

Controllable Fair Queuing for Service Utilities

Magnus Karlsson, Christos Karamanolis, Jeff Chase1
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2005-21
February 7, 2005*

E-mail: karlsson@hpl.hp.com, christos@hpl.hp.com, chase@cs.duke.edu

fair queuing,
closed-loop
systems, utility
computing

Computing and storage utilities must control resource usage to meet contractual
performance targets for hosted customers under dynamic conditions, including
flash crowds and unexpected resource failures. This paper explores properties of
proportional share resource schedulers that are necessary for stability and
responsiveness under feedback control. It shows that the fairness properties
commonly defined for proportional share schedulers using Weighted Fair
Queuing (WFQ) are not preserved across changes to the relative weights of
competing request flows. As a result, conventional WFQ schedulers are not
controllable by a resource controller that adapts by adjusting the weights. The
paper defines controllable fairness properties, presents an algorithm to adjust
any WFQ schedule when the weights change, and proves that the algorithm
results in controllable-fair WFQ schedulers.

The analytic results are confirmed by experimental evaluation using a three-tier
Web service and a prototype controllable-fair scheduler called C-SFQ(D). C-
SFQ(D) extends depth-controlled Start-time Fair Queuing, which supports
interposed proportional sharing for complex network services with no internal
support for differentiated service quality. The prototype includes an adaptive
control system that adjusts the flow weights on the C-SFQ(D) scheduler to meet
latency and throughput targets under a variety of conditions. Experimental
results demonstrate the importance of controllable-fair scheduling for feedback
control of network services.

* Internal Accession Date Only
1Duke University, Durham, North Carolina, USA
 Approved for External Publication
© Copyright Hewlett-Packard Company 2005

Controllable Fair Queuing for Service Utilities

Blind Review

ABSTRACT
Computing and storage utilities must control resource usage to meet
contractual performance targets for hosted customers under dynamic
conditions, including flash crowds and unexpected resource fail-
ures. This paper explores properties of proportional share resource
schedulers that are necessary for stability and responsiveness un-
der feedback control. It shows that the fairness properties com-
monly defined for proportional share schedulers using Weighted
Fair Queuing (WFQ) are not preserved across changes to the rel-
ative weights of competing request flows. As a result, conven-
tional WFQ schedulers are not controllable by a resource controller
that adapts by adjusting the weights. The paper defines control-
lable fairness properties, presents an algorithm to adjust any WFQ
schedule when the weights change, and proves that the algorithm
results in controllable-fair WFQ schedulers.

The analytic results are confirmed by experimental evaluation using
a three-tier Web service and a prototype controllable-fair scheduler
called C-SFQ(D) . C-SFQ(D) extends depth-controlled Start-time
Fair Queuing, which supports interposed proportional sharing for
complex network services with no internal support for differenti-
ated service quality. The prototype includes an adaptive control
system that adjusts the flow weights on the C-SFQ(D) scheduler to
meet latency and throughput targets under a variety of conditions.
Experimental results demonstrate the importance of controllable-
fair scheduling for feedback control of network services.

1. INTRODUCTION
Service providers and enterprises are increasingly hosting services
and applications on shared pools of computing and storage resources.
For example, in many enterprises, shared network storage servers
meet the storage demands of different departments in the organi-
zation. Multiplexing workloads onto a shared utility infrastructure
allows for on-demand assignment of resources to workloads; this
can improve resource efficiency while protecting against unplanned
demands and service outages.

Shared service utilities must manage their physical resources in a
way that meets the performance needs of the customers and their

workloads. Typically, negotiated Service Level Agreements (SLAs)
define contractual performance objectives—response time bounds
and minimum throughput requirements—for the requests of differ-
ent customers or workloads. Without loss of generality, we suppose
that SLAs are defined at the granularity of flows of requests arriv-
ing at each network service. The service handles the requests of
all flows using shared physical resources such as CPUs, memory,
network switches, and disk spindles. Utility resource control ap-
portions resources to meet the demands of each service or flow. To
adapt to changing conditions, resource managers may monitor re-
source status and flow performance metrics to adjust performance
under feedback control [1, 23]. The actuators available to the util-
ity controller include admission control, throttling admitted request
flows or changing the scheduling of request execution [17, 21, 16,
24], and/or changing the assignment of resources such as disks [2].

This paper focuses on performance control by varying the shares of
resources available to each request flow. In particular, we focus on
controllability properties of proportional share schedulers, which
are most commonly implemented using variants of weighted fair
queuing (WFQ). The input to a proportional share scheduler is a
vector of weights, one for each flow; the scheduler partitions re-
sources or service capacity among the flows in proportion to their
weights. A feedback controller can vary the weights dynamically to
enforce its performance objectives. This general approach is based
on the simple premise that performance of a workload varies in
a predictable way with the amount of resource available to exe-
cute it. This approach may be used in tandem with other actuators
to account for the diversity of factors that affect workload perfor-
mance. A few recent research projects have explored the feasibility
of controlled resource sharing driven by feedback from workload
performance measures [29, 25, 23, 3, 1, 21, 24, 22].

A key problem for performance control with WFQ schedulers is
that dynamic changes to the flow weights take effect only after a
variable time lag. This effect results from the way that WFQ sched-
ulers implement their work-conserving property: if idle resources
exist, then flows may exceed their allotted shares to consume them
without penalty. Schedulers with this property use resources effi-
ciently to deliver better performance for a given weight vector in
the presence of transient load changes, freeing the control system
from the need to adjust the weights in response to transient changes.
Unfortunately, the implementation of this property in WFQ sched-
ulers makes them less responsive to changes in the weights, thus
impeding stable feedback control. In a formal sense, their fairness
properties are not preserved across changes to the weights. This
paper proves that WFQ schedulers are unfair in the presence of
dynamic control, defines a stronger notion of fairness called con-

1

trollable fairness required to allow stable control, develops a tag ad-
justment algorithm to ensure that WFQ schedulers are controllable-
fair, and proves properties of controllable-fair schedulers.

To validate the notion of controllable-fair scheduling, we devel-
oped and implemented a controllable request scheduler called C-
SFQ(D) . C-SFQ(D) is a controllable-fair variant of an interposed
request scheduler [21] for complex network services. The sched-
uler is placed on the network path between the service and its clients;
it intercepts requests sent to the service and re-orders or delays
them to enforce approximate proportional sharing of the service’s
capacity to serve requests (as shown in Figure 1). An interposed
scheduler releases up to a depth D of requests for concurrent pro-
cessing by the service; we show that the depth D must also be sub-
ject to dynamic control, and show how C-SFQ(D) preserves con-
trollable fairness across changes to D.

We conducted experiments using C-SFQ(D) and a feedback control
system to meet performance objectives for a a 3-tier Web applica-
tion service. The results show that C-SFQ(D) can be used with
adaptive setting of weights and D to effectively enforce through-
put and latency goals in the 3-tier system. The simple control sys-
tem used in the experiments is stable when used in conjunction
with a controllable-fair scheduler, but we show that a conventional
WFQ scheduler that is not controllable-fair causes the control sys-
tem to become unstable. A comprehensive study of effective con-
trol systems for complex services with controllable-fair schedulers
is a topic for future work.

2. OVERVIEW
A utility service comprises an ensemble of computing resources
(servers, disks, network links, etc) that are shared by multiple cus-
tomers with contractual performance assurances (SLAs). Examples
of utility service providers include shared storage services [27, 2,
25, 9, 24, 21, 23] or shared clusters hosting a multi-tier Internet
application for each customer [10, 26]. The objective of the service
provider is to meet the performance targets specified in the SLAs
in order to maximize yield or minimize penalty. At the same time,
the service provider seeks to minimize costs by using its resources
efficiently.

The clients accessing the service generate streams of requests that
may use hardware resources—processor capacity, disk arms, I/O
bandwidth—in widely varying ways. Requests are grouped into
service classes called flows. For example, all the clients accessing
a given storage volume or application service could be grouped into
the same flow, or different clients of a given service may be grouped
into different flows to allow for differentiated service quality. The
objective is to meet the performance targets of the request flows by
controlling the rates at which they consume the service resources.

