabilities for the initial entanglement
distribution (around 40%) and its tolerance to loss in the
long-distance channel.
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