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We discuss the problem of implementing generalized measurements (POVMs) with linear optics,
either based upon a static linear array or including conditional dynamics. In our approach, a given
POVM shall be identified as a solution to an optimization problem for a chosen cost function.
We formulate a general principle: the implementation is only possible if a linear-optics circuit
exists for which the quantum mechanical optimum (minimum) is still attainable after dephasing
the corresponding quantum states. The general principle enables us, for instance, to derive a set of
necessary conditions for the linear-optics implementation of the POVM that realizes the quantum
mechanically optimal unambiguous discrimination of two pure nonorthogonal states. This extends
our previous results on projection measurements and the exact discrimination of orthogonal states.
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I. INTRODUCTION

The implementation of positive operator-valued mea-

sures (POVMs) for photonic quantum state signals is an
essential task in many quantum information protocols.
In general, in order to implement such measurements, a
nonlinear interaction of the signal states, described by
a Hamiltonian at least cubic in the optical mode op-
erators [1], is needed. With current technologies, how-
ever, these nonlinear effects are hard to obtain on the
level of single photons. Apart from hybrid schemes based
on weak nonlinearities and strong coherent probe pulses
[2], an alternative approach for inducing a nonlinear el-
ement is to exploit the effective nonlinearity associated
with a measurement. In particular, for photonic-qubit
states, universal quantum gates and hence any POVM
can be realized deterministically or asymptotically (near-
deterministically), using linear optics, photon counting,
entangled auxiliary photon states, and conditional dy-
namics (feedforward) [3–6]. Moreover, cheaper resources
may suffice for the implementation of non-deterministic
gates and POVMs, using feedforward [3, 7] or a static
array of linear optics [3, 8–13]. Here we will focus on
the implementation of POVMs using either static linear
optics or feedforward and, in particular, photon count-
ing. Although there are some specific results on this issue
[14], a general and practical solution to the problem as
to whether a given POVM can be implemented by linear
optics is not known. Only for the special class of pro-
jective measurements, a set of simple criteria has been
derived [15].

In the special case of a projection measurement, the
“signal states” to be distinguished (i.e., the basis that
spans the space to be projected on) are orthogonal. In
this case, quantum mechanically, an exact discrimination
with unit probability for a conclusive result is possible.
However, if the implementation of the projection mea-

surement is restricted to a limited class of transforma-
tions such as passive linear optics or Gaussian transfor-
mations, unit probability might be unattainable [15, 16].
The prime example to which such a no-go statement ap-
plies is the Bell measurement for polarization-encoded
photonic qubit states [15–18]. Of course, such a no-go
statement for exact state discrimination does not rule out
the possibility for near-deterministic or non-deterministic
implementations. For example, the simplest approxima-
tion to the single-photon qubit Bell measurement only
requires a symmetric beam splitter and photon counting.
This scheme achieves a success probability of one half,
thus attaining the upper bound when using linear optics
and photon counting, but neither auxiliary photons nor
feedforward [19].

A hierarchy of simple criteria for the exact discrimina-
tion of orthogonal states can be derived via a dephasing

approach [15]. The idea of this approach is to simulate
the actual detection, for instance, in the photon number
basis through a dephasing of the linearly transformed
states, turning them into mixtures diagonal in the Fock
basis. Any term in these mixtures represents a possi-
ble detection pattern for a given input state and a given
linear-optics circuit. The requirement for an exact dis-
crimination of the signal states is then that the overlap of
the dephased density operators vanishes, corresponding
to the non-existence of any coinciding patterns. Express-
ing the overlap in terms of the fidelity, this means that
the fidelity of the orthogonal states must remain zero af-
ter the linear transformation and the dephasing operation
have been applied to the states.

In order to extend the analysis of projection measure-
ments [15] to generalized measurements, the first obvious
approach is to consider von Neumann measurements in
a larger Hilbert space. Suitably chosen, these are then
equivalent to the POVM in the smaller signal space. In
fact, any POVM can be expressed in such a way via the
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Naimark extension. For signal states having only one

photon, already the Naimark extension approach reveals
that any POVM can be implemented with linear optics.
A demonstration of this can be found in App. A. In gen-
eral, for signal states with arbitrarily many photons, to
decide whether a linear-optics implementation of a given
POVM is possible is a non-trivial problem.

Here, in order to address this question, we refer to
a fundamental principle, independent of the Naimark ex-
tension. In order to apply this principle, first, the POVM
shall be identified as a solution of an optimization prob-
lem for some cost function. In terms of this cost func-
tion, the principle then states that the implementation is
only possible if a linear-optics circuit exists for which the
quantum mechanical optimum (minimum) is still attain-
able after dephasing the corresponding quantum states.
Whether linear optics or more general linear transforma-
tions including multi-mode squeezing are sufficient to im-
plement the corresponding POVM depends on the ability
of these tools to obey the above general rule. Apply-
ing this rule to the fidelity of two nonorthogonal states
will enable us to derive a set of necessary conditions for
the implementation of the quantum mechanically opti-
mal unambiguous state discimination (USD), extending
our analysis of discriminating orthogonal states [15]. The
USD of non-orthogonal states is a simple example for a
non-projective POVM, where some measurement results
are inconclusive, but the remaining results correctly iden-
tify the signal state.

The plan of the paper is as follows. First, in Sec. II,
we are going to explain how the effect of the detection
behind a linear-optics circuit can be described via de-
phasing. This enables us to present the main result of
the paper, a general principle for the implementation of
POVMs with linear optics. In Sec. III, we briefly review
how the known criteria for linear-optics projection mea-
surements follow from this general principle as a simple
special case. Finally, we turn to the implementation of
non-projective POVMs in Sec. IV, where our main focus
will be on the unambiguous discrimination of two pure
non-orthogonal states.

II. THE DEPHASING APPROACH TO POVMS

Given a general non-projective POVM, via the
Naimark extension approach it is pretty hard to decide
whether the POVM can be implemented with linear op-
tics. Here we propose an alternative strategy indepen-
dent of the Naimark extension, based upon a dephasing
approach. The dephasing effect will be used to mimic the
projection of the individual modes onto the detection ba-
sis. Let us first introduce the dephasing formalism.

The dephasing basis is determined by the detection
mechanism of the implementation. This might be either
the discrete photon number basis (photon counting) or
the continuous quadrature eigenstate basis (homodyne
detection). In the following, we will use the Fock basis as

the dephasing basis. This basis can be easily substituted
by other appropriate bases [15].

If the signal states ρ̂ are linearly transformed into the
states ρ̂H , and the photon number of the modes will be
detected, the corresponding dephasing effect can be de-
scribed as

ρ̂H → ρ̂′H =
1

(2π)N

∫

dφNe−i~a†D~aρ̂He
i~a†D~a . (1)

Here, we used dφN ≡ dφ1dφ2...dφN , the diagonal N ×
N matrix D, (D)ij = δijφi, and the vectors ~a =

(â1, â2, ..., âN )T and ~a† = (â†1, â
†
2, ..., â

†
N ), representing

the annihilation and creation operators of all the elec-
tromagnetic modes involved.

The effect of the dephasing is that it turns the lin-
early transformed states into a Fock-diagonal density
matrix. This mixture contains all possible photon num-
ber patterns for a given input state and a given linear-
optics circuit. The weights of the different terms in
this mixture are determined by the probabilities for
obtaining the corresponding pattern via photon detec-
tion. Thus, the dephasing formalism is an equivalent
description for the effect of the detection after the linear-
optics transformation (see Fig. 1). An example for a
pure signal state ρ̂ = |χ〉〈χ|, and hence a pure trans-
formed state ρ̂H ≡ |χH〉〈χH |, would be |χH〉 = α|110〉 +
β|101〉+γ|002〉. In this case, the dephased state becomes
ρ̂′H = |α|2|110〉〈110|+ |β|2|101〉〈101|+ |γ|2|002〉〈002|, cor-
responding to the possible detection patterns 110, 101,
and 002.