2.1 Resource Control
This paper deals with utility schedulers that adjust the performance
of each request flow by controlling the resources available to ex-
ecute it. A scheduler limits resource consumption of each flow f
in proportion to a weight φ f assigned to each flow. If flow weights
are normalized to sum to one, then we may interpret each weight as
representing a share of the resources. The weights enforce the es-
sential property of performance isolation: they prevent load surges
in any flow from unacceptably degrading the performance of an-
other, because the heavily loaded flow is limited to its configured
share of resources.

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

φ1

φ2

φΝ
flow N

flow 2

flow 1

scheduler

D outstanding requests

service

Figure 1: A request scheduler is interposed on the network path
between a service and its clients. The scheduler intercepts and
delays and/or re-orders the requests to meet performance goals
defined per flow, e.g., by allocating resources in proportion to
a share or weight φ associated with each flow. The interposed
scheduler views the service as a black box, and enforces a max-
imum degree of concurrency D in the service.

Of course, a complex set of factors determines the application per-
formance for a given weight setting. If the weight represents a
share of the system’s capacity to serve requests, then this approach
enforces throughput targets directly. It also supports soft response
time targets: for a configured request completion rate, the distri-
bution of the flow’s request arrivals and service demands deter-
mines the response time profile. Statistical delay guarantees can
be proven under various assumptions about arrival processes, ser-
vice demands, and allocation of surplus resources [32].

We focus specifically on work-conserving proportional-share sched-
ulers based on the widely used technique of weighted fair queuing
(WFQ)—see Section 2.3. In contrast to guaranteed reservations,
which guarantee a minimum allotment of resource to each flow
even when the flow has low load, a work-conserving proportional-
share scheduler shares surplus resources among active flows in pro-
portion to their configured weights. A flow may receive more than
its configured share unless the system is fully loaded and all com-
peting flows are active or backlogged, i.e., they have backlogs of
queued requests. Work-conserving schedulers use resources more
efficiently, and they improve performance of active flows when the
system is lightly loaded. These properties limit the need for fine-
grained adjustments in the weights to accommodate bursty demand.

This paper focuses on the use of WFQ schedulers in conjunction
with dynamic control loops to adjust the flow weights. The con-
troller may continuously adjust the weights in response to observ-
able performance metrics (response latency and throughput) ob-
tained by each flow. The use of dynamic control to meet perfor-
mance goals has been discussed in the literature [3, 10, 29, 1, 23].
Indeed, we expect that a number of different implementations of
a feedback loop will be possible. The actual implementation will
depend on the dynamics of the target system and the time granu-
larity at which actions must be taken. At a coarse granularity, a
system administrator might configure the scheduler manually, ac-
cording to currently observed performance or in anticipation of fu-
ture activities. Alternatively, an automated tool may use a learning
heuristic [29] or an adaptive controller [23] to adjust automatically
to changes in the system.

Section 5.4 presents experimental results with a prototype control
system for a 3-tier Web service. However, this paper focuses on
the properties of WFQ proportional-share schedulers that are im-
portant for stable feedback control, rather than on the design and
analysis of the control system itself.

2

2.2 Controllable Schedulers
Whatever the design of the feedback loop, the control system must
adjust the scheduler parameters dynamically. However, WFQ schedul-
ing algorithms have been designed and analyzed for weights that
are fixed over time. In particular, these algorithms schedule re-
quests based on tags that are assigned at request arrival time, due
to the way that they maintain fairness and avoid penalizing flows
that consume idle resources. As a result, changes to the weights
do not take effect until queued requests have exited the system. In
the worst case, incorporating WFQ schedulers into feedback loops
can produce unbounded delays in reaction time, and violate sched-
uler fairness properties arbitrarily, as shown in Section 3. While a
less aggressive control loop can tolerate longer reaction times, vari-
able reaction times may cause the control loop to become unstable.
Bursty demands can cause large variations in the queued lengths,
and thus reaction times that vary in a fashion that is unpredictable
to the controller.

We define three properties that are important for a controllable
scheduler that can be used effectively in a dynamic control loop
to meet application-level performance goals:

• Predictability. Ideally, there is a monotonic relation between
a flow’s weight and its performance at a given load level. For
example, increasing the share of a flow may reduce the aver-
age latency of that flow’s requests, but should never increase
it. This monotonic relation is necessary in any closed-loop to
estimate a model of the performance of the system as a func-
tion of share settings. Note that a work-conserving scheduler
may exhibit transient improvements in a flow’s performance
when the system has surplus resources, independent of the
flow’s weight. What is important is that performance is sta-
ble and predictable for a given workload.

• Fairness. The partitioning of service capacity should resem-
ble the specified proportional shares of the flows that com-
pete for the service. In a complex system, artifacts such as
the assignment of data to disks or servers may affect the per-
formance from a given set of weights, but the scheduler’s
fairness must be consistent across changes to the weights.
This is a key requirement for predictability.

• Responsiveness. A controllable scheduler must have a known
reaction delay. That is, there is a known time lag between
changing some parameters (e.g., flow weights) and observ-
ing the effects of that change. This property is necessary to
ensure a stable closed-loop system. If the effects of a change
are not stable and observable within the control interval, then
the controller may overreact and amplify its earlier actions.
This may give rise to oscillations and instability.

In this paper, we use both analytical and experimental results to
show that existing WFQ schedulers are not controllable in a well-
defined sense, and that control loops using uncontrollable sched-
ulers can become unstable.

2.3 Weighted Fair Queuing
Many variants of WFQ scheduling algorithms have been developed
and extensively studied in the literature (see Section 6). All WFQ
variants are designed following the same principles. Each flow f
consists of a sequence of requests p0

f . . . pn
f arriving at the server.

Each request pi
f has an associated cost ci

f bounded by a constant

cmax
f . For example, the requests may be packets of varying lengths

or requests of varying costs. Fair queuing allocates the capacity
of the resource in proportion to weights assigned to the competing
flows. The weights may represent service rates, such as bits or cy-
cles or requests per second. Only the relative values of the weights
are significant, but it is convenient to assume that the weight φ f for
each flow f represents a percentage share of service capacity, and
that request costs are normalized to a service capacity of one unit
of cost per unit of time.

WFQ schedulers are fair in the sense that active flows share the
available service capacity proportionally to their weights, within
some tolerance that is bounded by a constant over any time inter-
val. Formally, if W f (t1,t2) is the aggregate cost of the requests
from flow f served in any time interval [t1,t2), then a fair scheduler
guarantees that:

∣

∣

∣

∣

W f (t1,t2)
φ f

−
Wg(t1,t2)

φg

∣

∣

∣

∣

≤U f ,g (1)

where f and g are any two flows continuously backlogged with re-
quests during [t1,t2) and U f ,g is a constant that depends on the flow
weights and the maximum cost of flow requests. All algorithms try
to ensure low values of U f ,g, which indicates better fairness. Table
Table 1 summarizes the symbols used in this paper.

WFQ schedulers dispatch requests in order of tags assigned at re-
quest arrival time. When the jth request p j

f of flow f arrives it is

assigned a start tag S(p j
f) and a finish tag F(p j

f) as follows:

F(p0
f) = 0 (2)

S(p j
f) = max (v(A(p j

f)),F(p j−1
f)), j ≥ 1 (3)

F(p j
f) = S(p j

f)+
c j

f

φ f
, j ≥ 1 (4)

where A(p j
f) is the arrival time of request p j

f , c j
f is the actual cost

for the service to execute request p j
f and φ f is the weight of flow f .

These tags represents the time at which each request should start
and finish according to a scheduler notion of virtual time v(t).
Virtual time advances monotonically and is identical to real time
under ideal conditions: all flows are backlogged, the server com-
pletes work at a fixed ideal rate, request costs are accurate, and the
weights sum to the service capacity. In an idealized bit-by-bit fair
round-robin scheduling algorithm, each active flow f receives φ f
bits of service per unit of virtual time: v(t) speeds up when surplus
resources are available to serve active flows at a higher rate. Calcu-
lating v(t) exactly is computationally expensive; in particular, the
cost is prohibitive when the capacity of the service fluctuates [15].
WFQ algorithms differ primarily in the way that they approximate
virtual time.

