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It is well known that one can create nonlinear optical quantum gates probabilistically using only single photon
sources, linear optical elements and photon-number resolving detectors. These gates are heralded but operate
with probabilities much less than one. There is currently a large gap between the performance of these known
circuits and the established upper bounds on their success probabilities. One possibility for increasing the
probability of success of such gates is feed-forward, where one attempts to correct certain failure events that
occurred in the gates operation. In this brief report we examine the role of feed-forward in improving the success
probability of linear optical gates and the cost in resources.

PACS numbers: 03.67.-a, 42.50.-p, 03.67.Lx, 03.65.Ta

I. INTRODUCTION

In recent years we have seen the emergence of photonic
states of light as a possible medium for achieving universal
quantum computation and the medium of choice for quan-
tum communication. Many of the photon’s properties, such
as its clean manipulation and negligible decoherence, makes
it ideal to achieve this goal. However, for scalable quantum in-
formation processing we require photons to interact with one
another. Without this interaction any computation could be
efficiently simulated classically. To achieve such interactions
it was thought that massive reversible nonlinearities were re-
quired [1]. However, materials giving such large nonlinear-
ities are well beyond our ability to manufacture. Then, the
pioneering work of Knill, Laflamme, and Milburn (KLM) [2]
showed that with only single-photon sources, photon-number
resolving detectors, linear optical elements such as beam split-
ters, and feed-forward of measurement outcomes, a near-
deterministic controlled-NOT (CNOT) gate could be created
based on the so-called dual-rail encoding. This procedure uses
a very significant fixed overhead of resources, using “ancilla
systems”, to achieve some overall failure rate, e.g., one below
the threshold for fault-tolerant quantum computation. With
this architecture for the CNOT gate and single-qubit rotations
– accessible with linear optics – a universal set of gates was
possible and a route forward for creating large devices can be
seen [19]. Since this original work there has been significant
progress both theoretically [3–9] and experimentally [10–12],
with a number of CNOT gates actually having been demon-
strated.

Much of the theoretical effort has focused on determining
more efficient ways to perform the controlled logic. There are
two building blocks of particular importance, the first being
the already mentioned controlled-NOT gate and the second
being the so-called nonlinear sign-shift (NS) gate. This sec-

∗Electronic address: s.scheel@imperial.ac.uk

ond gate takes a general two-photon state composed of a su-
perposition of number states with zero, one, and two photons
and flips the sign of the |2〉 component. So it acts as

c0|0〉 + c1|1〉 + c2|2〉 7−→ c0|0〉 + c1|1〉 − c2|2〉, (1)

where |n〉 is the n-th number state vector of the optical field
and the coefficients satisfy the usual normalization constraint.
The NS gate is of interest because it is technically more prim-
itive and fundamental than the CNOT gate, in fact two NS
gates (in addition to two Hadamard gates) can be used to con-
struct a CNOT gate. Using the standard models of linear opti-
cal logic it has been shown in Ref. [5] that the maximum prob-
ability for achieving the NS gate is 1/2 (and 3/4 for the CNOT
gate), even including feed-forward. These upper bounds are
not thought to be particularly tight, but they already indicate
that near-deterministic gates are not possible using only the
linear optical resources, toolbox, and strategy.

What is the fundamental maximum probability of the NS
gate, and if we are not at this maximal value how do we in-
crease it? It has been shown for small photon numbers in the
ancilla system [13, 14] and later in generality [15] that without
feed-forward operations (operations that correct situations in
which the gate has not irrecoverably failed) or the use of non-
linear optical resources the maximum probability of success
with unlimited ancilla is only 1/4. Ironically, this is just the
value attained in the original proposal in Ref. [2]. This still
leaves a lot of space for improvement with potential appropri-
ate feed-forward steps – with significant implications on the
required overhead in resources in the scalable scheme. Is this
then really the limit?

The natural questions are how tight these bounds are,
whether we can reduce them and how close to them can cir-
cuits/networks be built. A related question is whether it is
possible to exceed these bounds by using additional nonlinear
optical resources. Here we will focus our attention on the first
two issues as it has been recently established that by expand-
ing the linear optical set to include (weak) nonlinearities one
can construct near-deterministic controlled gates using homo-
dyne measurements [16] or the quantum Zeno effect [17]. In
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this article, we will investigate the possibility of uplifting the
success probability of the NS gate using feed-forward steps.
Although we consider only restricted settings taking the mini-
mal number of auxiliary modes into account, the findings sug-
gest that even with feed-forward and correction steps, the suc-
cess probability cannot be uplifted much at all.