The advantage of the dephasing formalism is that the
effect of the detection is described on the level of the state
transformations and the final states become as classical
as they can get. These close-to-classical states can then
be analyzed with respect to a given quantum informa-
tion task. One may also consider only partially dephased
states which are Fock-diagonal only with respect to the
dephased modes. Partial dephasing mimics those proto-
cols where only a subset of the modes is detected and
a subsequent linear-optics transformation is applied to
the remaining modes conditioned upon the measurement
outcomes (conditional dynamics).

Using the dephasing formalism, we now propose the
following strategy in order to decide whether a given
POVM can be implemented via linear optics. First, the
POVM shall be identified as a unique solution to an opti-
mization problem. For the cost function to be optimized,
we then refer to a general principle: the implementa-
tion is only possible if a linear-optics circuit exists for
which the quantum mechanical optimum (minimum) is
still attainable after dephasing the corresponding quan-
tum states. Thus, optimizing the cost function for the
dephased states must yield the same minimum as for the
original signal states. The linear-optics circuit must be
chosen such that

Coptimal
linear optics, dephasing

!
= Coptimal

quantum mechanics , (2)
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FIG. 1: An equivalent description of the detection mechanism
after a unitary state transformation via dephasing. In the
case of photon counting, the dephased density matrix is a
mixture of all possible photon number patterns for a given
input state and a given state transformation. Here, we are
mainly concerned about linear-optics transformations.

where the symbol C denotes the corresponding cost func-
tions [20]. This general criterion is a necessary and suf-

ficient condition for the possibility of implementing the
corresponding POVM. The sufficiency here is due to the
close-to-classical character of the totally dephased output
states which are directly linked to the click patterns of the
implementation. In the case of only partially dephased
states corresponding to a conditional-dynamics protocol,
the statement in Eq. (2) is no longer sufficient but only
necessary for the implementability of the POVM. Simi-
larly, if the POVM is not a unique solution to the opti-
mization problem, the condition in Eq. (2) is only neces-
sary.

In general, it will be highly non-trivial to find the quan-
tum mechanical optimum of the corresponding cost func-
tions. In many cases, neither for pure states, as typically
given before the dephasing, nor, in particular, for mixed
states, as obtained after dephasing, a closed expression
for the optimum exists.

However, for instance, for the non-projective POVM
that is an optimal solution to the unambiguous discrimi-
nation of two pure non-orthogonal states, the correspond-
ing cost function is the failure probability and its opti-
mum/minimum before dephasing is simply the overlap
(fidelity) of the states. For the mixed states after de-
phasing, in this case, at least a lower bound for the cost
function can also be given in terms of the fidelity of the
states. It is then possible to derive a relatively simple
set of necessary conditions for the implementability of
the corresponding POVM. Later we will discuss this ex-
ample in detail. However, before applying the general
principle in Eq. (2) to non-projective POVMs, let us first
review how the known criteria for projection measure-
ments follow from this principle as a simple special case.

III. PROJECTION MEASUREMENTS

Following the approach of the preceding section, given
a projection measurement, we shall consider this mea-

surement as the optimal solution to the discrimination
of orthogonal states. A suitable cost function for an
error-free state discrimination is the failure probability,
i.e., the probability for obtaining an inconclusive result.
Now the optimal strategy in order to discriminate states
within an orthogonal set is to do a projection measure-
ment on the space spanned by these orthogonal states.
This strategy will always lead to a conclusive error-free
result. Since this implies zero cost for discriminating or-

thogonal states, Coptimal
quantum mechanics = 0, a linear-optics

implementation of exact state discrimination means that

Coptimal
linear optics, dephasing

!
= 0 according to Eq. (2).

In order to discriminate any two pure orthogonal states
from the projection measurement basis, the quantum me-
chanically optimal/minimal failure probability is given
by the overlap of the states to be discriminated. Ex-
pressing the overlap in terms of the fidelity, F (ρ̂1, ρ̂2) ≡
(

Tr
√√

ρ̂1ρ̂2

√
ρ̂1

)2

, for two pure orthogonal signal states,

+ and −, of course, we have F (ρ̂+, ρ̂−) = 0. Hence
after dephasing, the minimal failure probability must
not become nonzero, in order to satisfy our principle
in Eq. (2). Since in any mixed-state discrimination
scheme, the squared failure probability is lower bounded
by the fidelity of the mixed states [21], the condition
for implementing the exact state discrimination becomes

F (ρ̂′+,H , ρ̂
′
−,H)

!
= 0. Thus, we have Tr(ρ̂′+,H ρ̂′−,H) = 0,

since always 0 ≤ Tr(ρ̂1 ρ̂2) ≤ F (ρ̂1, ρ̂2). Using the de-
phasing integral from Eq. (1), one can then derive a hi-
erarchy of simple conditions for the exact discrimination
of two or even more states [15]. These conditions are
necessary and sufficient for the possibility of exactly im-
plementing the corresponding projection measurement.

For a two-dimensional projection measurement, corre-
sponding to the discrimination of two orthogonal states
|χ+〉 and |χ−〉, the necessary and sufficient conditions
for an exact implementation via linear optics and, for
instance, photon counting, are given by [15],

〈χ+|ĉ†j ĉj |χ−〉 = 0 , ∀j , (3)

〈χ+|ĉ†j ĉ
†
j′ ĉj ĉj′ |χ−〉 = 0 , ∀j, j′ ,

〈χ+|ĉ†j ĉ
†
j′ ĉ

†
j′′ ĉj ĉj′ ĉj′′ |χ−〉 = 0 , ∀j, j′, j′′ ,

... =
...

Here, the mode operators ĉj = Û †âjÛ =
∑

i Ujiâi are
those corresponding to the output modes of the linear-
optics circuit. In the remainder of this section, we will
add some new and useful observations to the results of
Ref. [15] on projection measurements.

Assuming signal states with a fixed number of photons

(say N photons), there is an obvious interpretation for
the highest order conditions (i.e., the Nth order condi-
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tions), because for these we have

〈χ+|ĉ†j ĉ
†
j′ ĉ

†
j′′ · · · ĉj ĉj′ ĉj′′ · · · |χ−〉 =

〈χ+,H |â†j â
†
j′ â

†
j′′ · · · âj âj′ âj′′ · · · |χ−,H〉 ∝

Ψ∗(j, j′, j′′, ...|+) × Ψ(j, j′, j′′, ...|−) , (4)

where Ψ(j, j′, j′′, ...|±) is the probability amplitude for
detecting a photon in mode j and another photon in
mode j′, etc., when the input was the + or − state. Thus
Ψ(j, j′, j′′, ...|±) represents the probability amplitude for
any possible pattern to be detected at the output.

Now it becomes clear why any highest order must
vanish for exact state discrimination. Only those pat-
terns that do not occur at all and the successful pat-
terns that can be triggered only by one of the two states
lead to Ψ∗(j, j′, j′′, ...|+) × Ψ(j, j′, j′′, ...|−) = 0. In con-
trast, for any failure pattern, the product of the proba-
bility amplitudes becomes nonzero, Ψ∗(j, j′, j′′, ...|+) ×
Ψ(j, j′, j′′, ...|−) 6= 0. As a result, the highest order
conditions alone are necessary and sufficient for exact
state discrimination. Fulfilling all the highest order con-
ditions then implies that all lower order conditions are
satisfied as well. However, note that the converse does
not hold. The lower order conditions are only necessary,
but not sufficient for exact state discrimination. Thus, if
the lower order conditions are satisfied, the highest or-
der conditions may well be violated. As the lower orders
are easier to calculate than the higher orders, one would
normally start by computing the lowest orders. In order
to rule out the possibility of exact state discrimination,
it is then sufficient to find a violation of any lower or-
der condition (“no-go” statement). However, for a “go”
statement, the lower orders alone do not suffice. In this
case, for verifying that exact state discrimination is pos-
sible, one has to either calculate the higher orders as well
or directly check a possible solution inferred from the
lower orders. All these observations also indicate that for
unambiguously discriminating two nonorthogonal signal
states of fixed photon number, there must be at least one
highest order condition that is violated (corresponding to
the existence of at least one failure pattern and hence a
nonzero failure probability).