There are two WFQ algorithms that approximate v(t) efficiently by
clocking the rate at which the service actually completes work. Self
Clocked Fair Queuing (SCFQ) [12, 15] and Start-time Fair Queu-
ing [17] (SFQ) approximate v(t) with (respectively) the finish tag
or start tag of the request in service at time t. The main advantage
of SFQ over SCFQ is that it reduces the maximum delay incurred
for the processing of individual requests, by scheduling requests in
increasing order of start tags [17]. For simplicity, our analysis of
controllability for WFQ algorithms focuses on self-clocking algo-
rithms, but the proofs are independent of how v(t) is computed.

3

2.4 Interposed Request Scheduling
Our experimental work focuses on resource control solutions that
consider the service as a “black box”. Papers in last year’s SIG-
METRICS show that proportional-share schedulers can meet SLA
objectives for complex services such as network storage by inter-
posing a scheduler that controls the dispatch of requests into the
service [21, 19], as depicted in Figure 1. Other systems have used
a similar idea [25, 9, 21, 23, 22]. The main advantage of this ap-
proach is that it is non-intrusive and general; it treats the service
as a “black box” and is applicable even to services that have no
internal support for differentiated service quality. It assumes that
the individual requests in each flow have modest service demands
(costs) that are known approximately: there is a reasonably high
volume of requests per flow with reasonably stable average case
behavior.

Most existing WFQ schedulers are designed for resources that han-
dle one task at a time, such as a router’s outgoing link or a CPU,
and so are not suitable for interposed request scheduling. A depth-
controlled variant of SFQ (SFQ(D)) with proven fairness bounds
has been developed for interposed request scheduling for concur-
rent requests [21]. The maximum concurrency D reflects a trade-
off between utilization of the service and the worst-case fairness
bound of the scheduler. In this case, U f ,g also depends on D.

Section 4 proposes a tag adjustment algorithm to ensure that WFQ
schedulers are controllable. We develop a controllable variant of
SFQ(D) called C-SFQ(D), and we present experimental results eval-
uating the C-SFQ(D) scheduler in conjunction with a control sys-
tem using interposed request scheduling for a 3-tier Web service.
An additional factor for controllable interposed request scheduling
is that the depth parameter D is also subject to adjustment by the re-
source controller. In particular, higher concurrency (higher values
of D) may improve throughput, and it may be necessary to increase
D if hotspots develop within the service; however, higher values
of D may impede the system’s ability to meet tight response time
bounds. At the same time, dispatched requests are not responsive to
changes in the weights, so higher values of D makes the scheduler
less responsive.

3. WFQ IS NOT CONTROLLABLE
All WFQ algorithms have well-defined fairness bounds. The best
known WFQ algorithms, including WF2Q and the self-clocking
algorithms SCFQ and SFQ , have been shown to have a fairness
bound that is:

U f ,g =

(cmax
f

φ f
+

cmax
g

φg

)

(5)

which is two times the theoretical lower upper bound for any fair
queuing algorithm [15].

The proven fairness bounds for WFQ schedulers assume that flow
weights are fixed. We show in this section that the bounds do not
hold when weights change dynamically. In fact, we prove that
WFQ algorithms cannot ensure any fairness bound in the general
case under dynamic control of the weights. For the proofs in this
section, we refer to WFQ algorithms that emulate v(t) by the start
tag of the last submitted request (e.g., SFQ [17]). The proofs are
similar for algorithms that emulate v(t) by the finish tag of the last
submitted request (e.g., SCFQ [12]), but are omitted due to lack of
space. We assume without loss of generality that all requests have
unit cost.

Symbol Meaning
φ f (i) Weight of flow f during time interval i.

p j
f The j-th request of flow f .

c j
f Cost of request p j

f .
cmax

f (i) Maximum cost for a request from flow f during
time interval i.

A(p j
f) Arrival time of request p j

f .

S(p j
f) Start tag of request p j

f .

F(p j
f) Finnish tag of request p j

f .
v(t) Virtual time at time t.

W f (i) Total amount of work/cost served from flow f
during time interval i.

D(i) The maximum number of outstanding requests
during time interval i.

D′(i) The actual number of outstanding requests dur-
ing time interval i.

U f ,g(i) The fairness bound during time interval i.
U∗

f ,g The controllable fairness bound over a sequence
of time intervals.

Table 1: Frequently used symbols in this paper.

We first define the notion of an interval in the presence of changing
scheduler parameters:

DEFINITION 1. A time interval i is a period of time [ti,ti+1)
during which φ f (i) is held constant for every flow f .

When flow weights can change dynamically, i.e., φ f (i) 6= φ f (i−1)
for flow f , then according to the following theorem, there exist
intervals in which a flow may receive no service irrespectively of
its weight setting.

THEOREM 1. There exists an interval i during which flows f
and g are continuously backlogged, φ f (i) 6= 0 and φg(i) 6= 0, but
the bound (5) does not hold for that interval.

Proof: Consider the example of Figure 2 with two continuously
backlogged flows f and g. Suppose during time interval 1, φ f =
0.01 and φg = 0.99. f has one request served, and the start tag of the
next request is set to v(t) = 100, as S(p2

f) = max (0,0+1/0.01) =
100 according to (3). Flow g has the higher weight, so it has two
requests served. Thus, by the end of interval 1, v(t) = 2. At the
beginning of interval 2, the weights are changed to φ f = 0.5 and
φg = 0.5. Yet not a single request from f is processed, as S(p2

f) =

100, well ahead of v(t). In fact, φ f = ∞ would produce exactly the
same result, as the start tag of the second request of f was computed
using the weight during interval 1. This counter example shows that
there exist intervals during which the bound of (5) does not hold.
2

THEOREM 2. For any time interval i during which flows f and
g are backlogged during the entire interval, the fairness of a WFQ
algorithm during i is bounded only by:

U f ,g(i) = max (
W f (i)
φ f (i)

,
Wg(i)
φg(i)

) (6)

4

����������������������

���
���
���

���
���
���

�����
�����
�����

	�	�	
	�	�	
	�	�	

φ = 0.5

φ = 0.5
time interval 1 2

10030

flow f

flow g

time 0 2 4 51virtual

real time

φ = 0.01

φ = 1

Figure 2: Example showing that, when weights change in SFQ ,
there exist intervals in which a flow receives no service indepen-
dent of its weight setting. Flows f and g are continuously back-
logged. The white blocks depict request execution; the gray
blocks depict backlog but no execution.

Proof: Using |A−B| ≤ max (A,B) and equation (1), we can triv-
ially see that (6) is the worst upper bound for fairness during in-
terval i. From the counter example in the proof of Theorem 1, we
can see that this indeed defines the lag in work served for f and g
in a worst-case scenario. Thus there are intervals during which the
fairness is bounded only by the work arriving for flow g, i.e., by
U f ,g =

Wg(i)
φg(i)

and W f (i) = 0. 2

This is not a good bound, because it is not a function of request
costs (which are known constants), but of the service received by
some flow, which can be arbitrarily high depending of weight set-
tings in previous intervals. Thus the scheduler has no bound on its
reaction delay. To illustrate this with an example, consider again
the scenario in Figure 2. During interval 2, W f (2) = 0, which

makes the bound U f ,g(2) =
Wg(i)
φg(i)

, i.e. it increases with the amount
of work flow g completes during this interval. Only at a later point,
when v(t) = 100, will f eventually have its next request served.

In Section 5.4 we demonstrate empirically that, as a result of this
variable and unbounded reaction time, a WFQ scheduler (SFQ(D)
in this case) cannot be used effectively by a controller that sets
weight values dynamically to meet performance goals. The sys-
tem exhibits wide oscillations and instabilities. An unmodified
original WFQ scheduler cannot effectively enforce differentiation
when weights change. To capture the fairness of a scheduler when
weights vary dynamically, we introduce the notion of controllable
fairness.

