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We present a new approach to scalable quantum computing—a “qubus computer”—which realises
qubit measurement and quantum gates through interacting qubits with a quantum communication
bus mode. The qubits could be “static” matter qubits or “flying” optical qubits, but the scheme we
focus on here is particularly suited to matter qubits. There is no requirement for direct interaction
between the qubits. Universal two-qubit quantum gates may be effected by schemes which involve
measurement of the bus mode, or by schemes where the bus disentangles automatically and no
measurement is needed. In effect, the approach integrates together qubit degrees of freedom for
computation with quantum continuous variables for communication and interaction.

PACS numbers:

I. INTRODUCTION

Quantum computing has reached a very interesting
stage in its development. Over the last decade there have
been numerous proposals for qubit realisations [1]. Some
of the more mature proposals, such as trapped ions [2],
nuclear spins (in molecules in liquid state) [3] and pho-
tonic qubits [4] have now been demonstrated to work in
the laboratory at the few-qubit level. Now in terms of
their long term prospects for scalability, there is deemed
to be considerable promise in “solid state” qubits, based
(directly or indirectly) on fabrication and technologies
developed for conventional IT. However, at present such
approaches lag behind the more mature ones— they are
either still on the drawing board, or at the one- or two-
qubit demonstration level. The promise of scalability has
yet to achieved for these approaches, and over the next
few years it will be interesting to see which systems can
meet this challenge and which founder.

Clearly decoherence and measurement are both impor-
tant and challenging issues for solid state qubits. With
the current emergence of demonstration qubit experi-
ments, there is optimism about these problems being
solved to a level that would permit useful small-scale
quantum processing. However, even if these problems
can be solved, there is still a need for two-qubit quan-
tum gates to be implemented in a manner that enables
the addition of more qubits to a system, so there is scal-
ability. This is the main issue that we address in this
paper. If these gates are implemented through a direct
qubit-qubit interaction (i.e. a direct qubit-qubit coupling
term in the basic system Hamiltonian), potential prob-
lems with two-qubit gates are: (i) the addition of an
extra qubit to a system may disrupt the settings and cal-
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ibrations that have been put in place for quantum com-
puting with the original system, and (ii) the qubits may
have to be so close together that individual addressing
(both for single-qubit gates and measurement) cannot
be achieved. Direct qubit interactions may be just fine
for demonstrating entanglement between two solid state
qubits, but they may not be as good when it comes to
building a universal and scalable quantum processor. For
example, with just nearest neighbour interactions there
is a large SWAP operation overhead to interact chosen
qubits, that could be removed through use of a bus to me-
diate interactions between non-nearest neighbours. One
well known technique is to use single photons to medi-
ate this interaction. There have been a number of very
elegant proposals focusing on this, but they place highly
stringent requirements, for example, on the generation of
the single photons or their detection [5–12].

The approach that we present here contains no direct
qubit-qubit interactions and does not require the use of
single photons. Such interactions are achieved indirectly
through the interaction of qubits with a common quan-
tum field mode—a continuous quantum variable (CV)
[13, 14]—which can be thought of as a communication
bus [15] . Our “qubus computer” approach brings to-
gether the best of both worlds. Static solid state qubits
are used where they work best, for processing. Continu-
ous variables are used where they work best, for commu-
nication and mediating interactions; they also have the
potential to enable interfacing with existing, conventional
information technology. We will assume that individual
qubits can be prepared, subjected to single-qubit oper-
ations and measured. However, as we discuss in order
to introduce our approach, interaction of a qubit with
a CV bus mode, followed by measurement of the bus
mode, can also be used in order to effect quantum non-
demolition (QND) measurement of the qubit. This could
be the preferred measurement scheme, unless something
even better is achievable by other means. Our approach
is based on qubits interacting with the bus mode through
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distinct dipole couplings, such as the electric dipole of
a charge qubit coupling to the electric field quadrature,
or the dipole of a spin or magnetic moment coupling to
the magnetic field quadrature. The approach should be
widely applicable in the solid state qubit context and so
we present it in a generic fashion without being tied to
any specific implementations.

As will be seen, our whole approach is based on the idea
of a sequence of interactions, or gates, between qubits and
the bus mode, followed by measurement of the bus in
some scenarios, and not in others. The concept is there-
fore that qubits can be brought into interaction with the
bus mode to effect the desired gate sequence, or that (cer-
tainly in the scenarios which involve bus measurement)
a bus mode pulse can be employed to interact with suc-
cessive qubits to effect the gate sequence. Our approach
is thus to be contrasted with an “always on” interaction
between qubits and a bus mode. In the latter case, such
an interaction can in effect mimic a direct qubit-qubit
coupling. For example, two qubits simultaneously cou-
pled to a bus through the Jaynes-Cummings interaction
behave as if they have a direct exchange interaction in
the dispersive limit [16, 17]. Instead, in our approach
the qubit-bus interactions are sequential.

Following the generic formulation of our approach, we
give an illustration applicable to superconducting charge
qubits [18, 19]. The main results we present are meth-
ods for performing universal two-qubit gates mediated
through a CV bus. Now in the superconducting scenario
approaches have been proposed for using a common oscil-
lator mode to effect qubit interactions [20, 21], in effect
by mimicking direct qubit-qubit interaction. It is also
possible to consider an analogy with ion traps [2] or cav-
ity QED [22] for such solid state systems [23]. Here we
present a variety of schemes for two-qubit gates, which
utilize a sequence of qubit interactions with the common
bus mode in different ways, and which should be appli-
cable to a wide range of matter qubit systems.

One approach we give requires no post-interaction
work on the bus mode—it disentangles automatically
from the qubits when the gate is done. Such schemes are
analogous to ion trap gates which are insensitive to the
vibrational state of the ions [24–27]. This form of gate
probably has the most widespread promise and long-term
potential. However, it is also possible to effect gates that
require a post-interaction measurement of the bus mode,
based on recent ideas from non-linear quantum optics
[28–32]. These schemes may be preferable for some sys-
tems (certainly so if all the qubits couple to the same
quadrature of the bus), and may also be the simplest ap-
proach for initial experimental investigations. They are
also the natural extension of the QND measurement ap-
proach applied to two qubits, so we include discussion
of various schemes of this form. In addition, the bus-
measurement-free approach may be applicable in the field
of non-linear quantum optics (or, more generally, where
the interaction Hamiltonian has the characteristic cross-
Kerr form), so we also include a discussion of this here.