Let us now consider non-projective POVMs including
the optimal unambiguous discrimination of nonorthogo-
nal states via linear optics.

IV. NON-PROJECTIVE POVMS

Our goal is now, similar to the criteria for projection
measurements, to derive relatively simple conditions for
the implementation of a given non-projective POVM.
Our approach shall be based upon the general principle
expressed in Eq. (2).

We have seen already that there are state estimation
problems with trivial optimal POVM solutions. For in-
stance, discriminating orthogonal states optimally means
to perform the corresponding projection measurement.

A very natural way to optimally discriminate quantum
states drawn from a set of linearly independent states is
to perform a POVM that minimizes the probabiltity of
identifying the wrong states. This so-called minimum er-
ror discrimination (MED) can always be described by a
projection measurement onto a suitably chosen basis in
the signal Hilbert space [22]. Therefore, in order to decide
whether for a given set of quantum states MED can be
implemented via linear optics, we can also directly apply
the conditions for projection measurements. An exam-
ple for this is the MED of two symmetric coherent states
| ±α〉 which cannot be accomplished via non-asymptotic
linear-optics schemes [23].

Another trivial example is the optimal estimation of
an unknown qubit state. In this case, the optimal mean

fidelity F̄ optimal
quantum mechanics = 2/3 [20] can be attained by

randomly choosing an arbitrary qubit basis, measuring in
this basis, and estimating the state via the basis vector
that corresponds to the outcome of the measurement.
Thus, trivially, the optimal estimation of a completely
unknown qubit state α|0̄〉+β|1̄〉 in photonic dual-rail en-
coding, |0̄〉 ≡ |10〉, |1̄〉 ≡ |01〉, can be implemented by di-
rectly detecting the photons in the two modes. In fact, in
order to satisfy our general principle in Eq. (2), we need

to fulfil 1−F̄ optimal
linear optics,dephasing = 1−F̄ optimal

quantum mechanics =

1/3; this can be accomplished by directly dephasing the
input state [24].

An example that leads to highly non-trivial POVM
solutions is the calculation of the accessible information
in quantum communication, involving an extremely dif-
ficult optimization problem. Although our general prin-
ciple expressed in Eq. (2) applies to this problem as well,
here we are not going to attempt to treat a linear-optics
implementation of the accessible information gain.

By contrast, a relatively simple optimization leads
to the optimal unambiguous discrimination of quantum
states, i.e., a scheme that either identifies the signal state
correctly or it yields an inconclusive result with the small-
est probability allowed by quantum theory. In this case,
the cost function is the probability for obtaining an incon-
clusive result. Now it has been shown that in general, this
failure probability squared has a lower bound determined
by the fidelity of the signal states, Prob2

fail ≥ F [21]. For
two pure non-orthogonal signal states, the minimal fail-
ure probability squared exactly coincides with the over-
lap (fidelity) of the two states (assuming equal a priori
probabilities [25–27]). Thus, as for implementing optimal
unambiguous state discrimination (USD), we can directly
apply our general principle to the fidelities of the states
before and after dephasing. The corresponding optimal
POVM solution is a non-trivial non-projective POVM,
consisting of two POVM elements for the correct identi-
fication of the states and one that describes the incon-
clusive result [28–30]. Let us now consider the question
whether this optimal USD of two pure non-orthogonal
states can be implemented with linear optics.
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A. Optimal unambiguous state discrimination

The optimal unambiguous state discrimination (USD)
of two pure non-orthogonal states

|χ+〉 = α|0̄〉 + β|1̄〉 ,
|χ−〉 = α|0̄〉 − β|1̄〉 , (5)

where α > β are assumed to be real and {|0̄〉, |1̄〉} are
two basis states, corresponds to a projection onto the
orthogonal set (see also App. A),

|wµ〉 = |uµ〉 + |Nµ〉 , (6)

in an extended Hilbert space. Here, the {|uµ〉} are state
vectors in a Hilbert space K such that

Êµ = |uµ〉〈uµ| (7)

are the POVM operators of a three-valued POVM, µ =
1, 2, 3, with

∑

µ Êµ = 11. The vectors {|Nµ〉} are defined

in the complementary space K⊥ orthogonal to K, with
the total Hilbert space H = K ⊕ K⊥. For the optimal
USD, one can show that

|u1/2〉 =
1√
2

(

β

α
|0̄〉 ± |1̄〉

)

,

|N1/2〉 =
1√
2

√

1 − β2

α2
|2̄〉 ,

|u3〉 =

√

1 − β2

α2
|0̄〉 , |N3〉 = −β

α
|2̄〉 , (8)

and 〈2̄|0̄〉 = 〈2̄|1̄〉 = 0. The first two POVM elements
(µ = 1, 2) here refer to the two signal states, whereas the
third POVM element (µ = 3) corresponds to the incon-
clusive result. To make the discrimination unambiguous,
we have indeed Tr(Ê1|χ−〉〈χ−|) = Tr(Ê2|χ+〉〈χ+|) = 0

with Êµ from Eq. (7) and Eq. (8). To make it optimal,
we have

Probsucc = Tr(Ê1|χ+〉〈χ+|)/2 + Tr(Ê2|χ−〉〈χ−|)/2
= 1 − Probfail

= 1 − Tr(Ê3|χ+〉〈χ+|)/2 − Tr(Ê3|χ−〉〈χ−|)/2
= 1 − |〈χ+|χ−〉| = 1 − (α2 − β2) = 2β2 .

(9)

As for the linear-optical implementation, using one-
photon signal states and multiple-rail encoding, |0̄〉 ≡
|100〉, |1̄〉 ≡ |010〉, |2̄〉 ≡ |001〉, one can directly imple-
ment the corresponding POVM for the optimal USD,
as described in App. A for general single-photon based
POVMs [Eq. (A3) and Eq. (A4)]. In this case, the out-
put states after the linear-optics circuit, |100〉, |010〉, and
|001〉, uniquely refer to one of the three orthogonal states
|wµ〉, and hence identify the signal states |χ+〉 and |χ−〉
with the best possible probability. However, in general,
for arbitrary signal states, it turns out to be very hard

to decide whether the optimal USD can be implemented,
because of the infinite number of possible Naimark ex-
tensions. In the following, we will investigate the opti-
mal USD of two pure states independent of the Naimark
extension, using the general principle introduced in the
preceding sections and expressed in Eq. (2).

A suitable cost function for the USD of two pure non-
orthogonal states is the failure probability. When opti-
mized over all possible POVMs, the minimal failure prob-
ability corresponds to the overlap of the states. Thus,
according to Eq. (2) and since after dephasing the mixed-
state USD failure probability is bounded from below by
the fidelity [21], we obtain the condition

F (ρ̂′+,H , ρ̂
′
−,H)

!
= F (ρ̂+, ρ̂−) , (10)

where F (ρ̂+, ρ̂−) is the fidelity of the input states and
F (ρ̂′+,H , ρ̂

′
−,H) is the fidelity after linear optics and de-

phasing. Note that the fidelity of the dephased density
matrices only yields a lower bound on the failure proba-
bility and the optimal failure probability may well exceed
this bound. Thus, even for a fixed array of linear optics
[31], described by totally dephased density matrices, the
criterion in Eq. (10) is, in general, only a necessary con-

dition for optimal USD. As a result, for the optimal USD
of two pure states via linear optics and subsequent pho-
ton counting (of all modes after static linear optics or
only one first mode in a conditional-dynamics scheme),
we have the following rule: the linear-optics circuit must
be chosen such that the overlap of the two states in terms

of the fidelity is the same before and after dephasing.

This statement, as expressed by Eq. (10), extends the
exact discrimination of orthogonal states to the more gen-
eral scenario for optimal discrimination of nonorthogonal
states. Whether linear optics or, more generally, linear
transformations including multi-mode squeezing (corre-
sponding to arbitrary quadratic interactions) are suffi-
cient to implement optimal USD depends on the ability
of these tools to obey the above rule. When focusing
on the special case of USD, a more direct derivation of
the fidelity criterion in Eq. (10) is possible and given in
App. B. Let us now examine the statement in Eq. (10)
in more detail for a fixed array of linear optics.