DEFINITION 2. For any sequence of consecutive intervals T =
〈i, · · · , i + N −1〉 during which flows f and g are constantly back-
logged and weights φ f (j) and φg(j) are constant within each inter-
val i, i ∈ T , controllable fairness is defined as:

∑
i∈T

∣

∣

∣

∣

W f (j)
φ f (j)

−
Wg(j)
φg(j)

∣

∣

∣

∣

≤U∗
f ,g (7)

Here, U∗
f ,g is the controllable fairness bound for the entire sequence

of intervals.

In order to improve the poor fairness bound of WFQ schedulers, we
need to recalculate the tags of backlogged requests when weights
change. One naive way of doing this would be to use equations (2)
- (4) to recompute the tags of all backlogged requests, every time
the weights change. To avoid the problem identified in Theorem 2,
we must ignore the finish tags of requests submitted in previous
intervals—all flows start with a clean slate (F(p0

f) = 0) for this in-
terval. This re-computation would indeed result in a good fairness

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���

request 2request 1 request 3

3

flow g

flow f

1 2

0 0 0 0

real time

time interval

virtual
time

Figure 3: Example showing that it is possible to construct an
unbounded number of consecutive intervals during which there
is a flow that receives no service, even though it has non-zero
weights.

bound for every single interval i, as given by equation (5). How-
ever, as we prove in the following theorem, using this approach for
tag re-computation does not provide a fairness bound when looking
over a sequence of time intervals.

THEOREM 3. When the flow weights can vary and the tags of
backlogged requests are recomputed using equations (2) - (4) ev-
ery time some weights change, then the controllable fairness is un-
bounded.

U∗
f ,g = ∞ (8)

Proof: We use a counter-example to show that U∗
f ,g is unbounded

as N →∞. Consider the scenario of Figure 3. There are two flows f
and g that are continuously backlogged during an infinite sequence
of intervals. The start tags of the first requests of both flows are set
to 0 at the beginning of interval 1. WFQ arbitrarily picks to sub-
mit the request of f . At the beginning of interval 2 the weights are
changed to some new value (the actual value does not matter in this
example). At this point, the request of flow f is still not completed.
Thus, virtual time is still 0. After recomputing the tags of the back-
logged requests, the start tags of the next requests of both flows are
again 0. The outstanding request from f completes during interval
2 and WFQ arbitrarily picks to submit the next request from flow
f , as both have the same start tag. This pattern of execution and tag
re-computation may continue for an infinite sequence of intervals.
Flow f receives all the service, while g gets nothing. Of course,
such worst-case scenarios are not restricted to cases where the du-
ration of an interval is shorter than that of a request execution. It
is easy to construct similar worst-case scenarios for the case where
the weight of a flow is less than 100% of the total weight but suf-
ficient to use up entirely the service for the duration of an interval.
Theorem 3 follows directly from the above counter-example. 2

The intuition behind Theorem 3 is that within each interval fairness
is bounded by (5). However, it is possible to reach this bound at
every single interval as the re-computation phase starts WFQ from
scratch each time. This means that the bounds add up and thus as
the length of the sequence of intervals reaches infinite (N →∞), the
aggregate bound is also infinite. We thus need a tag re-computation
phase that results in bounded controllable fairness as N → ∞. A
scheduler with this property is presented in the following section.

The discussion and counter-examples used in this section refer to
services that process one request at a time. The results are trivially
applicable to depth-controlled WFQ variants (e.g., SFQ(D) [21])
and services that support higher degrees of concurrency, D ≥ 1.

5

4. CONTROLLABLE WFQ
The problem with the naive WFQ extension discussed in the pre-
vious section is that it does not account for service capacity used
up by requests submitted in previous intervals. All tags are recom-
puted from scratch. As a result, there are cases where some flows
may use the service exclusively for an infinite number of intervals
starving some other flows. In this section we propose an exten-
sion to WFQ algorithms that provably provides good controllable
fairness and thus good predictability and responsiveness when the
flow weights change. Again, the discussion here focuses on WFQ
algorithms that emulate v(t) by the start tag of the last submitted
request. In particular, we present and analyze an algorithm called
Controllable SFQ , C-SFQ for short, which is an extension of SFQ .
However, the extension is also applicable to finish-tag emulated al-
gorithms.

With C-SFQ , the following recursive computation is performed
whenever any weights change. The computation updates the tags
of the backlogged requests of the flows for which the weight have
changed. Assume, without loss of generality, that there are Q f
backlogged requests for flow f and that they are numbered from
j to j + Q f − 1. In the following equations, i is the new interval.
v(t) refers to the value of virtual time as it evolved in previous in-
tervals, according to WFQ .

F(p j−1
f) = S(p j−1

f)+
c j−1

f

φ f (i)
(9)

S(pk
f) = max (v(t),F(pk−1

f)), j ≤ k < j +Q f (10)

F(pk
f) = S(pk

f)+
ck

f

φ f (i)
, j ≤ k < j +Q f (11)

Equation (9) recomputes the finish tag of the last submitted request
of flow f (in some interval before i), as if it have had the new weight
setting. The tags of the backlogged requests are adjusted accord-
ingly in equations (10) and (11) which are equivalent to (3) and (4)
of WFQ . Re-computation (9) moves the start tag of the next request
of f further down in time if the weight has decreased, and closer in
time if it has increased. When the weights have not changed, this
algorithm reduces to the original WFQ algorithm.

The intuition behind the following fairness-bound theorem for C-
SFQ is that C-SFQ behaves exactly like SFQ within each interval
(the virtual clocks of the flows are reset only at the beginning of an
interval). Thus, the fairness bound within every single interval is
the same as that of SFQ .

THEOREM 4. For any sequence T of consecutive intervals dur-
ing which flows f and g are constantly backlogged, the controllable
fairness of C-SFQ is bounded by:

U∗
f ,g = max

i∈T

(

cmax
f (i)

φ f (i)
+

cmax
g (i)
φg(i)

)

(12)

Proof: Assume that for each interval i there is a hypothetical SFQ
execution, such that all the following apply:

1) For every flow f , the weight of this execution is constant through-
out the execution and equal to the C-SFQ weight during interval i,
i.e., φs

f = φc
f (i) for all f .

2) At some point in time, the virtual time of the SFQ execution is
equal to that of C-SFQ at the beginning of interval i, i.e., vs(t ′) =
vc(t).

3) At that same point in time, the finish tag of the last submitted
request in the SFQ execution is equal to the re-calculated finish tag
by C-SFQ at the beginning of interval i, Fs(pk

f) = Fc(p j−1
f) for

some k and j.

4) At that same point in time, the set of backlogged requests for all
flows in the SFQ execution is the same as that in the C-SFQ case.

5) From that point in time and at least for a period of time equal to
that of interval i, the SFQ scheduler receives the same sequence of
requests as those received by C-SFQ.

If C-SFQ executes M steps in interval i, all those steps would be
identical to the M following steps in the SFQ execution. Thus, the
fairness bound of C-SFQ during interval i would be the same as
that of SFQ for the same M steps.

We now need to show that it is always possible to construct a se-
quence of requests for a hypothetical SFQ so that all the above
hold. It is trivial to construct such an execution using SFQ , by sub-
mitting a request with cost ck

f = Fc(p j−1
f)φs

f , where φs
f = φc

f (i).

This ensures that Fs(pk
f)= ck

f /φs = Fc(p j−1
f)φc(i)/φc(i)= Fc(p j−1

f)

If at that point vc(t) > Fc(p j−1
f), then vs(t ′) can be advanced to

vc(t) by sending one request from flow g where the ratio cg/φg =
vc(t)− vs(t ′). We do not need to consider the case where vc(t) ≤
Fc(p j−1

f), as the max expression in (10) favors the Fc(p j−1
f) term.

If at this point, SFQ instantaneously receives the same set of re-
quests as those backlogged in the C-SFQ case at the beginning of i,
their backlogged requests will have the exact same start and finish
tags.