We describe our qubits using the conventional Pauli
operators, with the computational basis being given by
the eigenstates of σz, with |0〉 ≡ | ↑z〉 and |1〉 ≡ | ↓z〉. The
communication bus mode is described as a quantum field
mode with creation(annihilation) operators a†(a). For
many solid-state qubits this could be an electromagnetic
microwave field mode, although for other systems it may
be an optical field. The centrepiece of our approach is an
interaction Hamiltonian of the form

Hint = h̄χσzX(θ) (1)

where σz is the qubit operator and the field quadrature
operator is X(θ) = (a†eiθ + ae−iθ). Such an interaction
Hamiltonian arises from the interaction between a charge
qubit or Cooper pair box [18, 19] and the electromagnetic
field, with the z eigenstates representing the relevant two
excess charge states of the box or island. Further exam-
ples include the interaction of a Cooper-pair box with a
micromechanical resonator or cantilever [33], and other
quantum electromechanical systems such as a Fullerene
quantum dot which can both carry excess charge and vi-
brate mechanically [34]. All of these systems can exhibit
a very large electric dipole moment (compared to tradi-
tional atomic systems) and couple strongly to the rele-
vant oscillator or field mode. The action of the Hamilto-
nian (1) for a time t effects a displacement operation on
the field of D(σzβ) [35], conditioned on the state of the
qubit, where β = χtei(θ−

π
2
) and D is the usual displace-

ment operator D(β) = exp(βa† − β∗a).

II. QUBIT MEASUREMENT THROUGH

CONTROLLED DISPLACEMENT

As an introduction to the use of a coherent bus mode
we consider its application for measurement of a qubit.
For the case of θ = π/2 (coupling to the momentum
quadrature in Eq. (1)), the displacements are in the X(0)
direction and, after interaction, an initial qubit-bus state
of |Ψi〉 = (c0|0〉 + c1|1〉)|α〉 is transformed to the entan-
gled state

|Ψf 〉 = c0|0〉|α+ β〉 + c1|1〉|α− β〉 . (2)

The circuit diagram for this is shown in Fig. 1 for
β real. The effect of the interaction on the CV bus in
phase space is illustrated in Fig. 2. Measurement of the
bus mode can thus effect a non-demolition measurement
of the qubit in its computational basis. The field mea-
surement could be made by a homodyne measurement of
the X(0) quadrature, or an intensity measurement. This
approach is the displacement-based analogue of photon
non-demolition measurement based on an optical cross-
Kerr non-linearity [36–38]. Homodyne measurement of
the bus mode, for example if this is a microwave field
mode coupled to matter qubits, may be effected through
a single electron transistor operated as a mixer [39], or
some other suitable non-linear device, such as a super-
conducting Josephson ring system [40].
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FIG. 1: Circuit diagram for the QND measurement scheme
based on conditional displacement of the bus mode by the
qubit followed by a homodyne measurement on the bus mode.
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FIG. 2: Schematic diagram showing the effect on the CV bus
coherent state of interaction with the qubit (a). The coherent
state is displaced conditional on the qubit state. The labels
(i) and (ii) correspond to the evolution stages, as shown in the
circuit diagram in the previous figure. (b) A schematic dia-
gram of the X(0) quadrature probability distribution for the
CV bus mode state after interaction with the qubit. Clearly
the qubit measurement is not perfect due to the overlap of
peaks corresponding to different computational basis states.

Now clearly the qubit measurement is not perfect, as
the final states of the CV bus mode corresponding to
the different computational basis state amplitudes for
the qubit are not exactly orthogonal, as illustrated in
Fig. 2(b). However, for the example of taking the mid-
point between the probability peaks as the discrimina-
tion point and using the X(0) quadrature measurement
of the bus, the error probability (the sum of the areas
that sit the wrong side of the discrimination point) is
E = 1

2erfc(2−1/2|β|). This can be made very small for
a suitable choice of β [38], for example even for |β| ∼ 3
the error is E ∼ 0.001. Now this error formula and the
example numbers are given on the basis of very accu-
rate homodyne measurement of the CV mode quadra-
ture. However, even somewhat imperfect homodyne mea-
surement would still provide very good qubit measure-

ment. The usual way to describe such an imperfect mea-
surement is via a gaussian convolution of the ideal ho-
modyne projector[41, 42], that is we use the projector
(2π∆)−1/2

∫∞
−∞ dy exp[−(X − y)2/(2∆)]|y〉〈y| instead of

|X〉〈X|. The effect of this is to broaden the two distri-
butions from a width of unity to a width of 1+∆, which
in turn means the overlap error function E changes by
a rescaling of β to β√

1+∆
. This can clearly still be kept

small for a suitable choice of β.
This CV bus approach to solid state qubit measure-

ment clearly has much promise. For example, it has
already been realised [43] for a superconducting charge
qubit coupled to a microwave mode in the dispersive
limit, when the qubit-cavity coupling effectively takes the
form of a cross-Kerr non-linearity [21, 44] rather than
that which generates controlled displacements.

III. TWO-QUBIT INTERACTION THROUGH

CONTROLLED BUS DISPLACEMENT AND

MEASUREMENT

Measurement of a coherent bus mode, following its in-
teraction with two qubits, can be used to effect an en-
tangling operation between the qubits. As an example,
we again consider displacements in the X(0) direction of
the field. After the interactions, an initial two-qubit-bus
product state of

|Ψi〉 =
1

2
(|00〉 + |01〉 + |10〉 + |11〉)|α〉 (3)

is transformed to

|Ψf 〉 =
1

2
(|00〉|α+ 2β〉 + (|01〉 + |10〉)|α〉 + |11〉|α− 2β〉) ,

(4)
assuming equal strength coupling of both qubits to the
bus mode. Now if this procedure can be performed with
the vacuum state (α = 0), then all is well and good. If
not, an unconditional displacement operation D(−α) is
applied to the bus mode prior to measurement. With this
resolved, an appropiate measurement of the bus mode
projects the two-qubit system into a maximally entangled
state.

