

Operating Systems Should Support Business Change

Jeffrey C. Mogul
HP Laboratories Palo Alto
HPL-2005-206
November 17, 2005*

operating systems,
enterprise IT

Existing enterprise information technology (IT) systems often inhibit
business flexibility, sometimes with dire consequences. In this position
paper, I argue that operating system research should be measured, among
other things, against our ability to improve the speed at which businesses
can change. I describe some of the ways in which businesses need to
change rapidly, speculate about why existing IT infrastructures inhibit
useful change, and suggest some relevant OS research problems.

* Internal Accession Date Only
This paper was originally published in the Proceedings of the Tenth Workshop on Hot Topics in Operating Systems
(HotOS-X), Santa Fe, NM, June 2005 Approved for External Publication
© Copyright 2005 Hewlett-Packard Development Company, L.P.

Operating Systems Should Support BusinessChange
Jeffrey C. Mogul

HP Labs, Palo Alto
�����������
	����������������	�

Abstract

Existing enterprise information technology (IT) systemsoften inhibit business
flexibility, sometimeswith direconsequences.In thisposition paper, I arguethatop-
erating systemresearchshould bemeasured,among otherthings,against our ability
to improve the speed at which businesses canchange.I describesomeof the ways
in which businessesneed to changerapidly, speculate about why existing IT infra-
structuresinhibit useful change,andsuggestsomerelevant OSresearch problems.

1 Intr oduction

Businesseschange. They merge; they split apart; they reorganize. They launchnew
productsandservices, retire old ones,andmodify existing onesto meetchangesin de-
mandor competition or regulations. Agile businessesaremore likely to thrive thanbusi-
nessesthatcannotchangequickly.

A businesscanlackagility for many reasons,but onecommon problem(andonethat
concernsusascomputer scientists) is the inflexibility of its IT systems. “Every business
decisiongeneratesan IT event” [1]; For example, a decisionto restrict a Website with
productdocumentationto customerswith paid-up warranties requires a linkagebetween
thatWebsiteandthewarrantydatabase. If theIT infrastructure dealswith such“events”
slowly, thebusiness as a whole wil l respondslowly; worse,business-level decisionswill
stalldueto uncertainty about IT consequences.

Whatdoesthishaveto dowith operatingsystems?Surely thebulk of business-change
problemsmustberesolvedat or abovetheapplicationlevel,but many aspectsof operating
system research are directly relevant to the significantproblemsof business change. (I
assume a broaddefinition of “operating system”researchthat encompassesthe entire,
distributedoperatingenvironment.)

Of course, supportfor changeis just oneof manyproblems facedby IT organizations
(ITOs),but this paperfocussesonbusiness changebecause it seemsunderappreciatedby
thesystemssoftware research community. We aremuchbetter at problemsof perform-
ance,scale,reliability, availability, and(perhaps)security.

2

2 IT vs. businessflexibility

Inflexible IT systems inhibit necessarybusinesschanges. Thefailure to rapidlycomplete
anIT upgradecaneffectively destroy thevalueof a major corporation (e.g., [12]). There
isspeculation thattheSept.11,2001attacksmighthavebeenpreventedif theFBI hadhad
more flexible IT systems[17, page77]. Even whenIT inflexibili ty doesnot contribute
to major disasters,it frequently imposes costs of hundreds of mill ions of dollars (e.g.,
[13,14]).

Theproblemisnotlimitedto for-profit businesses; otherlargeorganizationshavesim-
ilar linkagesbetweenIT andtheirneedsfor change.For example,themilitary is a major
IT consumerwith rapidly evolving roles; hospitalsare subjectto new requirements(e.g.,
HIPAA; infectiontracking); universitiesinnovatewith IT (e.g.,MIT'sOpenCourseWare);
evencharitiesmust evolve their IT (e.g., for trackingrequirementsimposedby theUSA
PATRIOT Act). Thecommonfactor is a largeorganization thatthinksin termsof buying
“enterpriseIT” systemsandservices, not just desktopsandservers.