We know that for any period of time [t1,t2), SFQ ensures fairness

bounded by U f ,g =
(

cmax
f
φ f

+
cmax

g
φg

)

[17]. Thus, this bound holds for
every single interval of an execution with C-SFQ. In fact, the fair-
ness bound in every single interval is a function of the maximum
cost of the requests actually executed during that interval (not of the
maximum cost of any request of a flow). This results in a tighter
fairness bound for each interval i, defined as:

U∗
f ,g(i) =

(

cmax
f (i)

φ f (i)
+

cmax
g (i)
φg(i)

)

(13)

Thus, the fairness bound across a sequence of intervals is the worst
bound among all individual intervals in the sequence, given by
equation (12). 2

Since support for high degree of concurrency is important in com-
puting services, we discuss here a depth-controlled WFQ variant.
In particular, we present and analyze an algorithm called Control-
lable SFQ(D), C-SFQ(D) for short, which is an extension of depth-
controlled Start-tag Fair Queuing SFQ(D) [21]. As shown in Sec-
tion 5.2, the maximum depth D is a scheduler parameter that also
needs to be adjusted, along with flow weights, according to system
and workload dynamics. A controllable scheduler must be fair even
when D changes. The original fairness bound for SFQ(D) for when

6

weights and D do not change is [21]:

U f ,g = (D+1)

(cmax
f

φ f
+

cmax
g

φg

)

(14)

Theorem 5 provides the controllable fairness bound for C-SFQ(D)
when D as well as flow weights change between intervals. To pro-
vide that bound we first prove the following Lemma:

LEMMA 1. The number of outstanding requests during interval
i, denoted D′(i) is bounded by:

D′
max(i) = max (D(i),D(j)) (15)

where D(0) = 0 and j, j < i is the latest interval before i during
which a request was dispatched to the service.

Proof: Consider a sequence of intervals during which all flows are
constantly backlogged. Interval j < i is the last interval before i
during which at least one requests is dispatched. That means that
the number of outstanding requests during j is D′(j) = D(j). On
the other hand, no requests are dispatched during any interval be-
tween j and i. That is, the number of outstanding requests in all
these intervals is D′(k) = D(j), for all j ≤ k < i. There are two
cases to consider for interval i:

1) If D′(k) ≤ D(i), there are D(i)−D′(k) new requests that the
scheduler can dispatch to the service in i. Thus, the maximum pos-
sible number of outstanding requests during i is D′

max(i) = D(i) as
the flows are continuously backlogged.

2) If D′(k) > D(i), a new request can be submitted only after D′(k)−
D(i)+ 1 requests have completed. Thus, the largest possible D′(i)
occurs when no request is completed in interval i. That is, the maxi-
mum possible number of outstanding requests during i is D′

max(i) =
D′(k) = D(j).

In either case, D′
max(i) is independent of any D(m), m < j. 2

The following theorem applies to any sequence of intervals, even
sequences of infinite length.

THEOREM 5. For any sequence T of consecutive intervals dur-
ing which flows f and g are constantly backlogged and both D and
flow weights vary between intervals, the controllable fairness of
C-SFQ(D) is bounded by:

U∗
f ,g = max

i∈T

(

(D′
max(i)+1)

(

cmax
f (i)

φ f (i)
+

cmax
g (i)
φg(i)

))

(16)

where D′
max(i) is defined as in Lemma 1.

Proof: When the depth is changed between intervals, the maximum
possible number of pending requests during some interval i is given
by D′

max(i) in equation (15). According to (14), the bound for a

specific interval i is then (D′
max(i)+ 1)(

cmax
f (i)
φ f (i)

+
cmax

g (i)
φg(i)

). Thus, the
worst-case bound in sequence T is the highest bound of any single
interval i ∈ T , as given by equation (16). 2

In C-SFQ(D) , we now have a scheduler that is controllable, i.e., it
provably satisfies all the requirements stipulated in Section 2.1. In
the next section, we will show how C-SFQ(D) can be used together

Oracle 9iApache WebLogic
BEA

Clients

Figure 4: The 3-tier system that is used for the experimental
evaluation.

with a feedback loop to achieve performance goals for a real sys-
tem, and how previous non-controllable schedulers cannot be used
in this setting.

5. EXPERIMENTAL EVALUATION
In this section, we present experimental results from a real system,
that reconfirm the analytical results of earlier sections. In particular,
we make the following points:

• Demonstrate that the values of flow weights and D have to
vary dynamically in order to enforce performance goals, given
the dynamics of a realistic system and its workloads.

• Show that a typical WFQ scheduler, SFQ(D), is not control-
lable in practice, when flow weights vary dynamically.

• Confirm that the proposed WFQ extension results in fair,
controllable schedulers for varying weights and D.

• Perform a sensitivity analysis of the controllable fairness of
C-SFQ(D), with respect to the values as well as the deltas of
weights and D.

5.1 Experimental platform
We use a three-tier system as our platform for all the experiments
in this section. The system consists of three components: a web
server, an application server and a database server. As depicted in
Figure 4, client requests arrive at the web server and, unless they are
for static content, are forwarded to the application server. The ap-
plication tier generates a dynamic page from information it obtains
from the database server. The application server then forwards the
generated page to the web server, which, in turn, responds to the
client that requested it.

The web, application and database servers are hosted on separate
server blades, each with two 1 GHz Pentium III processors, 2 GB of
RAM, one 46 GB 15 krpm SCSI Ultra160 disk, and two 100 Mbps
Ethernet cards. The web server is Apache version 2.0.48 with a
BEA WebLogic plug-in. The application server is BEA WebLogic
7.0 SP4 over Java SDK version 1.3.1 from Sun. The database client
and server are Oracle 9iR2. All three tiers run on Windows 2000
Server SP4. The site hosted on the 3-tier system is a version of the
Java PetStore [20] that has been tuned in order to support a large
number of concurrent users.

The workload applied to this system mimics real-world user be-
havior [11], e.g., browsing, searching and purchasing behaviors in-
cluding the corresponding time scales and probabilities these occur
with. The workload is generated by httperf on a separate ma-
chine that is identical to the ones above but runs Linux. For the
experiments in the rest of this section, we generate 75 concurrent
client sessions unless otherwise stated. For these experiments, we
usually consider two flows f and g. Flow f consists of 38 clients
and flow g of 37. The sample interval for gathering statistics and
for changing the weights and D is always set to 3 seconds.

7

 0

 20

 40

 60

 80

 100

 120

 5 10 15 20 25 30

Th
ro

ug
hp

ut
 (r

eq
/s

)

Time (seconds)

Weight = 0.25
Weight = 0.55

Throughput reference

Figure 5: Demonstrates the need to rapidly adjust flow weights.
The x-axis refers to the execution time of an actual run. The
graph shows two runs of the same flow trace executing with
weights of 0.25 and 0.55 respectively. The flow has a through-
put goal of 50 req/s. Initially, a weight of 0.25 is sufficient for
meeting the goal. At time 15 seconds, the clients of the flow shift
from browsing-only to purchasing products. Now, the weight
needs to be 0.55 to meet the goal.

5.2 Weights and D need to vary continuously
This section demonstrates that the weights and depth of a scheduler
have to be continuously adjusted to meet performance goals. There
are a number of reasons why the weights and D need to change,
including:

• Variation to the service capacity. This may be due to changes
in cache hit ratios, or variations in client behavior. For exam-
ple, the transactions involved in product purchasing are more
heavy-weight than simply browsing products.

• Changes to the number of clients accessing the service, pos-
sible due to a flash-crowd or due to diurnal patterns.

• Modifications to the service’s hardware or software. For ex-
ample, more CPUs are added, or a new version of some soft-
ware is installed.

To see why weights need to be adjusted, consider the scenario of
Figure 5. There are a number of flows accessing the system. One
of these, flow f , has a throughput goal of 50 req/s which can ini-
tially be met with a weight setting φ f = 0.25. At time 15 seconds in
the execution, the clients of this flow switch from from browsing-
only to purchasing products. Browsing accesses mostly static con-
tent and thus consumes few service resource. Purchasing consumes
more resources, as it involves more heavyweight transactions that
access the database tier frequently. As a result, a weight of 0.25 is
not be sufficient anymore for f to meet its throughput goal. Instead
it would require a weight of 0.55, which is a relative weight change
of of 120%. If a weight of 0.55 would have been chosen even when
the clients were browsing products, the throughput goal would have
been met by a wide margin, thus wasting valuable resources that
other flows could have potentially used. It is thus desirable that
the weights are adjusted dynamically in reaction to such workload
changes.