B. Optimal USD via a fixed linear network

For a fixed array of linear optics, all output modes
will be detected at once. Therefore, Eq. (10) refers to
totally dephased density matrices. In order to check the
criterion in Eq. (10), we find that the fidelity before and
after linear optics becomes

F (ρ̂+, ρ̂−) = F (ρ̂+,H , ρ̂−,H) =
∑

m,n

α∗
mαnβmβ

∗
n , (11)
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because after the linear-optics transformation, the output
states will always take on the following form,

|χ+,H〉 =
∑

k

αk|{k} 〉 +
∑

m

αm|{m} 〉

|χ−,H〉 =
∑

l

βl|{l} 〉 +
∑

m

βm|{m} 〉 , (12)

where the coefficients depend on the linear-optics circuit
chosen in a particular implementation. The indices k
and l denote photon number patterns, i.e., N -mode Fock
states, that exclusively occur in the expansion of |χ+,H〉
and |χ−,H〉, respectively. Hence these patterns unam-
biguously refer to the + state or to the − state. How-
ever, because of the finite overlap of the input states,
we must include patterns that occur in the expansion of
both states. These ambiguous patterns are denoted by
the index m. In general, the amplitudes of the ambigu-
ous N -mode Fock states in the expansions, and hence
the probabilities for the corresponding patterns to be de-
tected, may be different for the + and the − state.

After dephasing, the output states take on the follow-
ing form

ρ̂′+,H =
∑

k

P+
k |{k} 〉〈{k}| +

∑

m

P+
m|{m} 〉〈{m}|

ρ̂′−,H =
∑

l

P−
l |{l} 〉〈{l}| +

∑

m

P−
m|{m} 〉〈{m}|,

(13)

corresponding to a dephasing of the states in Eq. (12)
with the probabilities given by P+

k = |αk|2, P−
l = |βl|2,

P+
m = |αm|2, and P−

m = |βm|2.
The fidelity after linear optics and dephasing is now

given by

F (ρ̂′+,H , ρ̂
′
−,H) =

(

Tr
√

ρ̂′+,H ρ̂′−,H

)2

=

(

∑

m

√

P+
mP−

m

)2

. (14)

Thus, the fidelity criterion from Eq. (10) can be expressed
by

∑

m,n

√

P+
mP+

n P−
mP−

n
!
=
∑

m,n

α∗
mαnβmβ

∗
n , (15)

using Eq. (14) and Eq. (11). This, however, implies that

∑

m,n

|αm||αn||βm||βn| !
=
∑

m,n

|αm||αn||βm||βn|

× ei(φ−
m
−φ−

n
+φ+

n
−φ+

m
) , (16)

where αm = |αm|eiφ+
m and βm = |βm|eiφ−

m , etc. The only

possible way to satisfy Eq. (16) is for ei(φ−
m
−φ−

n
+φ+

n
−φ+

m
) =

1, ∀m,n. Thus, we have φ−
m − φ+

m = φ, ∀m. A direct

consequence of this result is that the overlap of the input
states can be written as

|〈χ+|χ−〉| = |〈χ+,H |χ−,H〉|

=

∣

∣

∣

∣

∣

∑

m

α∗
mβm

∣

∣

∣

∣

∣

=
∑

m

|αm||βm|. (17)

Let us now look at the first-order expression from the
conditions in Eq. (3). We obtain

〈χ+|ĉ†j ĉj |χ−〉 = 〈χ+,H |â†j âj |χ−,H〉 (18)

= eiφ
∑

m

|αm||βm|〈{m} |â†j âj |{m} 〉 ,

because annihilating a photon in the jth mode of both
states only leads to nonzero contributions from coincid-
ing patterns. Using Eq. (17) and Eq. (18), there are
two observations we can make. First, the modulus of

any first order expression 〈χ+|ĉ†j ĉj |χ−〉 is bounded from
above such that

∣

∣

∣
〈χ+|ĉ†j ĉj |χ−〉

∣

∣

∣
≤ N |〈χ+|χ−〉| ,∀j , (19)

where N is the maximum photon number in the states.
In addition, we have

〈χ+|ĉ†j ĉj |χ−〉
∣

∣

∣
〈χ+|ĉ†j ĉj |χ−〉

∣

∣

∣

=
〈χ+|ĉ†j′ ĉj′ |χ−〉
∣

∣

∣
〈χ+|ĉ†j′ ĉj′ |χ−〉

∣

∣

∣

,∀j, j′ , (20)

provided that 〈χ+|ĉ†j ĉj |χ−〉 and 〈χ+|ĉ†j′ ĉj′ |χ−〉 are both
nonzero. Similarly, for the second-order expressions, we
obtain

〈χ+|ĉ†j ĉ
†
j′ ĉj ĉj′ |χ−〉 = 〈χ+,H |â†j â

†
j′ âj âj′ |χ−,H〉 (21)

= eiφ
∑

m

|αm||βm|

×〈{m} |â†j â
†
j′ âj âj′ |{m} 〉.

This leads to
∣

∣

∣
〈χ+|ĉ†j ĉ

†
j′ ĉj ĉj′ |χ−〉

∣

∣

∣
≤ N(N − 1) |〈χ+|χ−〉| ,∀j, j′,

(22)

and

〈χ+|ĉ†j ĉ
†
i ĉj ĉi|χ−〉

∣

∣

∣
〈χ+|ĉ†j ĉ

†
i ĉj ĉi|χ−〉

∣

∣

∣

=
〈χ+|ĉ†j′ ĉ

†
i′ ĉj′ ĉi′ |χ−〉

∣

∣

∣
〈χ+|ĉ†j′ ĉ

†
i′ ĉj′ ĉi′ |χ−〉

∣

∣

∣

,∀j, i, j′, i′ ,

(23)

provided that 〈χ+|ĉ†j ĉ
†
i ĉj ĉi|χ−〉 and 〈χ+|ĉ†j′ ĉ

†
i′ ĉj′ ĉi′ |χ−〉

are both nonzero. Moreover, for all non-vanishing expres-
sions, also the phases of different orders must coincide.
As a result, we have proven the following theorem for the
implementability of optimal USD of two pure nonorthog-
onal states with linear optics.
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Theorem: it is a necessary (but, in general, not suf-
ficient) criterion for the possibility of implementing the
optimal USD of two pure nonorthogonal states |χ±〉 via
static linear optics and photon counting that the hierar-
chies of conditions,

〈χ+|χ−〉
|〈χ+|χ−〉|

=
〈χ+|ĉ†j ĉj |χ−〉
∣

∣

∣
〈χ+|ĉ†j ĉj |χ−〉

∣

∣

∣

=
〈χ+|ĉ†j′ ĉj′ |χ−〉
∣

∣

∣
〈χ+|ĉ†j′ ĉj′ |χ−〉

∣

∣

∣

=
〈χ+|ĉ†j ĉ

†
i ĉj ĉi|χ−〉

∣

∣

∣
〈χ+|ĉ†j ĉ

†
i ĉj ĉi|χ−〉

∣

∣

∣

=
〈χ+|ĉ†j′ ĉ

†
i′ ĉj′ ĉi′ |χ−〉

∣

∣

∣
〈χ+|ĉ†j′ ĉ

†
i′ ĉj′ ĉi′ |χ−〉

∣

∣

∣

, etc. ,

∀j, i, j′, i′, etc. , (24)

for any non-vanishing orders, and

∣

∣

∣
〈χ+|ĉ†j ĉj |χ−〉

∣

∣

∣
≤ N |〈χ+|χ−〉| ,∀j ,

∣

∣

∣
〈χ+|ĉ†j ĉ

†
j′ ĉj ĉj′ |χ−〉

∣

∣

∣
≤ N(N − 1) |〈χ+|χ−〉| ,∀j, j′,

... ≤
... (25)

∣

∣

∣
〈χ+|ĉ†j ĉ

†
j′ ĉ

†
j′′ · · · ĉj ĉj′ ĉj′′ · · · |χ−〉

∣

∣

∣
≤

N ! |〈χ+|χ−〉| ,∀j, j′, j′′, ...,

are satisfied, where N is the maximum photon number in
the states. For the existence of a linear-optics solution to
the POVM that realizes the optimal USD, output mode
operators ĉj must be found such that a unitary matrix
U can be constructed with ĉj =

∑

i Ujiâi and the hierar-
chies of conditions are satisfied for these operators.