II. THE NONLINEAR SIGN-SHIFT GATE

The simplest nonlinear operation/network to be constructed
with linear optical techniques is the nonlinear sign shift gate
originally proposed by KLM. An implementation of the gate
is depicted in Fig. 1, involving the signal mode and two auxil-
iary modes. The linear optics network is in this simple three-
mode set-up characterized by two angles θ1, θ2 ∈ [0, 2π) de-
noting the transmittivities. It is straightforward and illustrative
to show that for an initial signal mode input |n〉 the above gate,
conditioned on the |1, 0〉 detection pattern of the detectors act-
ing on the two auxiliary modes, with arbitrary angles θ1 and
θ2, yields a transformation as [2]

|0〉 7→
[

cos2 θ1 cos θ2 + sin2 θ1
]

|0〉,
|1〉 7→ −

[

cos2 θ1 cos 2θ2 + sin2 θ1 cos θ2
]

|1〉, (2)

|2〉 7→ cos θ2

[1

2
cos2 θ1(1 − 3 cos 2θ2) − sin2 θ1 cos θ2

]

|2〉.

Now with θ1 and θ2 chosen such that cos2 θ1 = 1/(4 − 2
√

2)

and cos2 θ2 = 3 − 2
√

2, all these three transformations have
the same amplitude of 1/2 with the |2〉-component also hav-
ing a negative sign. Hence, a general two-photon signal state
vector |ψ〉 is transformed according to

|ψ〉 = c0|0〉 + c1|1〉 + c2|2〉

7−→ 1

2
|ψ′〉 =

1

2
[c0|0〉 + c1|1〉 − c2|2〉] . (3)

The loss in amplitude reflects the existence of other measure-
ment outcomes, and so this heralded transformation is effected
with a success probability of 1/4.

III. BOUND ON SUCCESS PROBABILITIES

Let us first examine the limits on the maximum probability
of success. Firstly, for the NS gate Knill [5] has established
a loose upper bound of 1/2 using a photon-number conserva-
tion argument. We will investigate how tight this bound is by
examining the unsuccessful outcomes of the gate in a three-
mode implementation, that is, the situations where we do not
measure |1, 0〉. These unsuccessful outcomes fit into three cat-
egories: i) Detection of two or more photons in all the ancilla
modes. In these cases some information in the signal state is
irreversibly destroyed because of photon subtraction. ii) De-
tection of |0, 1〉. In this case the photon number in the sig-
nal mode has not changed but an incorrect transformation has
been applied. iii) Detection of |0, 0〉. In this case a photon has
been added to the signal mode and an incorrect transformation
has been applied.

θ1

θ2

θ1

|0>

|ψ>

|1>

|0>

|1>

|ψ >’

BS

BS BS

conditioned output state

photon number
resolving detector

FIG. 1: Schematic diagram of the original KLM nonlinear sign shift
gate. The three input states are the unknown two photon signal state
vector |ψ〉, plus two ancilla modes, one initially prepared as a sin-
gle photon |1〉 and the second as a vacuum |0〉. They interact with
each other via the beam splitters characterized by θ1, θ2 ∈ [0, 2π),
respectively. Here, cos2 θ1 = 1/(4−2

√
2) and cos2 θ2 = 3−2

√
2.

The ancilla modes are then measured using photon-number resolving
detectors. Upon obtaining the pattern |1, 0〉, the signal state vector
|ψ〉 is transformed to |ψ′〉 = c0|0〉 + c1|1〉 − c2|2〉.

The first category contains outcomes where more than one
photon is detected. Consequently, more than zero photons
must have been present in the signal state, and we have there-
fore obtained information about the state. Such an error is ir-
recoverable. The irrecoverable errors are two-photon patterns
(|1, 1〉, |2, 0〉, and |0, 2〉) and three-photon patterns (|2, 1〉,
|1, 2〉, |3, 0〉, and |0, 3〉). We need to calculate the probabili-
ties of these patterns, as their sum gives the total irrecoverable
error probability. This is an indication of the maximum upper
probability bound for the gate to work. The maximum proba-
bility of success for the gate must be less than one minus this
irrecoverable error probability.

To determine the error probabilities we use the techniques
introduced in Ref. [18] to calculate all the necessary matrix
elements of any unitary Û acting in state space as

〈m1,m2,m3|Û |n1, n2, n3〉 =

(

∏

i,j

mi!nj !