3 Why is application deployment soslow?

IT organizationsoftenspend considerablymoremoneyon“softwarelif ecycle” costs than
on hardwarepurchases.These costs includesoftwaredevelopment,testing, deployment,
andmaintenance.In 2004, 8.1%of worldwide IT spendingwent to server andstorage
hardwarecombined,20.7% went to packaged software, but 41.6% went to “services,”
including 15.4% for “implementation” [15]. Even after purchasing packagedsoftware,
IT departments spendtonsof money actuallymaking it work [12].

Testinganddeploymentalsoimposedirect hardwarecosts;for example,roughly a
third of HP's internalservers arededicatedto thesefunctions,andthe fractionis larger
at someothercompanies[21]. Thesecosts arehigh because thesefunctions take far too
long. For example,it cantake anywhere from about a monthto almosthalf a yearfor an
ITO to certify thata new server modelis acceptablefor useacrossa largecorporation's
datacenters.(Thishappensbefore significantapplication-level testing!)

It would be useful to know why the process takesso long, but I have been unable
to discover any careful categorization of the time spent. (This itself would be a good
researchproject.) In informal conversations, I learnedthata major causeof theproblem
is thehugerangeof operating systemversionsthatmustbesupported;althoughITOstry
to discouragetheuse of obsoleteor modifiedoperatingsystems, they mustoftensupport
applicationsnot yetcertifiedto usethemostup-to-date,vanillarelease.Thelargenumber
of operatingsystemversionsmultiplies theamountof testingrequired.

Virtual machine technology canreducethemultiplication effect, sinceVMs impose
regularity abovethevariability of hardwareplatforms. Onceasetof operatingsystemshas
beentested on top of a givenVM release, andthat releasehasbeentested on thedesired
hardware,theITO canhave some faith thatany of these operatingsystemswill probably
work on thathardware with thatVM layeredin between. However, this stil l leavesopen

3

theproblem of multiple versions of theVM software,andVMs are not alwaysdesirable
(e.g.,for performancereasons).

The long leadtime for application deploymentandupgradescontributes directly to
businessrigidity. A few companies(e.g., Amazon,Yahoo,Google) areconsidered “agile”
becausetheir IT systemsareunusuallyflexible, but most largeorganizationscannotseem
to solve thisproblem.

4 WherehasOSresearch gonewrong?

At this point, thereadermutters “But, but, but ... we operatingsystemresearchers areall
about̀ flexibility! '.” Unfortunately, it hasoftenbeenthewrong kind of flexibility.

To oversimplify a bit, the two major researchinitiativesto provide operatingsystem
flexibility have beenmicrokernels (mix & matchservices outsidethe kernel) and ex-
tensibleoperatingsystems(mix & matchservicesinsidethe kernel). These initiatives
focussedon increasingthe flexibility of system-level servicesavailableto applications,
andon flexibil ity of operatingsystem implementation. They did not really focuson in-
creasingapplication-level flexibility (perhapsbecausewe have no goodway to measure
that;seeSection6).

Outsideof afew nichemarkets,neithermicrokernelsnorextensibleoperatingsystems
havebeensuccessful in theenterpriseIT market. Thekindsof flexibility offered by either
technology seemsto createmoreproblems thantheysolve:

� TheITO (or systemvendor) endsup with no idea whatdaemonsor extensionsthe
usersystemsare actuallyrunning,which makes support much harder. It is hard to
point the fingerwhensomethinggoeswrong.

� TheITO hasno clear definition of what configurationshave beentested,andends
up with a combinatorial explosion of testingproblems.(“Safe” extensionsarenot
really safe at thelevel of thewholeIT system;they justavoid theobviousinterface
violations.Bad interactionsthroughgoodinterfacesarenotchecked.)

� The ITO hasmore difficulty maintaininga consistent execution environmentfor
applications, which meansthatapplicationdeploymentis evenmore difficult.

Onemight arguethat increasedflexibility for theoperatingsystemdesignercantoo eas-
ily leadto decreased flexibili ty for the operatingsystem user;it' s easier to build novel
applicationsonbedrockthanon quicksand.