Note that for fixed photon number, the first set of con-
ditions of the theorem [that for the phases in Eq. (24)]
implies the second one [that for the absolute values in
Eq. (25)], however, the converse does not hold. The rea-
son is that in any linear-optics scheme, when the input
states have a fixed number of photons N , the total sum
of a given order satisfies a relation similar to

〈χ+|
∑

j

ĉ†j ĉj |χ−〉 = N 〈χ+|χ−〉 . (26)

Here, the sum of the first-order expressions leads to the
total photon number operator for the output modes, and
the relation in Eq. (26) follows from the photon number
conservation property of linear optics. Analogous condi-
tions can be found for the total sum of the higher order
expressions. Now for the sum of the first orders, for in-
stance, according to Eq. (26), we obtain

∣

∣

∣

∣

∣

∣

∑

j

〈χ+|ĉ†j ĉj |χ−〉

∣

∣

∣

∣

∣

∣

= N |〈χ+|χ−〉| , (27)

and, provided the phases of all non-vanishing first orders

coincide as required to obey Eq. (24),

∣

∣

∣

∣

∣

∣

∑

j

〈χ+|ĉ†j ĉj |χ−〉

∣

∣

∣

∣

∣

∣

=
∑

j

∣

∣

∣
〈χ+|ĉ†j ĉj |χ−〉

∣

∣

∣
. (28)

The two relations of Eq. (27) and Eq. (28) together imply
that the first-order conditions in Eq. (25) are automat-
ically satisfied by any linear-optics transformation that
fulfils the first-order conditions in Eq. (24).

The hierarchies of conditions in Eq. (24) and Eq. (25)
are necessary for optimal USD of two nonorthogonal
states. In words, these criteria mean that for optimal
USD, the phases of all non-vanishing orders must coin-

cide. For example, any real orders must have the same
sign in optimal USD. In the special case of orthogonal
states, 〈χ+|χ−〉 = 0, one can easily see in Eq. (25) that
the hierarchy for exact state discrimination from Eq. (3)
can be retrieved. An alternative derivation of the condi-
tions in Eq. (24) and Eq. (25), independent of the fidelity
criterion in Eq. (10), is given in App. C.

Let us now look at an example of two nonorthogonal
states with only two photons (which is the simplest non-
trivial extension to the trivial case of one-photon states).
We are going to consider the two-photon toy model state
α|20〉 ± β|11〉, where, without loss of generality, α and β
are assumed to be real. For the special case of an orthog-
onal pair α = β, it is know that there is no linear-optics
solution for optimally and hence exactly discriminating
these two states, including feedforward and arbitrary
auxiliary states [15]. Here we consider the nonorthogo-
nal case without auxiliary photons, but arbitrarily many
additional vacuum modes.

Defining Uj1 ≡ ν1 and Uj2 ≡ ν2 for the elements of
the jth row of the unitary matrix in ĉj =

∑

i Ujiâi, the
first-order expression for mode j then becomes

〈χ+|ĉ†j ĉj |χ−〉 = 2α2|ν1|2 − β2(|ν1|2 + |ν2|2)
+
√

2αβ(ν1ν
∗
2 − c.c.) . (29)

Now assuming a fixed array of linear optics, the condi-
tions in Eq. (24) are necessary for optimal USD. In order
to satisfy the first-order conditions there for any modes
j, j′, etc., the expression in Eq. (29) must become real for
any j, j′, etc., because the 0th order 〈χ+|χ−〉 = α2 − β2

is real. The same argument applies to the second-order
expressions,

〈χ+|(ĉ†j)2ĉ2j |χ−〉 = 2|ν1|2
[

α2|ν1|2 − 2β2|ν2|2

+
√

2αβ(ν1ν
∗
2 − c.c.)

]

. (30)

Knowing that all these expressions must be real, let us
evaluate the first-order and second-order conditions for
positive and negative 0th order 〈χ+|χ−〉, α2 > β2 or
α2 < β2, respectively. According to Eq. (24), we obtain

~ν ~a ≥ 0 , and ~ν ~b ≥ 0 , (31)
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for α2 > β2, and

~ν ~a ≤ 0 , and ~ν ~b ≤ 0 , (32)

for α2 < β2, where

~ν ≡
(

|ν1|2
|ν2|2

)

, ~a ≡
(

2α2 − β2

−β2

)

, ~b ≡
(

α2

−2β2

)

.

(33)

In Eq. (31), ~ν ~b ≥ 0 implies that α2 ≥ 2β2, because

otherwise, for α2 < 2β2, the only way to prevent ~ν ~b
from becoming negative is to have |ν1|2 > |ν2|2 for any
modes j, j′, etc., according to Eq. (24). However, no
unitary matrix can be constructed, where all the elements
j, j′, etc., in the first two columns satisfy |ν1|2 > |ν2|2.
Similarly, in Eq. (32), ~ν ~a ≤ 0 leads to α2 ≤ β2 (which
is also simply given by the 0th order). Thus, there is a
regime, β2 ≤ α2 < 2β2 (including the orthogonal case
α2 = β2), where optimal USD is impossible for a fixed
array of linear optics and without auxiliary photons.

For α2 = 2β2, the optimal solution is a simple 50/50
beam splitter, |ν1|2 = |ν2|2 = 1/2 for modes j = 1, 2.
In this case, in agreement with Eq. (31), we obtain

~ν ~a = β2 > 0 and ~ν ~b = 0. The orthogonal set of the
corresponding von Neumann measurement becomes

|w1/2〉 =
1√
2

[

1√
2
(|20〉 + |02〉) ± |11〉

]

,

|w3〉 =
1√
2
(|20〉 − |02〉) , (34)

choosing for the Naimark extension |2̄〉 ≡ |02〉 [see
Eqs. (5)-(8)]. A symmetric beam splitter turns these
three states into |20〉, |02〉, and |11〉, respectively, which
via photon counting uniquely refer to the three different
POVM elements. Thus, optimal USD for α =

√
2β can

be achieved with a simple beam splitter. The two signal
states α|20〉 ± β|11〉 are transformed by the symmetric

beam splitter into
√

2
3 |20〉+ 1√

3
|11〉 and

√

2
3 |02〉+ 1√

3
|11〉,

respectively. Indeed, we have Probsucc = 2/3 = 2β2.
Let us now apply the general fidelity criterion to a

more sophisticated linear-optics implementation of state
discrimination, namely one that includes conditional dy-
namics (feedforward): instead of detecting all output
modes after the linear-optics circuit, one may select only
one mode for detection. After this first measurement,
one can then send the conditional state of the remain-
ing modes through another linear-optics circuit which de-
pends on the measurement outcome. In the most general
approach, one can include as many feedforward steps as
modes are in the signal states, or even more by adding
auxiliary states.