Flow weights are not the only scheduler parameter that needs to be
controlled. The maximum degree of concurrency D has also to be
dynamically adjusted in the face of changes in the workloads or the

 60

 80

 100

 120

 140

 160

 180

 200

 10 20 30 40 50 60

E
nd

-to
-e

nd
 la

te
nc

y
(m

s)

Time (seconds)

D varied
D constant

Latency target

Figure 6: Demonstrating the need to be able to adjust D. The
x-axis refers to the execution time of an actual run. The graph
shows two runs of the same flow trace. The flow has a latency
goal of 80 ms. At time 15 seconds, the clients switch from
browsing to purchasing products. At time 30 seconds in one
run, D is adjusted from 32 to 8 to meet the latency goal.

system. We demonstrate this with the example of Figure 6. We
have a flow with an end-to-end latency goal of 80 ms. At time 15
seconds, all clients of the flow switch from browsing to purchasing
products. Up until time 15 seconds, the latency goal can be met
with D = 32. After the workload change though, this D results
in much higher response latencies. In one run, the value of D is
adjusted down to 4, at time 30 seconds. This results in meeting the
latency goal again.

5.3 Fairness of SFQ(D) and C-SFQ(D)
In this section, we evaluate the effects on controllability due to the
proposed tag recomputation algorithm. In particular, we focus on
the effective differentiation achieved by SFQ(D) and C-SFQ(D)
and how this varies with changes in the values of flow weights and
depth. We use the following metric, called unfairness (E), to quan-
tify effective differentiation.

DEFINITION 3. For a set of flows F, the effectiveness by which
the weight of flow f ∈ F is enforced in the service during interval i
is captured by1:

E(f) = 100 ·
∣

∣

∣

∣

φ f (i)
∑g∈F φg(i)

−
W f (i)

∑g∈F Wg(i)

∣

∣

∣

∣

(17)

An unfairness of 0 means that the scheduler is perfectly fair and
provides perfect differentiation, while an unfairness of 100 signi-
fies no differentiation at all. While the controllable fairness intro-
duced is Section 3 refers to upper bounds for fairness, this metric
captures the actual deviation from the specified flow weights during
an execution. The higher the unfairness exhibited by a scheduler,
the harder it is to control that scheduler for enforcing performance
goals.

First, we quantify the unfairness of SFQ(D) and C-SFQ(D) by set-
ting the weights in the same way as in the worst-case scenario of
Figure 2. The interval duration is 3 seconds. Figure 8 shows the
unfairness of flow f . With SFQ(D) , E(f) is constantly at 50, af-
ter 10 seconds. This makes the scheduler uncontrollable, as we
1For the discussion in this paper, the denominator of the first frac-
tion is always 1, as we assume weights are normalized to 1.

8

 0

 20

 40

 60

 80

 100

 0.001 0.01 0.1 1 10 100

C
um

ul
at

iv
e

di
st

rib
ut

io
n

(%
)

Unfairness

SFQ(D)
C-SFQ(D)

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100 1000

U
nf

ai
rn

es
s

Relative weight change

SFQ(D)
C-SFQ(D)

Figure 7: Sensitivity analysis of the unfairness of SFQ(D) and C-SFQ(D) against weight settings and changes. The graph on the left
shows the CDF of unfairness for all the intervals of a run (the x-axis is in logarithmic scale). The graph on the right shows unfairness
against the relative weight changes (both axes are in logarithmic scale).

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 10 15 20 25 30

U
nf

ai
rn

es
s

Time (seconds)

SFQ(D)
C-SFQ(D)

Figure 8: The unfairness of flow f with SFQ(D) and C-SFQ(D)
in the three-tier system, when the weights are set according to
the worst-case scenario of Figure 2. The x-axis refers to the
execution time of an actual run.

demonstrate in Section 5.4. With C-SFQ(D) , on the other hand,
E(f) ranges between 0.1 and 0.5, which provides a system that can
indeed be controlled.

Next, we analyze the effects of the weight values on unfairness. For
the experiments reported in Figure 7, we consider runs with two
flows, f and g. The flow weights are set randomly using a white
noise generator. At every sample interval, φ f is set to a random
number uniformly drawn from the interval (0,100); the weight of
flow g is set to φg = 100−φ f ; D = 4. All the results are only shown
for flow f , as the same conclusions can be drawn from the results
of flow g. The left graph in Figure 7 shows the cumulative distribu-
tion function of E(f) for SFQ(D) and C-SFQ(D) across the 1,000
intervals of a run. From the graph, we can see that the unfairness
of C-SFQ(D) is approximately two orders of magnitude lower than
that for SFQ(D). About 99% of the sampled intervals have an un-
fairness of less than 1 for C-SFQ(D) , while for SFQ(D) 90% of the
intervals have an unfairness higher than 1. Indeed, 40% of those
intervals have an unfairness higher than 25, which we will see later
in Section 5.4 results in an uncontrollable system. As was shown
in Section 3, the reason for this high unfairness of SFQ(D) is that
the tags of the pending requests are not changed when the weights
change. We do not consider here the naive tag recalculation algo-
rithm, due to the results of Theorem 3—it may result in arbitrarily
bad fairness.

The example of Figure 2 showed the weight of a flow changing
from 0.01 to 0.5, which is a change that is more than one order of
magnitude in size. The larger the relative change, the longer it takes
for weight settings to have any effect on the flows. To examine how
a weight delta affects the unfairness of a scheduler, we have plotted
the unfairness E(f) of SFQ(D) and C-SFQ(D) as a function of
relative weight change, in the right graph of Figure 7. Relative
weight change in the case of two workloads f and g is defined as:

φ∆(i) =
1
2

(

|φ f (i)−φ f (i−1)|

φ f (i−1)
+

|φg(i)−φg(i−1)|

φg(i−1)

)

(18)

We see that the unfairness of C-SFQ(D) is approximately two or-
ders of magnitude below that of SFQ(D) , for an average change of
10% or more, i.e., φ∆(i) ≥ 0.1. As we have seen in Section 5.2,
weight changes of that magnitude are not uncommon in real sys-
tems. The unfairness of C-SFQ(D) suffers no substantial degrada-
tion as the relative weight change increases. Thus, C-SFQ(D) can
be safely used even with aggressive feedback-based controllers.

Let us now examine how D, the maximum degree of concurrency
allowed in the service, affects the unfairness of a scheduler. The
focus is on C-SFQ(D) as we have just shown that SFQ(D) is unfair
irrespective of D. Figure 9 shows the unfairness as a function of D.
The weights during each interval are still picked randomly using
the process described previously. From the graph on the left, we
can see that unfairness increases with the value of D, as expected
from Theorem 5. Up until D = 16, unfairness increases by less than
100% at each data point, but at D = 32 it jumps up by one order of a
magnitude. This is due to the effects of work-conservation kicking
in somewhere between D = 16 and D = 32. That is, the degree of
concurrency in the system is high enough that not all flows remain
backlogged constantly. When this occurs, the scheduler purpose-
fully violates the fairness condition in order to use the system effi-
ciently and, if possible, always have D outstanding requests. That
means that differentiation is less effective than before, as weight
settings have less impact on the performance of the system. Thus,
work-conservation has a negative effect on the ability to control the
system. As we will see in Section 5.4, the high unfairness levels
of D ≥ 32 indeed affect the ability of a controller to control the
system, while the low levels of unfairness for D ≤ 16 result in a
controllable system.