The corresponding circuit diagram for this operation
is shown in Fig. 3. The evolution of the CV bus mode
amplitudes is illustrated in Fig. 4. Now, for an ideal
projection onto |n〉[45], the two-qubit state is conditioned
to

|ψf 〉 = 2−1/2(|01〉 + |10〉) (5)

for n = 0 and to

|ψf 〉 = 2−1/2(|00〉 + (−1)n|11〉) (6)

for n > 0. These projections happen with equal probabil-
ity of 1

2 (with the most likely value of n in the latter case

being n ∼ 4|β|2), although there is an error probability
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FIG. 3: Circuit diagram for a two-qubit parity gate based on
controlled displacements between the qubits and the “probe”
bus, followed by bus measurement.
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FIG. 4: Schematic diagram showing the phase space evolu-
tion of the bus amplitudes corresponding to the various qubit
computational basis states. The labels (i) to (iv) correspond
to the evolution stages, as shown in the circuit diagram in Fig
3.

of e−4|β|2 (and a corresponding admixture to the state)
in the former case, due to the overlap of the coherent
state with the vacuum. This error can be made small for
a suitable choice of β. The phase factor in the n > 0 case
is heralded by the measurement outcome n, and so can
be allowed for or corrected.

An alternative approach, which may be preferable
in initial experiments, is to use an intensity measure-
ment (or even a bucket detector), instead of a pho-
ton number resolving detector. In such a case the
odd parity state is still projected to |01〉 + |10〉, as
in Eq. (5). However the even parity state of Eq. (6)
|00〉 + (−1)n|11〉 becomes mixed, due to the uncer-
tainty of whether n, although > 0, is even or odd.
The even parity state is thus represented by the den-
sity matrix ρ = A [|00〉 + |11〉] [〈00| + 〈11|] + (1 −
A) [|00〉 − |11〉] [〈00| − 〈11|] where A is determined by the
distribution of the amplitudes |00〉+ |11〉 and |00〉 − |11〉
in the even parity subspace and any information ob-
tained about n from the measurement [46]. Now even
in the worst case scenario (A = 1/2) the protocol can
be repeated, applying Hadamard operations (|0〉 → |0〉+
|1〉 , |1〉 → |0〉 − |1〉) to the qubits and then interacting

with the bus and measuring. Half the time, and heralded,
this will give the odd parity pure state of Eq. (5) (which
could be deterministically transformed to some other en-
tangled state, as desired), and half the time a mixture
will result. Thus after m iterations the level of mixture
will be ∼ (1/2)m, which can be made arbitrarily small by
increasing m. Thus with multiples uses of a simple inten-
sity measurement or bucket detector it is possible to gen-
erate a near-deterministic entangling operation between
qubits, without the need for photon number resolution
in the detection device applied to the bus [47].

The entangling operation given in Eqs. (5) and (6),
when operated with photon number resolution on the
measurement, effectively projects the initial two-qubit
state into an odd or even parity entangled state and,
since the outcome is heralded by the measurement re-
sult, one could be transformed to the other, as desired.
Whilst such a parity operation is not a unitary opera-
tion, it is possible to utilize this form of qubit parity
operation along with single qubit rotations to construct
a universal gate set [48]. This has been shown in detail
in the analogous case for optical qubits coupled to bus
modes through cross-Kerr non-linearities [28, 31]. This
analysis carries over in a straightforward manner to simi-
lar parity operations, however they are achieved. So, the
displacement-based parity operation presented here pro-
vides a route to universal quantum processing for solid
state qubits, all dipole-coupled to the same quadrature
of a bus mode. It is also worth noting that under certain
conditions the coupling of, for example, a charge qubit to
a microwave field behaves like a cross-Kerr coupling, and
so generates controlled rotations rather than controlled
displacements on the field [21]. In this limit the quantum
optical approach to gates [28–31] carries over directly.

A further point to consider from the perspective of ini-
tial experiments is that it may be much easier to effect
a probabilistic (but good fidelity) entangling operation,
rather than the full parity gate. For example, homodyne
measurement of theX(0) quadrature of the CV bus mode
applied directly to a system in the state of Eq. (4) will
generate the two-qubit state of Eq. (5) probabilistically,
but—very importantly—heralded by the quadrature re-
sult. As with the qubit measurement example, provided
that β is sufficiently large so the bus state probability dis-
tributions corresponding to the different two-qubit ampli-
tudes in Eq. (4) have very little overlap, even a somewhat
imperfect homodyne measurement of the bus quadrature
can still give very high fidelity two-qubit entanglement.
This probabilistic but heralded entangling operation is a
good initial goal for experiments, prior to the full parity
operation, leading further to a universal two-qubit gate.

IV. TWO-QUBIT GATE THROUGH

CONTROLLED BUS DISPLACEMENTS ALONE

Now there may be situations, such as initial experi-
mental tests, or cases where in practice coupling to only
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one bus quadrature is possible, where it is desirable to
effect a gate through qubit-bus interactions followed by
a bus measurement. However, it is in fact possible to
construct a universal two-qubit gate purely through a
sequence of qubit-bus interactions, without the need for
any subsequent measurement [24, 27, 49]. This clearly
simplifies the procedure, but it also has the potential for
making the gate faster, as there is no need for measure-
ment of the bus and qubit operations conditional on this
result to complete the gate. One scheme to achieve such
a gate requires one qubit (labelled 1) to be coupled to the
momentum quadrature of the field (θ = π/2 in Eq. (1)),
thus generating displacements on the bus in the X(0) di-
rection, and the other qubit (labelled 2) to be coupled
to the position quadrature (θ = 0 in Eq. (1)), giving
displacements in the orthogonal direction.