C. Optimal USD via conditional dynamics

Let’s assume, without loss of generality, that mode 1
is detected first, corresponding to a partial dephasing of

the states only with respect to that mode. Now instead
of writing the states after linear optics as in Eq. (12), we
use the following expressions,

|χ+,H〉 =
∑

k

αk|k〉1 ⊗ |γ̃+
k 〉 +

∑

m

αm|m〉1 ⊗ |γ̃+
m〉

|χ−,H〉 =
∑

l

βl|l〉1 ⊗ |γ̃−l 〉 +
∑

m

βm|m〉1 ⊗ |γ̃−m〉 ,

(35)

where this time, the states |k〉1 and |l〉1 represent those
number states of mode 1 which only occur in the ex-
pansion of the + and the − state, respectively. The
one-mode states |m〉1 lead to the ambiguous detection
events in mode 1. Finally, the states |γ̃+

k 〉, etc., refer
to the corresponding conditional states of the remaining
modes (after normalization). Similarly, for the partially
dephased density operators, we obtain

ρ̂′+,H =
∑

k

P+
k |k〉1〈k| ⊗ |γ̃+

k 〉〈γ̃+
k |

+
∑

m

P+
m|m〉1〈m| ⊗ |γ̃+

m〉〈γ̃+
m|

ρ̂′−,H =
∑

l

P−
l |l〉1〈l| ⊗ |γ̃−l 〉〈γ̃−l |

+
∑

m

P−
m|m〉1〈m| ⊗ |γ̃−m〉〈γ̃−m| . (36)

Note that the partially dephased states are no longer di-
agonal in the Fock basis, i.e., the conditional density ma-
trices may contain off-diagonal terms. The corresponding
fidelities are now

F (ρ̂+, ρ̂−) = F (ρ̂+,H , ρ̂−,H) (37)

=
∑

m,n

α∗
mαnβmβ

∗
n 〈γ̃+

m|γ̃−m〉〈γ̃+
n |γ̃−n 〉∗ ,

and

F (ρ̂′+,H , ρ̂
′
−,H) =

(

∑

m

√

P+
mP−

m

∣

∣〈γ̃+
m|γ̃−m〉

∣

∣

)2

. (38)

Finally, we end up having the following condition due to
the fidelity criterion in Eq. (10),

∑

m,n

√

P+
mP+

n P−
mP−

n

∣

∣〈γ̃+
m|γ̃−m〉

∣

∣

∣

∣〈γ̃+
n |γ̃−n 〉

∣

∣

!
=

∑

m,n

α∗
mαnβmβ

∗
n〈γ̃+

m|γ̃−m〉〈γ̃+
n |γ̃−n 〉∗ , (39)

or, in terms of the unnormalized conditional states,

∑

m,n

∣

∣〈γ+
m|γ−m〉

∣

∣

∣

∣〈γ+
n |γ−n 〉

∣

∣

!
=
∑

m,n

〈γ+
m|γ−m〉〈γ+

n |γ−n 〉∗ . (40)

Now the only way to satisfy this condition is through

〈γ+
m|γ−m〉

∣

∣〈γ+
m|γ−m〉

∣

∣

!
=

〈γ+
n |γ−n 〉

∣

∣〈γ+
n |γ−n 〉

∣

∣

, (41)
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for any nonzero overlaps labeled by m and n. In
other words, for any two inconclusive one-mode detec-
tion events, any non-vanishing overlaps of the conditional
states coming from the + signal and the − signal must
have equal phases. Finally, we can now again examine
the first-order condition of our criteria, however, here
only for the detected mode 1,

〈χ+|ĉ†1ĉ1|χ−〉 = 〈χ+,H |â†1â1|χ−,H〉 (42)

=
∑

m

〈γ+
m|γ−m〉 1〈m|â†1â1|m〉1 .

Similar expressions hold for the higher orders in mode
1. Note that the different orders here are evaluated only
for the first mode to be detected, corresponding to the
first step in a conditional-dynamics scheme. Of course,
in addition, one could calculate further expressions using
the conditional states of modes 2 through N in order to
derive more criteria for a conditional-dynamics protocol.
Here, however, we only focus on the first step in any
conditional-dynamics scheme, namely the detection of a
first mode.

Using Eq. (42) and Eq. (41) (for any nonzero overlaps),
it becomes clear now that the hierarchies of conditions
necessary for optimal USD when detecting a first mode
j are simply the subset of conditions in Eq. (24) and
Eq. (25) referring to this one mode. Thus, we obtain

〈χ+|χ−〉
|〈χ+|χ−〉|

=
〈χ+|ĉ†j ĉj |χ−〉
∣

∣

∣
〈χ+|ĉ†j ĉj |χ−〉

∣

∣

∣

=
〈χ+|(ĉ†j)2ĉ2j |χ−〉
∣

∣

∣
〈χ+|(ĉ†j)2ĉ2j |χ−〉

∣

∣

∣

= · · · =
〈χ+|(ĉ†j)nĉnj |χ−〉
∣

∣

∣
〈χ+|(ĉ†j)nĉnj |χ−〉

∣

∣

∣

, etc. , (43)

for any non-vanishing orders, and

∣

∣

∣
〈χ+|ĉ†j ĉj |χ−〉

∣

∣

∣
≤ N |〈χ+|χ−〉| ,

∣

∣

∣
〈χ+|(ĉ†j)2ĉ2j |χ−〉

∣

∣

∣
≤ N(N − 1) |〈χ+|χ−〉| , etc. (44)

In the next section, we discuss whether our new set of
conditions enables us to make general statements about
the use of auxiliary photons for the optimal USD of two
nonorthogonal states.

D. Auxiliary photons for optimal USD

Let us investigate whether adding an auxiliary state
can make optimal USD via linear optics possible when it
is impossible without an ancilla state. The auxiliary state
contains optical modes in addition to the signal modes,
and these extra modes may be occupied by additional
photons. Let us use the notation |χ±〉 = |s±〉 ⊗ |ψaux〉,

where now the states |s±〉 represent the signal states and
the state |ψaux〉 is the auxiliary state.

Splitting the input modes into a set of signal and a
set of auxiliary modes allows us to decompose the out-
put mode operator ĉj =

∑

i Ujiâi into two corresponding
parts as (we drop the index j) ĉ = bsĉs + bauxĉaux, with
real coefficients bs and baux, where ĉs acts only upon the
signal modes and ĉaux only on the auxiliary modes. Now
we find for the first-order expression

〈χ+|ĉ†ĉ|χ−〉
= b2s 〈s+|ĉ†s ĉs|s−〉 + bsbaux〈s+|ĉs|s−〉〈ψaux|ĉ†aux|ψaux〉

+bsbaux〈s+|ĉ†s |s−〉〈ψaux|ĉaux|ψaux〉
+b2aux〈s+|s−〉〈ψaux|ĉ†auxĉaux|ψaux〉. (45)

For either signal or auxiliary states with a fixed number

of photons, this becomes

〈χ+|ĉ†ĉ|χ−〉 = b2s 〈s+|ĉ†s ĉs|s−〉 (46)

+ b2aux〈s+|s−〉〈ψaux|ĉ†auxĉaux|ψaux〉.

Only when the signal states are orthogonal, the first-
order expression without ancilla is proportional to that
with ancilla, and hence the first-order condition does not
change [15]. For the general case of nonorthogonal signal
states, 〈s+|s−〉 6= 0, the first-order expression without
ancilla is effectively displaced in phase space by adding
an ancilla state. Let us look at the second-order for states
with a fixed photon number,

〈χ+|(ĉ†)2ĉ2|χ−〉 = b2s 〈s+|(ĉ†s)2ĉ2s |s−〉
+ b2aux〈s+|s−〉〈ψaux|(ĉ†aux)

2ĉ2aux|ψaux〉
+ 4b2s b

2
aux〈s+|ĉ†s ĉs|s−〉

×〈ψaux|ĉ†auxĉaux|ψaux〉. (47)

Here, in the general case of nonorthogonal states, we ob-
tain again a phase-space displacement by adding the an-
cilla. It seems that, in general, we cannot rule out the
possibility that adding an ancilla helps to satisfy the con-
ditions for optimal USD when they cannot be fulfilled
without ancilla. However, if the auxiliary state |ψaux〉
contains no photons and is just the (multi-mode) vacuum
state, we obtain 〈χ+|(ĉ†)2ĉ2|χ−〉 = b2s 〈s+|(ĉ†s)2ĉ2s |s−〉. As
a result, adding auxiliary vacuum modes cannot change
the sign or phase of the first order expression, since
b2s is real and positive. However, adding auxiliary vac-
uum modes might be useful and necessary in order to
build up a unitary matrix for the mode operators ĉj =
∑

i Ujiâi. In fact, in the one-photon example discussed
after Eq. (9), adding an extra vacuum mode is essential in
order to extend the two-dimensional signal Hilbert space
to an at least three-dimensional space required for the
POVM and to construct the corresponding unitary ma-
trix.