On the other hand, work-conservation is a desired property as it
increases the total throughput of the system and presumably the

9

 0.1

 1

 10

 100

 1 2 4 8 16 32 64

U
nf

ai
rn

es
s

Depth D

C-SFQ(D)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 4 8 16 32 64

To
ta

l t
hr

ou
gh

pu
t (

re
q/

s)
 /

E
nd

-to
-e

nd
 la

te
nc

y
(m

s)

Depth D

Throughput
End-to-end latency

Figure 9: Analysis of the effects of the maximum degree of concurrency D to C-SFQ(D). The graph on the left shows the relation
between unfairness and values of D. The graph on the right shows the aggregate throughput and the end-to-end latency obtained
from the service for different values of D. In both graphs the x-axis is in logarithmic scale. The dots are the median values and the
error bars show the 5th and the 95th percentile of the measurements.

utilization of service resources. It is thus desirable to find a D such
that the system is operating at nearly full capacity while unfairness
is low at the same time. To find out if there is indeed such a point
for our system and workload, the right graph of Figure 9 plots the
total throughput of the system as a function of D. We can see that
a D ≥ 8 provides a throughput that is close to the maximum. At
this point, the available parallelism inside the 3-tier system is used
efficiently. Taking a look at both the graphs in Figure 9, we can
see that D = 8 or D = 16 provide a good operating point, where the
throughput is close to its maximum and the unfairness is low.

The trade-off between throughput and unfairness is not the only
consideration for the value of D. When the performance goal is
latency, then the impact of D on latency has also to be considered.
In particular, we consider the end-to-end latency, which is the re-
sponse delay perceived by the clients of the service; this includes
any potential waiting time in the scheduler queues. Figure 9 shows
the end-to-end latency as a function of D for C-SFQ(D) . As there
are 75 concurrent clients, the median end-to-end latency goes down
as D increases, due to the parallelism inside the 3-tier system. From
the graph, we can see that the median of the end-to-end latency
reaches its minimum value of approximately 300 ms at D≥ 8. This
is compatible with the values for D derived from the trade-off be-
tween unfairness and throughput. Note that if the service were run
without any scheduler in front of it, then the mean latency experi-
enced by the 75 clients would have been approximately 300 ms.

Service time, the time it takes for a request to be processed in the
service, is another metric that needs to be considered for this trade-
off. According to Little’s law, the service time would increase with
the value of D. If there is a latency goal, then the value of D is
driven by how aggressive that goal is. For example, if the latency
goal is 20 ms, then D should be at most 2 in our system. Such a low
value for D would result in low unfairness, but would also result in
low aggregate throughput according to Figure 9.

5.4 Controlling SFQ(D) and C-SFQ(D)
This section demonstrates that the high unfairness of SFQ(D) , when
weights vary, impairs the feedback loop’s ability to control the sys-
tem in practice. We compare it against C-SFQ(D) , in a closed loop
system that uses a controller to automatically adjust weights ac-
cording to system and workload dynamics.

To automatically adjust the scheduler parameters, we designed a
feedback loop that reacts to the observed performance of the service
(latency and throughput). The feedback loop is not intrusive to the
service. It uses an adaptive dual MIMO controller [4] which does
not require an off-line system identification. Instead, it estimates
a model of the black-box service on-line adapting to system non-
linearities using recursive least-squares estimation. The model used
is of the following form: y(k) = A1y(k−1)+A2y(k−2)+B1u(k−
1)+ B2u(k−2) where y(k) is a column vector of the performance
measurements at time k, u(k−1) is a column vector with the φ and
D settings at time k− 1, and A1, A2, B1 and B2 are the estimated
model parameter matrices. The control problem is formulated as an
LQR problem [14] in which the minimum energy of |yre f (k)−y(k)|
is the desired operating point. Here yre f is a column matrix with
the desired performances of all the flows. A closed-form control
law that minimizes the expected value of this difference, assuming
the aforementioned model estimates, can then be found. This law
is used to compute the new φs and D to set in the scheduler. The
closed-loop system is provably stable. The details of the controller
and closed-loop design are outside the scope of this paper.

Figure 10 plots the throughput, end-to-end latency, unfairness and
actual weight settings over a 90-second time window of the execu-
tion. There are two main observations to make. First, the actual
performance is close to the goals for both throughput and latency
with C-SFQ(D). (The small violations of the goals are due to the
nature of the controller. Typically, a controller takes no corrective
action unless there is a violation of the goal.) The performance of
SFQ(D) , on the other hand, fluctuates much more widely. There
are times at which is it completely off the goal. Second, during the
periods in which the performance is far from the goal for SFQ(D),
the unfairness is high. As shown in the fourth graph, the unfairness
peaks at 55, 70 and especially around 100 seconds. This shows that
effective differentiation is crucial for successfully controlling the
system to achieve performance goals.

The closed-loop design we consider for the experiments here, the
controller is executed every 3 seconds. A choice of an interval
shorter than that would result in an unstable system, due to mea-
surement noise. This is a typical design constraint for a controlled
system. Thus, work conservation is a useful scheduler property,
that results in efficient use of service resources in the presence of
transient load changes with duration less than an interval.

10

 0

 20

 40

 60

 80

 100

 120

 140

 160

 50 60 70 80 90 100 110 120 130 140

Th
ro

ug
hp

ut
 (r

eq
/s

)

Time (seconds)

SFQ(D)
C-SFQ(D)

Throughput target

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 50 60 70 80 90 100 110 120 130 140

E
nd

-to
-e

nd
 la

te
nc

y
(m

s)

Time (seconds)

SFQ(D)
C-SFQ(D)

Latency target

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50 60 70 80 90 100 110 120 130 140

W
ei

gh
t

Time (seconds)

SFQ(D)
C-SFQ(D)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50 60 70 80 90 100 110 120 130 140

U
nf

ai
rn

es
s

Time (seconds)

SFQ(D)
C-SFQ(D)

Figure 10: Demonstrating the ability of SFQ(D) and C-SFQ(D)
to meet performance goals. In all these figures, a feedback-
based adaptive controller sets the weights every 3 seconds. The
four graphs show throughput, latency, weight settings and un-
fairness respectively. The x-axis refers to the execution time of
an actual run.

6. RELATED WORK
The possibility of using feedback from the system to dynamically
control a scheduling mechanism and meet performance goals has
been discussed in the literature [3, 29]. In one case, flows are as-
signed fixed reservations, which are enforced using resource-specific
schedulers for CPU and disk. Feedback about the actual perfor-

mance each flow receives is used to decide how to share any unused
resource capacity among active flows [3]. In another case, a learn-
ing heuristic is used to adjust flow reservations, so as to maximize
the number of flows that meet their response latency goals [29].
A weighted-fair queuing scheduler is used to enforce the reserva-
tions [27]. The learning algorithm is computationally expensive.
Thus, reservations can not be adjusted at very fine time granular-
ity. Existing scheduling algorithms have been designed and an-
alyzed for shares that are fixed over time. Existing research has
neither identified the desirable properties of schedulers to be used
with such feedback loops, nor analyzed the effectiveness of exist-
ing schedulers in that context. Our work is applicable to the design
of any such feedback-based resource control approach.

Request scheduling externally to the target system has been pro-
posed as an approach to perform resource control for black-box
storage systems. Facade [25] proposes a storage switch that uses
Earliest Deadline First (EDF) scheduling to meet response latency
goals exposed directly to the scheduler. The key drawback of EDF
is that it cannot ensure isolation among flows and thus it cannot
meet any performance goals in the presence of overload. SLEDS
[9] and Triage [23] are two approaches developed for ensuring per-
formance isolation and differentiation among flows. They both use
feedback about observed performance to adjust dynamically the
flow reservations. Reservations result in low service utilization—
spare system capacity cannot be re-used by active flows between
reservation adjustments.

Extensive research in scheduling for packet switching networks has
yielded a group of Weighted Fair Queuing variants for link shar-
ing in communication networks, including WFQ [13], FQS [18],
FFQ [28], WF2Q [7], WF2Q+ [8], SCFQ [12, 15], and SFQ [17].
Fair queuing has been adapted to other contexts such as disk schedul-
ing [27], CPU scheduling [16], and server resource management [30,
24]. Other approaches to implementing proportional sharing in-
clude lottery scheduling [31]. Share schedulers are often associated
with with resource control abstractions such as Resource Contain-
ers [5] or virtual machines [6].

More recently, a family of depth-controlled WFQ schedulers have
been proposed for proportional sharing of a computing services [21].
They have shown that with appropriate weight settings a WFQ
scheduler can be used to meet performance goals such as maximum
response latencies.