With this arrangement and using the well-known result

D(β1)D(β2) = exp

[

β1β
∗
2 − β∗

1β2

2

]

D(β1 + β2) , (7)

the gate follows from four conditional displacements. The
sequence of operations is shown in Fig. 5. This defines
the unitary operator

U12(β1, β2) = D(iβ2σz2)D(β1σz1)

×D(−iβ2σz2)D(−β1σz1) (8)

For the case of real β1 and β2 the effect of this operator
on the bus coherent state, conditional on the state of the
qubits, is illustrated in Fig. 6. The action on the initial
state of Eq. (3) is

|Ψf 〉 = U12(β1, β2)|Ψi〉

=
1

2

(

|00〉e2iβ1β2 + |01〉e−2iβ1β2

+|10〉e−2iβ1β2 + |11〉e2iβ1β2

)

|α〉 . (9)

For any real value of β1β2 the bus mode is disentangled
from the qubits at the end of the operation; nevertheless,
for 2β1β2 = π/4 we obtain a maximally entangled state
of the two qubits. In this case we achieve a universal
two-qubit gate, which is equivalent to a controlled-phase
gate (up to application of local unitaries Ui = 2−1/2(1 −
iσzi) to each qubit and a global phase of π/4). The bus
mode enables the gate to be performed—it is certainly
entangled with the qubits during the operation—but at
the end of the gate it is disentangled and so has effectively
played the role of a catalyst.

There are clearly numerous variations that can be
made within this framework [49]. The key features of
the gate are:

1. It is the total phase space area traced out by a co-
herent state amplitude that determines the phase
acquired by that amplitude [49]. For a closed anti-
clockwise path C in phase space

lim
∆α→0

Θ

(

∏

i

D(∆αi)

)

= exp(2iAC) , (10)

Qubit 1

Qubit 2

−β1σz1  β1σz1−iβ2σz2 iβ2σz2

Time

(i) (ii) (iii) (iv) (i)

FIG. 5: Circuit diagram of a universal two-qubit gate based
on controlled displacements between the qubits and the
”probe” bus.

00 10

1101

Re α Re α+β1Re α−β1

Im α+iβ2

Im α

Im α−iβ2

(i) (ii)(ii)

(iii) (iii)

(iii) (iii)(iv)

(iv)

FIG. 6: Schematic diagram showing the phase space evolution
of the bus amplitudes for the four basis states of the two
qubits. The labels (i) to (iv) correspond to the evolution
stages, as shown in the circuit diagram in Fig. 5.

where Θ() reminds us that the operator order is
preserved and the path {∆α1,∆α2, . . .} forms a
closed anticlockwise path C in phase space. AC
is the area enclosed by C.

2. The fact that all the coherent state amplitudes end
up on top of each other at the end of the gate dis-
entangles the bus from the qubits without the need
for any measurement of the bus mode.

There is a lot of freedom available within the constraints
of achieving these features. For example, it may well be
desirable to work with β1 = β2 (so β1 = (π/8)1/2 achieves
the maximally entangling gate) or thereabouts, in order
to minimise the total displacement for a given area. How-
ever, this is not necessary—different forms of qubit that
couple to the bus mode with different strengths can be
used, giving rectangular paths in phase space. Further-
more, the displacements do not have to be in orthogonal
directions, although clearly a greater total displacement
distance is required to achieve a given gate (such as a
maximally entangling benchmark) if non-orthogonal dis-
placements are employed. In general the shapes of the
paths in phase space don’t matter; what is essential is
that different two-qubit amplitudes effect different closed
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path areas on the bus, so that the phases acquired gen-
erate an entangling gate. In this sense the gate can be
regarded as a geometric phase gate [49].

Although we have illustrated the gate with coupling
to σz for both qubits, other possibilities clearly also
work. For example, if the coupling to qubit 1 is instead
proportional to X(π/2)σx1 ≡ X(π/2)H1σz1H1 (where
H1 is the Hadamard operation on qubit 1) then, sub-
ject to the same conditions as before (local unitaries
Ui = 2−1/2(1 − iσzi) applied to each qubit and a global
phase of π/4), the two-qubit gate is equivalent to CNOT
rather than a controlled-phase gate. This can easily be
seen by starting with |Ψi〉 = 2−1/2(|00〉+ |01〉)|α〉 rather
than the state of Eq. (3). The approach therefore has
significant flexibility in its ability to produce a universal
two-qubit gate.

V. SPECIFIC

EXAMPLE—SUPERCONDUCTING CHARGE

QUBITS

As a specific example we consider the case of super-
conducting charge qubits [18, 50]. Following the origi-
nal demonstration of single charge qubit behaviour [19],
there have been a number of experimental demonstra-
tions of single [51–53] and two-qubit [54–57] charge or
charge-phase qubit behaviour, culminating in the re-
cent demonstrations of coherent coupling to a bus mode
[43, 44]. So such systems certainly form a promising
route for our approach. A single charge qubit can be
thought of as a very small superconducting island—a ca-
pacitor (of capacitance C)—with Josephson tunnel cou-
pling (of Cooper pair charges 2e) to a larger supercon-
ducting reservoir. The characteristic electrostatic energy
of the system is Ec = (2e)2/2 and the Josephson tun-
nelling energy is EJ . For qubit operation the system
is biased with an external quasi-static voltage source
(Vx) such that the states of the island with zero and
one excess Cooper pair charge are near degenerate, and
form a good approximation to a qubit computational
basis. The size of the Josephson coupling EJ can be
varied externally by creating a composite junction from
two parallel junctions in a loop threaded by a magnetic
flux Φxc. Such a charge qubit is illustrated in Fig. 7.
Putting these external sources in characteristic dimen-
sionless terms (nx = CVx/2e, where C is the effective ca-
pacitiance, and φx = 2πΦxc/Φ0) the charge qubit Hamil-
tonian can be written as

Hcq = Ecσz(nx −
1

2
) − EJσx cosφx . (11)

Now, viewed as a planar structure, if such a qubit is
placed in a microwave field mode at a position where
there is a non-zero electric field (denoted as the quadra-
ture X(0)) across the capacitor and junction, there will
be a microwave contribution to nx and thus a coupling
of the desired form X(0)σz [21, 43]. Consider two such

Vx

Q=N 2 e

     Coherent superconducting
                reservoir

Φxc

FIG. 7: Schematic diagram of a charge qubit. A supercon-
ducting island with excess charge 2Ne is connected to a reser-
voir through a composite Josephson junction, whose effective
tunnelling amplitude is controlled by the magnetic flux Φxc.
An external voltage bias Vx is applied to induce an additional
polarization charge.

charge qubits, with no direct coupling to each other but
both positioned so they couple to the electric field antin-
ode of a microwave mode. This is illustrated schemati-
cally in Fig. 8. The entangling gate based on controlled
displacements followed by microwave field measurement
described earlier could be applied to this two-charge-
qubit system, either in its full form, or in its probabilistic
heralded form.