There are also known examples, where adding extra
photons makes the optimal USD of the two signal states
via linear optics possible. One such example for the case
of infinite-dimensional signal and auxiliary states, both



10

FIG. 2: Implementing the optimal unambiguous discrimina-
tion of two symmetric coherent states via a simple 50/50 beam
splitter and an auxiliary coherent state of the same amplitude.

with unfixed and unbounded photon number, is the opti-
mal USD of so-called binary coherent states. In this case,
the optimal USD can be easily achieved using a 50/50
beam splitter and an ancilla coherent state (see Fig. 2).
In our notation, one has |s±〉 ≡ | ± α〉 (α assumed to
be real), |ψaux〉 ≡ |α〉, and |χ±〉 = |s±〉 ⊗ |ψaux〉. This
two-mode state is now transformed by the 50/50 beam
splitter into

|χ+,H〉 = |
√

2α〉 ⊗ |0〉
|χ−,H〉 = |0〉 ⊗ | −

√
2α〉 . (48)

For these states, a detector click in mode 1 can only be
triggered by the + state, whereas a click in mode 2 unam-
biguously refers to the − state. However, there are incon-
clusive “events” corresponding to the two-mode vacuum

state, |ψinconcl〉 = e−α2 |00〉, using Eq. (C2) from App. C
with φ = 0. Since the failure probability is then given by

Problin.opt.
fail = (e−2α2

+ e−2α2

)/2 = e−2α2

= 〈+α| − α〉,
this scheme turns out to be optimal. Thus, we ex-
pect that the corresponding solution satisfies our criteria
for optimal USD. For a particular mode j, again using
Uj1 ≡ ν1 and Uj2 ≡ ν2 for the elements of the jth row
of the unitary matrix in ĉj =

∑

i Ujiâi, we obtain the
nth-order condition,

〈χ+|(ĉ†j)nĉnj |χ−〉 = 〈+α| − α〉
(

|ν1|2α2 (49)

−|ν2|2 2〈ψaux|â†2â2|ψaux〉2
)n

.

Apparently, for any mode j = 1, 2, any order n ≥ 1
can be set to zero by choosing a 50/50 beam splitter,
|ν1|2 = |ν2|2 = 1/2, and the appropriate ancilla state,
|ψaux〉 ≡ |α〉. This solution is indeed in agreement with
the conditions that we derived for optimal USD. The ob-
vious reason, why all nonzero orders vanish in this exam-
ple, is that the only failure pattern here is |00〉 which al-
ways vanishes upon applying annihilation operators [see,
e.g., Eq. (18)]. From this observation follows that also
any cross orders for modes 1 and 2 will vanish with the
above solution. Let us finally note that for the optimal

USD of more than two coherent states, symmetrically dis-
tributed in phase space, the optimal USD [29] cannot be
achieved as easily as for the binary case. However, there
are asymptotic linear-optics solutions including the use
of feedforward [32].

V. CONCLUSIONS

We considered the problem of implementing general-
ized measurements (POVMs) with linear optics. Such
an implementation may either be based upon a static
array of linear optics or it may include conditional dy-
namics (feedforward). Extending our previous results
on projective measurements, we focused, in particular,
on non-projective measurements. Our approach to this
problem can be formulated as a general principle in the
following way. We start by identifying a given POVM
as a solution to an optimization problem for a chosen
cost function. The implementation is then only possi-
ble if a linear-optics circuit exists for which the quan-
tum mechanical optimum is still attainable after dephas-
ing the corresponding quantum states. As an example
for applying this principle to the problem of implement-
ing a non-projective POVM, we discussed in detail the
optimal unambiguous state discrimination (USD) of two
pure nonorthogonal states. In order to implement the
POVM that realizes the quantum mechanically optimal
USD with linear optics, according to the general princi-
ple, the linear-optics circuit must be chosen such that the
overlap of the states, in terms of the fidelity, is the same
before and after dephasing. This statement extends the
exact discrimination of orthogonal states to the more gen-
eral scenario for optimal discrimination of nonorthogonal
states. Using the fidelity criterion, we derived hierarchies
of necessary conditions for the possibility of implement-
ing the optimal USD of two pure nonorthogonal states via
linear optics and photon counting. The resulting con-
ditions are a generalization of our previous criteria for
projection measurements and the exact discrimination of
orthogonal states.

As for the detection mechanism, here we only stud-
ied the case of photon counting which leads to dephased
states diagonal in the Fock basis. Potential extensions of
our results may include different detection mechanisms
such as homodyne detection, as we discussed previously
already in the context of projective measurements. More-
over, apart from passive linear-optics circuits, our criteria
can also be applied to arbitrary linear mode transforma-
tions, including multi-mode squeezing. When analyzing
those POVMs that realize unambiguous state discrimi-
nation, one may also consider the USD of sets of three or
more linearly independent states. Finally, let us empha-
size that our approach of choosing suitable cost functions
and applying them to the dephased quantum states might
be as well useful for finding bounds on the efficiency of
implementing POVMs with linear optics.
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APPENDIX A: ONE-PHOTON SIGNAL STATES

Let us consider all those POVMs where the signal
states contain only one photon. In this typical and im-
portant case, any unitary operation (gate) can be ac-
complished with linear optics [33]. This statement ap-
plies to arbitrary qudit states, where each basis vector of
the qudit is described by one photon occupying one of d

modes, â†i |0〉, i = 1...d (“multiple-rail encoding”). Simi-
larly, any POVM can be implemented solely by means of
linear optics for these one-photon signal states. This can
be understood by looking at the corresponding Naimark
extension of the POVM. The POVM is then described
by a von Neumann measurement onto the orthogonal set

|wµ〉 = |uµ〉 + |Nµ〉 , (A1)

in a Hilbert space larger than the original signal
space. Here, the {|uµ〉} are (unnormalized, potentially
nonorthogonal) state vectors in a Hilbert space K such
that

Êµ = |uµ〉〈uµ| (A2)

are the POVM operators of an N -valued POVM, µ =
1...N , with

∑

µ Êµ = 11. The vectors {|Nµ〉} are defined

in the complementary space K⊥ orthogonal to K, with
the total Hilbert space H = K⊕K⊥. If the dimension of

the signal space is n, we have |Nµ〉 =
∑N

i=n+1 bµi|vi〉 with

some complex coefficients bµi and {|vi〉} a basis in K⊥.
In the multiple-rail encoding, this leads to an orthogonal
set of vectors

|wµ〉 =

N
∑

j=1

Uµj â
†
j |0〉 , (A3)

with a unitary N × N matrix U having elements Uµj .
The application of a linear-optics transformation V to
this set (in order to project onto it) can be written as

|wµ〉 −→ |w′
µ〉 =

N
∑

j,k=1

UµjV
∗
kj â

†
k|0〉

=

N
∑

k=1

δµkâ
†
k|0〉 = â†µ|0〉 , (A4)

choosing V ≡ U . As a result, when detecting the outgo-
ing state, for every one-photon click in mode µ, one can
unambiguously identify the input state |wµ〉. This is why

it is no surprise that any POVM for one-photon states
can be implemented via linear optics with unit success
probability [34].

For states other than one-photon states, it is a priori
not clear whether a given POVM can be implemented
with linear optics. A possible approach to deciding this
would be to apply the criteria for projective measure-
ments [15] to the orthogonal set in Eq. (6). The main
difficulty then is that one must consider any possible
Naimark extension vectors {|Nµ〉} in order to be able to
decide whether the POVM can be implemented or not. In
particular, the extension of the signal Hilbert space can
be arbitrarily large. Therefore, in an optical implementa-
tion, arbitrary ancilla states must be taken into account,
including arbitrarily many extra modes and photons. It
seems that, in general, more complicated approaches are
required to deal with the potentially infinite-dimensional
problem of adding arbitrary auxiliary states [13] (how-
ever, see [8]). In this paper, we propose a dephasing
approach to the problem of implementing POVMs via
linear optics, independent of the Naimark extension.