)

−1/2

×per Λ[(1m1 , 2m2 , 3m3)|(1n1 , 2n2 , 3n3)] . (4)

Here, the multi-index (1m1 , 2m2 , 3m3) corresponds to an in-
dex collection in which the index i occursmi times. The sym-
bol “per” denotes the permanent of the unitary Λ acting on the
bosonic annihilation operators associated with the unitary Û .

The probability of getting one of the wrong results is state-
dependent, since the corresponding transformation does not
constitute a unitary operation on the signal state. There are
then several different ways of proceeding: One could calculate
the average failure rate by averaging the failure probability
over all possible input states. In this case we obtain

p̄failure =
41√

2
− 86

3
≈ 0.325 . (5)

On the other hand, one can calculate the maximal failure rate
by looking at the class of input state for which the failure prob-
ability becomes extremal. This is the case when c0 = c1 = 0
and c2 = 1 in which case we obtain

pmax,failure = 57
√

2 − 80 ≈ 0.61 . (6)



3

This failure probability is larger than the suggested maximal
failure rate of 1/2 in Ref. [5] which hints at a possible strictly
lower bound on the success probability than 1/2. It is more
adequate to consider the maximal failure rate as it gives truly
the worst performance of the gate which is more appropriate
when setting bounds [20]. Obviously, the (state-independent)
success probability cannot be larger than one minus the (state-
dependent) maximal failure rate. So far in our considerations
we have looked only at the irrecoverable errors. There are
two other ancilla detection patterns (|0, 1〉 and |0, 0〉) which
correspond to incorrect transformations that do not destroy the
information in the signal state.

IV. CORRECTABLE ERROR EVENTS

We will briefly look at the cases in which the measurement
pattern does not result in a complete failure, but in a poten-
tially recoverable error. For simplicity we will assume for the
moment that the network has been tuned to produce the max-
imal success rate, a condition that will be relaxed later. Let us
consider first the situation in which no photons are detected in
the ancilla modes, that is, our measurement result |0, 0〉 occurs
from the ancilla |1, 0〉 input. In this case the (unnormalized)
output state vector from the NS gate is

c02
−1/4|1〉 + c12

1/4(1 −
√

2)|2〉
+ c22

−1/4(51 − 36
√

2)1/2|3〉 . (7)

That is, the information about the input state is still there, but
the state contains too many photons. The smallest term in
this equation has an amplitude of 2−1/4(51 − 36

√
2)1/2 ≈

0.25 and so can at best only increase the success probabil-
ity for the worst input by approximately 0.252 = 0.062 to
0.25 + 0.062 = 0.312. To achieve that, one has to assume
the possibility of perfect recovery, which is unlikely. Hence,
let us determine how efficiently we can recover from this er-
ror syndrome. This will be achieved by applying a second
conditional network that subtracts one photon. There are sev-
eral possibilities available to us. The simplest one would be a
single beam splitter with a vacuum input and a single-photon
detection. That, however, does not contain enough parameters
to enable the correction to occur with nonzero probability.

Similarly, an SU(3) network (depicted in Fig. 2) with |0, 0〉-
ancilla and |1, 0〉-detection does not help since only two of the
beam splitters (A and C in Fig. 2) effectively take part in the
process. That means, that at least one photon has to take part
in the recovery process and so we must start with an ancilla
of the type |1, 0〉 again. For that we have to make a choice of
the measurement pattern again. If we choose |1, 1〉, then with
the beam splitter angle choices θA = θC = 0.489377, θB =
1.07621 we end up with a success probability of only approx.
0.007 which increases the overall probability of success of
our gate to 0.257. This improvement is very small and rather
discouraging.

However, there is one more error syndrome we can attempt
to correct. This is the situation in which our measurement
result was |0, 1〉. The number of photons in the probe beam

conditioned output state

|1>

|0>

SU(3) network photon number
resolving detectors

A

B C

FIG. 2: A schematic diagram of an SU(3)-network with an ini-
tial |10〉-ancilla. The boxes A, B and C represent general SU(2)-
networks.

has not changed but the two-photon input state vector has been
transformed into

1 −
√

2

2
c0|0〉 +

5 − 3
√

2

2
c1|1〉 +

15 − 11
√

2

2
c2|2〉 . (8)

The smallest amplitude in this state has an amplitude of
∣

∣(1 −
√

2)/2
∣

∣ ≈ 0.21 and thus corresponds to a probability
of 0.043. Again, it seems unlikely we can achieve this to-
tal correction by linear optical techniques. Using our general
SU(3) network with θA = θC = 2.53787, θB = 2.26111
we can correct this error syndrome with a total probability
of 0.015 (compared to the maximal possible value of 0.043).
Now adding all the successful error-syndrome-corrected prob-
abilities together with our 1/4 initial gate success probability
we get

ptotal success ≈ 0.272. (9)

This is a slight improvement but far less than the upper bound
of 1/2, or even the upper bound 1−0.61 = 0.39 from Eq. (6).
In fact, if we were to take the stance that we could somehow
correct all the recoverable error syndromes, then we would
have had a success probability pmaximal success ≈ 0.355.