FIG. 8: Schematic diagram of a two-charge-qubit system,
with each qubit coupled to the electric field of a microwave
bus mode.

Alternatively, if a charge qubit is at a position where
there is a non-zero magnetic field (denoted as the quadra-
ture X(π/2)) normal to the plane of the structure and
threading the composite junction, there will be a mi-
crowave contribution to φx and coupling of the form
X(π/2)σx sinφxqs, which is controllable through the
quasi-static part of the field φxqs. Consider two charge
qubits, one positioned to couple to the electric field antin-
ode of a microwave mode and the other positioned to
couple to the magnetic field antinode of the same mode,
as illustrated schematically in Fig. 9. With such a sys-
tem it is clearly possible to realise couplings to different
field quadratures, and thus perform a universal two-qubit
quantum gate without any post-interaction measurement
of the bus mode.

There are clearly many other possibilities that can be
considered. In terms of bus-measurement-enabled gates
or interactions, different forms of charge qubit (e.g. su-
perconducting and semiconducting) could be used. Gates



7

Qubit

FIG. 9: Schematic diagram of an array of planar charge qubits
coupled to a common microwave bus mode. Adjacent qubits
are respectively coupled to the antinode of the electric field
(across the junction) and the antinode of the magnetic field
(threading the composite junction loop), enabling the forms
of coupling needed for the measurement-free gate.

between magnetic flux qubits [58–60], all coupled to the
magnetic field antinode of a microwave mode, could be
effected through this approach. Experimental evidence
for coherent coupling between a flux qubit and an elec-
tromagnetic oscillator has already been seen [61]. Gates
between flux qubits and other forms of magnetic qubit is
a further possibility. In terms of measurement-free gates,
it is possible to design a new form of charge qubit (includ-
ing a π-junction) that enables geometric two-qubit gates
through interaction with a common microwave bus [62].
Two-qubit interactions between charge and flux qubits
(suitably positioned to couple to the relevant microwave
field quadratures) is yet another possibility.

VI. TWO-QUBIT GATE THROUGH

CONTROLLED BUS ROTATION AND

MEASUREMENT

For some solid state qubit systems, or in certain lim-
its of behaviour of some systems, the interaction with a
bus mode takes the effective form of a cross-Kerr non-
linearity (e.g. see Ref [21]), analogous to that for optical
systems, described by an interaction Hamiltonian of the
form

Hint = h̄χσza
†a (12)

rather than that of Eq. (1). When acting for a time t on
a qubit-bus system, this interaction effects a rotation (in
phase space) of ±θ on a bus coherent state, where θ = χt
and the sign depends on the qubit computational basis
amplitude. Now it is known already in the quantum op-
tics context that such interactions can be used to effect a
universal two-qubit gate between photonic qubits, based
on bus measurement [28]. Here we give two examples of
a two-qubit parity gate, based on different forms of bus
measurement.

The circuit diagram for the first gate is shown in
Fig. 10. Following the interactions and an unconditional
displacement operation D(−α), an initial two-qubit-bus

θσz1

Qubit 1

Qubit 2

Time

θσz2 D(−α)
Photon 
number 
detector

(i) (ii) (iii) (iv)

FIG. 10: The circuit diagram for a two-qubit parity gate based
on controlled rotations between the qubits and the probe bus,
followed by bus number measurement.

α
2θ

D(-α)

0

(ii)

(ii)

(i),(iii)

(iii)

(iii)

(iv)

(iv)

(iv)

FIG. 11: Schematic diagram showing the phase space evolu-
tion of the bus amplitudes corresponding to the various qubit
computational basis states. The labels (i) to (iv) correspond
to the evolution stages, as shown in the circuit diagram in the
previous figure.

product state of Eq. (3) is transformed to

|Ψf 〉 =
1

2

(

|00〉|α(e2iθ − 1)〉 + (|01〉 + |10〉)|0〉

+|11〉|α(e−2iθ − 1)〉
)

, (13)

assuming equal strength coupling of both qubits to the
bus mode. This is illustrated schematically in Fig. 11.
A photon number measurement applied to the bus mode
clearly either picks out the vacuum, or projects onto the
other two amplitudes without distinguishing them. Now,
for 2θ ¿ 1 and an ideal projection onto |n〉, the two-qubit
state is conditioned to

|ψf 〉 = 2−1/2(|01〉 + |10〉) (14)

for n = 0 and to

|ψf 〉 = 2−1/2(in|00〉 + (−i)n|11〉) (15)

for n > 0. These happen with equal probability of 1
2

(with the most likely value of n in the latter case be-
ing n ∼ 4|αθ|2), although there is an error probability of

e−4|αθ|2 (and a corresponding admixture to the state) in
the former case, due to the overlap of the coherent state
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with the vacuum. This error can be made small with a
suitable choice of α for some given θ. The phase factor
in the n > 0 case is heralded by the measurement out-
come n, and so can be allowed or corrected for. Clearly
using a photon number measurement this gate is near-
deterministic. Alternatively one can also use the iterative
procedure with the intensity measurement/bucket detec-
tor described in Section (III) to enable near-deterministic
entanglement generation. If one is instead prepared to ac-
cept a probabilistic gate, heralded by the measurement
outcome, then a measurement of the X(π/2) quadrature
of the bus can be used. Half the time it will project to
Eq. (14), heralded by a result close to zero. The other
half of the time no entanglement will be produced. Such
a procedure may be a good approach for initial exper-
imental demonstrations of the principle. It would not
require the final unconditional displacement.