APPENDIX B: ALTERNATIVE DERIVATION OF

THE OPTIMAL-USD FIDELITY CRITERION

Without referring to the general principle in Eq. (2) for
arbitrary cost functions and POVMs, here we directly de-
rive the corresponding (necessary) criterion for the spe-
cial case of optimal USD in terms of fidelities.

In general, for any state discrimination scheme based
on static linear optics, we have the following fidelity
bounds,

F (ρ̂+, ρ̂−) ≤ F (ρ̂′+,H , ρ̂
′
−,H) ≤

(

Problin.opt.
fail

)2

. (B1)

In words, the fidelity of the linearly transformed and de-
phased output states is lower bounded by the fidelity of
the input states and upper bounded by the squared fail-
ure probability in the linear-optics implementation of un-
ambiguous state discrimination. The lower bound here
corresponds to the general rule that the fidelity of two
density matrices cannot decrease under CPTP maps [35].
As for the upper bound, we may note that in any scheme,
the linearly transformed and dephased output states take
on the form of Eq. (13) corresponding to a total dephas-
ing of the states in Eq. (12). Since the two density ma-
trices in Eq. (13) are diagonal in the Fock basis and com-
mute, we have the relation in Eq. (14). Now the failure

probability is given by Problin.opt.
fail =

∑

m(P+
m + P−

m)/2.

However, we also have (P+
m + P−

m)/2 ≥
√

P+
mP−

m, ∀m,
thus proving the upper bound in Eq. (B1).

According to the fidelity bounds in Eq. (B1), we obtain
Eq. (10) as a necessary condition for the optimal USD
of two states via static linear optics and photon count-

ing, because optimal USD requires
(

Problin.opt.
fail

)2

=

|〈χ+|χ−〉|2 = F (ρ̂+, ρ̂−).
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One can now further exploit the fact that the bounds
in Eq. (B1) also hold for partially dephased density ma-
trices, corresponding to schemes that include conditional

dynamics. In particular, the upper bound in Eq. (B1)
holds for the partially dephased density matrices as well,
because in any mixed-state discrimination scheme, the
squared failure probability is lower bounded by the fi-
delity of the mixed states [21].

APPENDIX C: ALTERNATIVE DERIVATION OF

THE USD CONDITIONS FOR A FIXED ARRAY

Let us consider the optimal USD of two pure
nonorthogonal states using a fixed array of linear optics.
We will give an alternative derivation of the conditions
in Eq. (24) and Eq. (25), independent of the fidelity cri-
terion in Eq. (10).

After the linear-optics transformation, the output
states will always take on the form of Eq. (12), for con-
venience, written again here,

|χ+,H〉 =
∑

k

αk|{k} 〉 +
∑

m

αm|{m} 〉

|χ−,H〉 =
∑

l

βl|{l} 〉 +
∑

m

βm|{m} 〉 . (C1)

The patterns labeled by k and l are those that unam-
biguously refer to the + state and to the − state, respec-
tively. Because of the finite overlap of the input states,
we must include patterns that occur in the expansion of
both states. These ambiguous patterns are denoted by
the index m. In general, the amplitudes of the ambigu-
ous N -mode Fock states in the expansions, and hence
the probabilities for the corresponding patterns to be de-
tected, may be different for the + and the − state. In
the following, we will first prove that in any optimal USD
scheme, the modulus of the amplitudes of any failure pat-
tern must indeed be equal for both states. Further, we
will show that for optimal USD, any relative phases in
the expansion of the failure patterns are reduced to a
single global phase. As a result, the output states after
linear optics in optimal USD must be describable in a
three-dimensional vector space such that

|χ+,H〉 = |ψ+
concl〉 + |ψinconcl〉

|χ−,H〉 = |ψ−
concl〉 + eiφ |ψinconcl〉 . (C2)

Here the states |ψ+
concl〉, |ψ−

concl〉, and |ψinconcl〉 are all mu-
tually orthogonal. They represent the vectors of all con-
clusive patterns for the + state, of those for the − state,
and the vector of all inconclusive patterns, respectively.

As for the proof, we exploit the fact that in opti-
mal USD, the failure probability equals the modulus of
the overlap of the states to be discriminated, Probfail =
|〈χ+|χ−〉| (assuming equal a priori probabilities). This
implies that a linear-optical implementation of optimal

USD must satisfy

Problin.opt.
fail =

1

2

∑

m

(|αm|2 + |βm|2) !
= |〈χ+|χ−〉|

= |〈χ+,H |χ−,H〉| =

∣

∣

∣

∣

∣

∑

m

α∗
mβm

∣

∣

∣

∣

∣

, (C3)

using Eq. (C1). The factor 1/2 in the first line of Eq. (C3)
corresponds to the a priori probabilities. Then, because
of |∑m α∗

mβm| ≤∑m |α∗
mβm|, we also have

Problin.opt.
fail =

1

2

∑

m

(|αm|2 + |βm|2)

≤
∑

m

|α∗
mβm| , (C4)

or,
∑

m

(|αm| − |βm|)2 ≤ 0 . (C5)

The last inequality proves that |αm| = |βm|, ∀m. More-

over, it implies that |∑m α∗
mβm| !

=
∑

m |α∗
mβm|, and

hence
∣

∣

∣

∣

∣

∑

m

|αm|2eiφm

∣

∣

∣

∣

∣

!
=
∑

m

|αm|2 , (C6)

using βm = αme
iφm . However, Eq. (C6) can only be

satisfied for eiφm = eiφ, ∀m. This concludes the proof
of Eq. (C2). For the case of optimal USD, we can now
replace Eq. (C1) by

|χ+,H〉 =
∑

k

αk|{k} 〉 +
∑

m

αm|{m} 〉

|χ−,H〉 =
∑

l

βl|{l} 〉 + eiφ
∑

m

αm|{m} 〉 . (C7)

Let us now use this result in order to calculate the first-
order expression. Similar to Eq. (18), we obtain now

〈χ+|ĉ†j ĉj |χ−〉 = 〈χ+,H |â†j âj |χ−,H〉 (C8)

= eiφ
∑

m

|αm|2〈{m} |â†j âj |{m} 〉 .

Since analogous expressions can be found for all higher
orders, the same arguments as those in the discussion
after Eq. (18) apply here again. Thus, finally we obtain
the same hierarchies of necessary conditions as in Eq. (24)
and Eq. (25) for optimal USD using a fixed array of linear
optics.

For the special case of exact discrimination of two or-
thogonal states |χ+〉 and |χ−〉 via photon counting, the
linearly transformed states take on the form,

|χ+,H〉 =
∑

k

αk|{k} 〉

|χ−,H〉 =
∑

l

βl|{l} 〉 . (C9)
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Now there are no ambiguous patterns in the expansions.
Let us again examine the expression

〈χ+|ĉ†j ĉj |χ−〉 = 〈χ+,H |â†j âj |χ−,H〉 . (C10)

According to Eq. (C9), the output states of the linear-
optics transformation in exact state discrimination must

satisfy 〈χ+,H |â†j âj |χ−,H〉 = 0, because annihilating a
photon in the jth mode of the two states only yields
a nonzero overlap for coinciding patterns. Similarly, we
have

〈χ+|ĉ†j ĉ
†
j′ ĉ

†
j′′ · · · ĉj ĉj′ ĉj′′ · · · |χ−〉 = (C11)

〈χ+,H |â†j â
†
j′ â

†
j′′ · · · âj âj′ âj′′ · · · |χ−,H〉 = 0 , ∀j, j′, j′′... ,

because annihilating a photon in the jth, j ′th, j′′th, etc.,
mode of the two states also only yields a nonzero over-
lap for coinciding patterns. Thus, we end up having the
following set of conditions for exact state discrimination

〈χ+,H |â†j âj |χ−,H〉 = 0 , ∀j , (C12)

〈χ+,H |â†j â
†
j′ âj âj′ |χ−,H〉 = 0 , ∀j, j′ ,

〈χ+,H |â†j â
†
j′ â

†
j′′ âj âj′ âj′′ |χ−,H〉 = 0 , ∀j, j′, j′′ ,

... =
...

or, equivalently, as described in Eq. (3).
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