So far we have looked only at a single round of error syn-
drome correction. We can of course attempt to correct the
recoverable errors from the first round (depicted in Fig. 3).
Unfortunately, a numerical study provides some evidence that
this only changes the total success probability ptotal success by
less than one percent and also decreases pmaximal success by sev-
eral percent.

The result so far is that one or two recovery steps using ad-
ditional SU(3) networks do not greatly help to improve the
success probability of the NS gate. We have assumed until
now that the first network has been individually optimized
with respect to its probability of success which seems to be
a sensible thing to do experimentally. Let us now relax this
condition. Now we consider in the first instance two SU(3)
networks as in Fig. 3 with three beam splitters each. Using
Eq. (4) with the 3 × 3 unitary Λ being a concatenation of the
beam splitter matrices with angles θA, θB , θC ∈ [0, 2π), re-
spectively, we obtain for the matrix elements of the unitary
Û

〈0, 1, 0|Û |0, 1, 0〉 = per Λ[2|2] = Λ22 , (10)
〈1, 1, 0|Û |1, 1, 0〉 = per Λ[1, 2|1, 2] = Λ11Λ22 + Λ12Λ21 ,

〈2, 1, 0|Û |2, 1, 0〉 = per Λ[1, 1, 2|1, 1, 2]
= Λ11(Λ11Λ22 + Λ12Λ21 + Λ11Λ12) .
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Note that in each network two beam splitter angles are con-
strained by the requirement of performing a particular gate
operation whereas the third angle determines the probability
of success. Now we maximize the total success probability
of the concatenated networks by optimizing the beam splitter
angles in both networks simultaneously, rather than individ-
ually. It is worth noting that the success probabilities of ob-

failure failure failure

success success success

error
correctable correctable correctable

error error
network network network

1 2 3

FIG. 3: Sequence of conditional networks. Each application can have
one of three possible outcomes: success, correctable error, or uncor-
rectable failure.

taining the outcomes |1, 0〉 and |0, 1〉 after the first network
behave exactly oppositely. That is, as a function of the third
beam splitter angle, the minimum in the probability of finding
the measurement result |0, 1〉 occurs exactly where the prob-
ability of finding |1, 0〉 is maximal. This in turn means that
there is a balance between succeeding with the first network
and failure recovery with a subsequent network. If we denote
by p(i)

x the probability of obtaining the measurement outcome
x in the i-th network, numerical optimization yields for the
overall probability

ptotal success = p
(1)
1,0 + p

(1)
0,1p

(2)
1,0 ≈ 0.28 . (11)

Again, this is very low, and suggests that there should be
a tighter bound than 1/2 for single rounds of feed-forward.
Moreover, the maximal failure probability turns out to be
pmax,failure ≈ 0.66, so that there is only a chance of at most
1/3 to generate the nonlinear sign shift gate even with more
subsequent conditional networks.

V. CONCLUSIONS

We have shown that it is possible to construct nonlinear sign
shift gates that have a probability of success exceeding 1/4
with linear optics, photo-detection and feed-forward. These
techniques are applicable when probabilistic gates fail without
divulging information about the input state. This recycling or
syndrome recovery allows a very modest increase in the over-
all success probability from 1/4 to approx. 0.28. This is still
far from the previous known upper bound of 1/2. However,
the analysis in this paper indicates that the upper bound should
be expected to be closer to 1/3. This is accompanied with a
tremendous cost in attempting to reach this bound. Multiple
SU(3) networks will be required consuming a significant num-
ber of signal photons. While these resources are polynomial
in nature, they are daunting for an experimentalist. While our
techniques have been applied directly to the NS gate, a similar
analysis can be applied to the other conditional linear optical
gates such as the CNOT gate.

Our results suggests that it is not practical to use feed-
forward operations to correct the error syndromes where no
information has been erased about our quantum states or pro-
cesses. If we want to significantly improve the success prob-
ability of these gates, we need to move outside the linear op-
tical toolbox by utilizing for instance entangled ancilla states
or other sources of nonlinearity.
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