A near-deterministic gate based on a single final
quadrature measurement can be achieved, although it re-
quires a more involved circuit. This is shown in Fig. 12.
Following qubit-bus interactions analogous to the pre-
vious gate and an unconditional displacement operation
D(−2α cos 2θ), further qubit-bus interactions occur. An
initial two-qubit-bus product state of Eq. (3) is trans-
formed to

|Ψf 〉 =
1

2
[(|00〉 + |11〉)| − α〉
+ (|01〉 + |10〉)|α(1 − 2 cos 2θ)〉] , (16)

again assuming equal strength coupling of both qubits
to the bus mode. This is illustrated schematically in
Fig. 13. Clearly with this scheme a homodyne measure-
ment of the X(0) quadrature of the bus mode will project
onto the odd or even parity entangled two-qubit states
that sit in Eq. (16), with the outcome heralded by the
quadrature result. This parity gate isn’t perfect, as the
final states of the CV bus mode corresponding to the
different entangled states of qubits are not exactly or-
thogonal. (See Fig. 2 for an illustration.) However, as
with the qubit measurement scenario, for the example
of taking the midpoint between the probability peaks as
the discrimination point and usingX(0) quadrature mea-
surement of the bus, the error probability (the sum of
the areas that sit the wrong side of the discrimination
point) is approximately E = 1

2erfc(21/2|α|θ2). This can

be made very small for a suitable choice of αθ2. As in the
qubit measurement case, somewhat imperfect homodyne
measurement can be tolerated provided that αθ2 is large
enough to dominate the homodyne error.

VII. TWO-QUBIT GATE THROUGH

CONTROLLED BUS ROTATIONS ALONE

With cross-Kerr interactions of the form of Eq. (12) it
is also possible to achieve a universal two-qubit gate with-
out any bus measurement. The relevant gate sequence is
illustrated in Fig. 14.

θσz1

Qubit 1

Qubit 2

Time

θσz2 θσz1 θσz2 HomodyneD(β)

(i) (ii) (iii) (iv) (v) (vi)

FIG. 12: The circuit diagram for a two-qubit parity gate
based on controlled rotations between the qubits and the
probe bus, followed by bus X(0) quadrature measurement.
The amplitude of the unconditional displacement is given by
β = −2α cos 2θ.

α
2θ

D(-2α cos 2θ)

0
(i),(iii)

(ii)

(ii)

(iii)

(iii)(iv)

(iv)

(iv)-(vi)

(v)

(v)

(vi)

FIG. 13: Schematic diagram showing the phase space evolu-
tion of the bus amplitudes corresponding to the various qubit
computational basis states. The labels (i) to (vi) correspond
to the evolution stages, as shown in the circuit diagram in the
previous figure.

In this case the unconditional displacements are all
of equal magnitude β (but varying directions as shown
in Fig. 14) and the controlled rotations are generated
through Hamiltonians of the form (12) with an interac-
tion time t and θ = χt. With an initial state of (3) and

−β −iβ +β +iβθσz1

Qubit 1

Qubit 2

Time

θσz2 θσz1 θσz2

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (i)

FIG. 14: The circuit diagram of a two-qubit controlled-phase
gate, based on controlled rotations between the qubits and
the probe bus and non-controlled displacements of the bus.
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00 01

1110

(i)

(ii)(iii)

(iv)

(v)
(vi) (vii)

(viii)

(i)

(ii)
(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(i)

(ii)(iii)

(iv)

(v)

(vi)
(vii)

(viii)

(i)

(ii)

(iii)

(iv)

(v)

(vi) (vii)

(viii)

FIG. 15: Schematic diagram showing the phase space evolu-
tion of the bus amplitudes corresponding to the various qubit
computational basis states. The labels (i) to (viii) correspond
to the evolution stages, as shown in the circuit diagram in the
previous figure. The small areas shown in grey are traversed
in a clockwise sense, giving a negative contribution to the
phase acquired.

α = β(1 + i)/2, the gate sequence of Fig. 14 achieves a
gate which is locally equivalent to a controlled-phase gate
for the condition |βθ|2 = π/4. The behaviour of the bus
amplitudes in phase space is illustrated in Fig. 15. There
are a number of points that should be noted about this
gate.

1. There are simpler circuits available for the two-
qubit gate through controlled bus rotations alone.
These use the same number of controlled rotations
but fewer probe bus displacement operations. For
example, in the circuit given in Fig. 14, the final dis-
placement is not actually necessary to implement
the gate. In this case the final displacement just
returns the probe beam to its initial starting posi-
tion, which is neat but unnecessary.

2. There are also variations of these gates based on
two displacement operations. Unfortunately, while
performing a CNOT or CPhase, these do not have
the same scaling in terms of θ and β for the resul-
tant phase shift.

3. In the rotation-based case of Fig. 15, unlike that
of the displacement-based gate of Fig. 6, there is
an error. The bus mode doesn’t disentangle from
the qubits exactly, because the (small) rotations
employed are arcs of circles, rather than straight
lines. The error is of order |βθ2|, which can clearly
be made small (of order 1/β) even for a maximally

entangling universal gate by working in the small θ
large β limit. The gate is discussed in more detail
in the Appendix.

VIII. SPECIFIC EXAMPLES

It is already known theoretically [21] that a supercon-
ducting charge qubit (as illustrated in Fig. 7) coupled to
a microwave field mode in the dispersive limit has an in-
teraction Hamiltonian of the cross-Kerr form of Eq. (12).
Furthermore, experiments in this limit [43, 44] have
clearly demonstrated this coupling. Such systems are
clearly excellent candidates for the controlled-rotation-
based gates that we propose. Two charge qubits coupled
to a microwave field mode (as illustrated in Fig. 8) in the
dispersive limit form a candidate system for realising the
measurement-based gates. The simplest initial demon-
stration would probably be to employ the scheme given
in Fig. 10 in a probabilistic approach, in which case the
final non-controlled displacement is unnecessary. Mea-
surement of the X(π/2) quadrature of the microwave
field would entangle the charge qubits with probability
1/2, heralded by a measurement outcome close to zero.
If such a gate could be achieved, this would point the way
towards the near deterministic gates of Figs. 10 and 12,
based respectively on photon number or X(0) quadra-
ture measurement of the microwave field. With sufficient
control over the couplings and the microwave field, the
geometric gate of Fig. 14 between two dispersive charge
qubits is a further possibility.