This paper extends this work on proportional-share schedulers by
addressing the problem of dynamically varying the flow weights
based on on-line feedback from the system, and exploring the in-
teraction of the scheduler properties with feedback controllers.

7. CONCLUSIONS
We are concerned with the problem of enforcing application-level
performance goals in a shared computing service, by varying the
parameters of an interposed request scheduler. In this paper, we fo-
cus on controllability properties of proportional share schedulers,
which are most commonly implemented using variants of Weighted
Fair Queuing (WFQ). We prove that existing WFQ schedulers are
unfair when the flow weights vary. That makes them ineffective in
the presence of dynamic control. We define controllable fairness,
a stronger notion of fairness for this case, we propose a tag adjust-
ment algorithm that ensures that WFQ schedulers are controllable-
fair, and prove the properties of the resulting schedulers.

11

To validate the analytical results, we performed an experimental
evaluation using a three-tier Web service. We confirm that a typical
depth-controlled WFQ scheduler, SFQ(D), exhibits poor fairness
when flow weights vary by as little as 10%. On the other hand, a
controllable-fair WFQ variant, C-SFQ(D), is shown to exhibit fair-
ness that is in average two orders of magnitude better. We demon-
strate that C-SFQ(D) can indeed be used with a feedback controller
to enforce performance goals. Finally, we perform a sensitivity
analysis of the controllable fairness of C-SFQ(D) against the val-
ues and deltas of flow weights and degree of concurrency, which
shows that C-SFQ(D) can be used even with aggressive controllers.

The results of this paper are promising. They indicate that controllable-
fair schedulers can be used with feedback controllers to meet per-
formance goals for workloads of shared services. The design and
analysis of control systems for complex computing services is the
topic of future work.

8. REFERENCES
[1] T. Abdelzaher, K. G. Shin, and N. Bhatti. User-level QoS-adaptive

resource management in server end-systems. IEEE Transactions on
Computers, 52(5), 2003.

[2] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, and
A. Veitch. Hippodrome: Running circles around storage
administration. In International Conference on File and Storage
Technologies (FAST), pages 175–188, Monterey, CA, January 2002.

[3] M. Aron. Differentiated and Predictable Quality of Service in Web
Server Systems. PhD thesis, Computer Science Department, Rice
University, 2000.

[4] K. J. Åström and B. Wittenmark. Adaptive Control. Electrical
Engineering: Control Engineering. Addison-Wesley Publishing
Company, 2 edition, 1995. ISBN 0-201-55866-1.

[5] G. Banga, P. Druschel, and J. C. Mogul. Resource containers: A new
facility for resource management in server systems. In USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), New Orleans, LA, February 1999.

[6] P. Barham, B. Dragovic, K. Faser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In ACM Symposium on Operating Systems Principles
(SOSP), Bolton Landing, NY, October 2003.

[7] J. Bennett and H. Zhang. WF2Q: Worst-case Fair Weighted Fair
Queueing. In IEEE Infocom, pages 120–128, San Francisco, CA,
March 1996.

[8] J. Bennett and H. Zhang. Hierarchical packet fair queueing
algorithms. IEEE/ACM Transactions on Networks, 5(5):675–689,
October 1997.

[9] D. Chambliss, G. Alvarez, P. Pandey, D. Jadav, J. Xu, R. Menon, and
T. Lee. Performance virtulization for large-scale storage systems. In
Symposium on Reliable Distributed Systems (SRDS), pages 109–118,
Florence, Italy, October 2003.

[10] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle.
Managing Energy and Server Resources in Hosting Centres. In ACM
Symposium on Operating Systems Principles (SOSP), pages
103–116, Banff, Canada, October 2001.

[11] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. Chase.
Correlating instrumentation data to systems states: A building block
for automated diagnosis and control. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI), page xxx,
San Francisco, CA, December 2004.

[12] J. Davin and A. Heybey. A simulation study of fair queuing and
policy enforcement. Computer Communications Review,
20(5):23–29, October 1990.

[13] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a
Fair Queuing Algorithm. In ACM Conference of the Special Interest
Group on Data Communication (SIGCOMM), pages 1–12, Austin,
TX, September 1989.

[14] G. F. Franklin, J. D. Powell, and M. Workman. Digital Control of
Dynamic Systems. Addison-Wesley Publishing Company, 3 edition,
1998. ISBN 0-201-82054-4.

[15] S. J. Golestani. A self-clocked fair queuing scheme for high-speed
applications. In ACM Conference of the Special Interest Group on
Data Communication (SIGCOMM), pages 636–646, Toronto,
Canada, April 1994.

[16] P. Goyal, X. Guo, and H. Vin. A hierarchical cpu scheduler for
multimedia operating systems. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Seattle, WA, USA,
October 1996.

[17] P. Goyal, H. M. Vin, and H. Cheng. Start-time fair queueing: a
scheduling algorithm for integrated services packet switching
networks. IEEE/ACM Transactions on Networks, 5(5):690–704,
October 1997.

[18] A. Greenberg and N. Madras. How fair is fair queuing? Journal of
the ACM, 39(3):568–598, July 1992.

[19] L. Huang, G. Peng, and T. cker Chiueh. Multi-dimensional storage
virtualization. In International Conference on Measurement and
Modelling of Computer Systems (SIGMETRICS), pages 14–24, New
York, NY, June 2004.

[20] Java PetStore. www.middleware-company.com.

[21] W. Jin, J. Chase, and J. Kaur. Interposed proportional sharing for a
storage service utility. In International Conference on Measurement
and Modelling of Computer Systems (SIGMETRICS), pages 37–48,
New York, NY, USA, June 2004.

[22] A. Kamra, V. Misra, and E. Nahum. Yaksha: A Self-Tuning
Controller for Managing the Performance of 3-Tiered Web sites. In
International Workshop on Quality of Service (IWQoS), pages 47–56,
Montreal, Canada, June 2004.

[23] M. Karlsson, C. Karamanolis, and X. Zhu. Triage: Performance
Isolation and Differentiation for Storage Systems. In International
Workshop on Quality of Service (IWQoS), pages 67–74, Montreal,
Canada, June 2004.

[24] Z. Liu, M. Squillante, and J. Wolf. On maximizing
service-level-agreement profits. In ACM Conference on Electronic
Commerce (EC), pages 213–223, New York, NY, October 2001.

[25] C. Lumb, A. Merchant, and G. Alvarez. Façade: Virtual storage
devices with performance guarantees. In International Conference on
File and Storage Technologies (FAST), pages 131–144, San
Francisco, CA, March 2003.

[26] K. Shen, H. Tang, T. Yang, and L. Chu. Integrated resource
management for cluster-based internet services. In USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), pages 225–238, Boston, MA, December 2002.

[27] P. J. Shenoy and H. M. Vin. Cello: A Disk Scheduling Framework
for Next Generation Operating Systems. In International Conference
on Measurement and Modelling of Computer Systems
(SIGMETRICS), pages 44–55, Madison, WI, June 1998.

[28] D. Stiliadis and A. Varma. Latency-rate servers: a general model for
analysis of traffic scheduling algorithms. IEEE/ACM Transactions on
Networks, 6(5):611–624, October 1998.

[29] V. Sundaram and P. Shenoy. A practical learning-based approach for
dynamic storage bandwidth allocation. In International Workshop on
Quality of Service (IWQoS), pages 479–497, Monterey, CA, June
2003.

[30] B. Urgaonkar, P. J. Shenoy, and T. Roscoe. Resource Overbooking
and Application Profiling in Shared Hosting Platforms. In USENIX
Symposium on Operating Systems Design and Implementation
(OSDI), pages 239–254, Boston, MA, December 2002.

[31] C. A. Waldspurger and W. E. Weihl. Lottery Scheduling: Flexible
Proportional-Share Resource Management. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI), pages
1–11, Monterey, CA, November 1994.

[32] Z.-L. Zhang, D. F. Towsley, and J. F. Kurose. Statistical analysis of
generalized processor sharing scheduling discipline. IEEE Journal
on Selected Areas in Communications, 13(6):1071–1080, 1995.

12