NV diamond centre

Detector

Probe

e

0 1

FIG. 16: Schematic diagram of a two NV-diamond centre
qubits in separate cavities coupled via a cross-kerr interac-
tion to an optical field. The final measurement enables the
construction of a parity gate. .

We can also consider NV-diamond centres [63, 64]
within individual cavities as excellent matter system can-
didates for the qubus protocol and especially the parity
gates (as depicted in Fig 16). Within the level struc-
ture of an NV-diamond centre are two long-lived states
|↑〉 and |↓〉 and an excited state |e〉, in an L-configuration
with the |↓〉 ↔ |e〉 transition coupled to the cavity mode.
The |↑〉 state can represent the logical |0〉 basis state and
the |↓〉 state the logical |1〉 basis state. The NV diamond
level configuration is such that only the |1〉 state can be
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excited to the state |e〉 via an optical pulse while the |0〉
to |e〉 transition is assumed forbidden or extremely weak.
When the optical pulse interacts with the |1〉 state, it
picks up a small phase shift due to the |1〉 ↔ |e〉 transi-
tion while no phase shift occurs for the |0〉 state. This
essential difference is all that we require to create a con-
ditional phase shift and thus implement the two qubit
gates through controlled rotation.

IX. CONTROLLED DISPLACEMENTS FROM

CONTROLLED ROTATIONS

The previous sections have demonstrated the power of
qubit-controlled displacements and rotations, applied to
a communication bus, for fundamental two-qubit gate
operations and quantum information processing. The
controlled displacement gates seem potentially easier to
implement, as they do not require unconditional displace-
ments as well and operate for small to large values of χt.
However the controlled displacement schemes generally
have a strong dipole coupling requirement, needed to en-
sure that ωt can be assumed constant through out the
gate. For SQUID and other microwave based schemes
this condition can be satisfied easily, but it poses a signif-
icant problem in the optical regime, suggesting that op-
tical schemes are restricted to controlled rotation based
gates. However, this is not the case, as it is straight-
forward to transform a controlled rotation interaction to
a controlled displacement. Consider the Hamiltonian in
the interaction picture given by Eq. (12) with the bus
mode displaced by an amount α. In this case

h̄χσza
†a→ h̄χσz

[

|α|2 + α∗a† + αa+ a†a
]

. (17)

If we let α = |α|e−iθ then the above equation can be
written in the form Hint = h̄χσz

[

|α|2 + |α|X(θ) + a†a
]

.
We clearly see a controlled displacement term, plus
two other pieces dependent on a†a and |α|2. These
terms can be eliminated with a simple trick as fol-
lows. First run the interaction given by U(α, σz, t) =
exp [iHintt/h̄] for a time t/4, then bit-flip the qubit and
change the sign of the displacement from +α → −α
and run for a further time t/2. Finally repeat the
orginal U(α, σz, t) for a time t/4. This results in a net
interaction U(α, σz, t/4)U(−α,−σz, t/2)U(α, σz, t/4) ∼
exp

[

i|α|χtσzX(θ′) +O[t3, a, a†]
]

which is the desired
displacement. There is now an effective coupling con-
stant |α|χ, where α can in principle be large. There is
a small O(t3) correction in the above evolution but this
is tiny for reasonable interaction times. The key issue
becomes how to achieve the displacement on the probe
field. There are a number of well known solutions to this
but the easiest is to drive the probe field with a clas-
sical pump where the displacement is required. This is
experimentally achievable.

It is worthwhile considering a specific situation in a
litte more detail. Consider a Lambda-type atomic con-
figuration with the two lowest energy levels representing

the logical qubit states. We know that if we detune by
∆ a field a that connects the logical |1〉 to the excited

state |e〉 we get an effective coupling HI = h̄ g
2

2∆a
†a|1〉〈1|,

where g is the coupling coefficient between the atomic
system and probe mode. A second field b detuned above

the |e〉 by the same amount gives HI = −h̄ g22∆a
†a|1〉〈1|.

Now if we choose the field a to have a large classical com-
ponent, then a → a + |α|e−iθ and the field b to be pure
classical b → |α|e−iφ then the two effective Hamiltonian
yields a net Hamiltonian

Heff = h̄
g2

2∆

[

|α|X(θ) + a†a
]

|1〉〈1| (18)

where the quadratic Stark shift of the level |1〉 is can-
celled and there is no special phase relation required be-
tween the upper and lower detunings. Lastly for |α| large
the component a†a|1〉〈1| can be neglected or eliminated
as discussed above. There are many variations of this
approach—the one to be used in practice depends upon
the actual experimental system.

X. A FURTHER EXAMPLE BASED ON

ROTATIONS AND DISPLACEMENTS

Finally, we present a near-deterministic gate based on
a final quadrature measurement and with qubits that are
able to both rotate and displace the bus mode. This may
be rather more difficult to achieve for the current most
popular matter qubits, in comparison to the gates already
presented, but we include it to cover the full spectrum of
possibilities. The circuit diagram is shown in Fig. 17.
Following this conditional gate sequence, an initial two-
qubit-bus product state of Eq. (3) is transformed to

|Ψf 〉 =
1

2
((|00〉 + |11〉)|α(1 − cos 2θ)〉

+(|01〉 + |10〉)|α〉) , (19)

assuming equal strength coupling of both qubits to the
bus mode and β = α

2 sin 2θ. The phase space evolution
of the bus mode amplitudes is illustrated schematically
in Fig. 13. The result is two amplitudes lying on the real
axis, so a homodyne measurement of the X(0) quadra-
ture of the bus mode will project onto the odd or even
parity entangled two-qubit states that sit in Eq. (19),
with the outcome heralded by the quadrature result. As
with some previous examples, this parity gate isn’t per-
fect, as the final states of the CV bus mode corresponding
to the different entangled states of qubits are not exactly
orthogonal, as illustrated in Fig. 2. Once again, taking
the midpoint between the probability peaks as the dis-
crimination point, the error probability (the sum of the
areas that sit the wrong side of the discrimination point)
is approximately E = 1

2erfc(2−1/2|α|θ2). This can be

made very small for a suitable choice of αθ2 and some-
what imperfect homodyne measurement can be tolerated
provided that αθ2 is large enough to dominate the homo-
dyne error.
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α
2θ

0

(ii)

(ii)

(i),(iii)

(iii)

(iii)

(v)

(iv)

(iv)

(iv)

(iv)

θσz1

Qubit 1

Qubit 2

Time

θσz2

Homodyne

(i) (ii) (iii) (iv)

  -iβ σz1   -iβ σz2

(v)

a)

b)

FIG. 17: a) The circuit diagram of a two-qubit parity gate,
based on controlled rotations and controlled displacements
between the qubits and the probe bus. b) Schematic diagram
showing the phase space evolution of the bus amplitudes cor-
responding to the various qubit computational basis states.
The labels (i) to (v) correspond to the evolution stages, as
shown in the circuit diagram in a).

XI. DISCUSSION

We have presented a new approach to quantum
computing—a “qubus computer”—which brings together
discrete qubits with quantum continuous variables in a
single scheme. Through interaction with a common bus

mode, it is possible to realise a universal two-qubit gate.
We considered three different schemes including:

• Measurement-based probabilistic but heralded par-
ity gates,

• Measurement-based near deterministic parity gates
and

• Measurement-free deterministic CPhase gates,

with two different interactions (the controlled-
displacement and the controlled-rotation) between
the discrete qubits and the bus mode. For the latter
scheme, no post-interaction measurement is required
on the bus mode — it effectively plays the role of a
catalyst in enabling the gate. All of these approaches
are particularly well suited for solid state qubits, which
generally have a natural dipole coupling to a common
electromagnetic field mode, such as superconducting
qubits coupled to a microwave field or an NV diamond
centre coupled to an optical cavity mode. However the
results are also directly applicable to all optical gates.

Lastly, our approach does not generally force a choice
of computation scheme and processor architecture; rather
it provides building blocks which can be put together to
suit the task at hand. For instance, the near determinis-
tic gates can be used for the standard gate-based quan-
tum computation as well computation by measurement
(the one-way quantum computer [65–67] for instance)
or the simulation of Hamiltonians. Our approach re-
quires only a practical set of resources, and it uses these
very efficiently. Thus it promises to be extremely useful
for the first quantum technologies, based on scarce re-
sources. Furthermore, in the longer term this approach
provides both options and scalability for efficient many-
qubit quantum computation.
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XII. APPENDIX

It is worthwhile examining the two-qubit gate through
controlled bus rotations alone in a little more detail, as
there are a number of subtle issues in its operation. We
will assume that the probe bus starts initially in the state
|αeiπ

4 〉 with α real. The displacement is given β =
√

2α.
It is straighforward but tedious then to show that the
four basis states (including the probe bus) evolve as

|g〉|g〉|αeiπ
4 〉 → eiφgg |g〉|g〉|α+〉 (20)

|g〉|e〉|αeiπ
4 〉 → eiφge |g〉|e〉|αeiπ

4 〉 (21)

|e〉|g〉|αeiπ
4 〉 → eiφeg |e〉|g〉|αeiπ

4 〉 (22)

|e〉|e〉|αeiπ
4 〉 → eiφee |e〉|e〉|α−〉 (23)

where the phase shift φgg, φge, φeg, φee are given by

φgg = α2 [7 cos θ − cos 2θ − 3 cos 3θ + cos 4θ]

+α2 [sin θ + 5 sin 2θ − sin 3θ + sin 4θ] (24)

φge = 4α2 cos θ (25)

φeg = 4α2 cos θ (26)

φee = α2 [7 cos θ − cos 2θ − 3 cos 3θ + cos 4θ]

−α2 [sin θ + 5 sin 2θ − sin 3θ + sin 4θ] (27)

and the amplitude α± of probe bus states |α±〉 are

α± = α
(

e±4iθ+iπ
4 +

√
2
[

1 − e±2iθ
] [

i+ e±iθ
]

)

(28)

We immediately notice that the probe bus for the |g〉|g〉
and |e〉|e〉 basis state has not returned exactly to the

initial starting point |αeiπ
4 〉. Instead they have returned

to the states |α+〉 and |α−〉 respectively for the basis
qubit states |g〉|g〉 and |e〉|e〉. One can think of these
probe bus states as being slightly displaced from |αeiπ

4 〉.
Ignoring the probe bus will then introduce decoherence
in the matter qubits (in fact a dephasing effect). Tracing
out the probe bus we get

|g〉|g〉 → P̂[e−γgg ]eiφgg+iψgg |g〉|g〉 (29)

|g〉|e〉 → eiφge |g〉|e〉 (30)

|e〉|g〉 → eiφeg |e〉|g〉 (31)

|e〉|e〉 → P̂[e−γee ]eiφee+iψee |e〉|e〉 (32)

where

ψgg = −4α2 sin2 θ

2
(1 + cos θ + sin θ)

× (cos 2θ + sin 2θ) (33)

ψee = −4α2 sin2 θ

2
(1 + cos θ − sin θ)

× (cos 2θ − sin 2θ) (34)

and P̂ is the dephasing projector with

γgg = γee = 16α2 sin4 θ

2
(1 + cos θ − sin θ)

2
(35)

It is now very clear that tracing out the probe bus has
resulted in an extra phase shift on the |g〉|g〉 and |e〉|e〉
basis states as well a dephasing term. As long as θ ¿ 1,
γgg ∼ 4α2θ4 ¿ 1 and so has a negligible effects. Remov-
ing a global phase factor and performing several local
rotations, our basis qubits evolve as

|g〉|g〉 → eiφd/2|g〉|g〉 (36)

|g〉|e〉 → |g〉|e〉 (37)

|e〉|g〉 → |e〉|g〉 (38)

|e〉|e〉 → eiφd/2|e〉|e〉 (39)

Setting φd = φgg − φge − φeg + φee + ψgg + ψee. It is
straightforward from the above expression to show

φd = 8α2 sin2 θ (2 cos θ − cos 2θ) ∼ 8α2 sin2 θ (40)

Without taking into account the effect that the probe bus
was slightly displaced for |g〉|g〉 and |e〉|e〉 from |α〉 our
resultant phase shift φd ∼ 8α2 sin2 θ. It is also important
to mention that the single qubit phase operations scale
as φs ∼ α2θ.