In contrast, VM research hasled to market success. The term “virtual machine”is
appliedbothto systemsthatcreatenovel abstractexecution environments(e.g.,Javabyte-
codes)andthosethatexposeaslightly abstractview of arealhardwareenvironment(e.g.,
VMware or Xen [4]). Theformermodel is widely seenasencouragingapplicationport-
ability throughtheprovision of a standardizedfoundation; thelatter model hasprimarily
beenviewedbyresearchersassupportingbetterresourceallocation,availability, andman-
ageability. But the latter modelcanalsobeused to standardizeexecutionenvironments
(asexemplified by PlanetLab[5] or Xenoservers[7]); VMs do aidoverall IT flexibility.

4

5 How could OSresearch help?

In thissection I suggestafew of themany operatingsystemresearchproblemsthatmight
directly or indirectly improve support for business change.

5.1 OSsupport for guaranteedsameness

If uncontrolled or unexpectedvariation in theoperatingenvironment is theproblem,can
westampit out? Thatis, withoutabolishingall futurechangesandconfigurationoptions,
canwe preventOS-level flexibility from inhibiting business-level flexibili ty?

Onewayto phrasethis problemis: canweprove thattwo operatingenvironmentsare,
in their aspectsthataffectapplication correctness, 100.00000000%identical? That is, in
situationswherewedo not wantchange,canweformally provethatwehave“sameness”?

Of course, I do not mean that operating systemsor middleware shouldnever be
changedat all. Clearly, we want to allow changesthatfix security holesor otherbugs,
improvementsto performancescalability, andotherusefulchangesthatare irrelevant to
the stability of the application. I will usethe term “operationally identical” to imply a
notion of usefulsameness thatis not too rigid.

If we couldprove thathost A is operationally identical to hostB, thenwe could have
more confidencethat anapplication, oncetested on hostA, would run correctly on host
B. More generally, A andB couldeachbeclustersratherthanindividual hosts.

Similarly, if we couldprove thatA0 is operationally identicalto A1 ��������� An, anapplic-
ationtestedonly onA0 might besafeto deploy onA1 � ������� An.

It seems likely that this would have to be a formal proof, or elsean ITO probably
wouldnottrustit (andwould haveto fall backontime-consumingtraditionaltesting meth-
ods).However, formalproof technologytypically hasnot beenaccessibleto non-experts.
Perhapsby restricting an automatedproof systemto asufficientlynarrow domain,it could
bemadeaccessibleto typical IT staff.

On the other hand, if an automatedproof systemfails to prove that A and B are
identical, thatshould reveal a specificaspect(albeitperhapsoneof many) in which they
differ. Thatcouldallow anITO eitherto resolve this difference(e.g., by adding another
configuration item to an installationchecklist)or to declare it irrelevant for a specific
setof applications. The proof could thenbereattemptedwith an updated“stoplist” of
irrelevant features.

It is vital that a sameness-proof mechanismcover theentire operating environment,
not just thekernel's API. (Techniquesfor sameness-by-constructionmight beanaltern-
ative to formal proof of sameness,but it is hardto seehow this couldbeappliedto entire
environmentsratherthanindividual operatingsystems.) Environmentalfeaturescanof-
ten affect applicationbehavior (e.g., the presenceandconfiguration of LDAP services,
authentication services, firewalls, etc. [24]). However, this raisesthe questionof how
to define“the entireenvironment” without including irrelevant details, suchasspecific
hostIP addresses,andyet without excluding therelevantones, suchasthecorrectCIDR
configuration.

5

The traditional IT practiceof insistingthat only a few configuration variantsare al-
lowed canamelioratethe samenessproblem at time of initial application deployment.
However, environmentscannotremainstatic;frequentmandatory patchesare thenorm.
But it is hard to ensure thatevery host hasbeenproperlypatched,especiallysincepatch-
ing often affectsavailability andso mustoften be done in phases. For this andsimilar
reasons,samenesscandeteriorateover time,whichsuggests thatasameness-proof mech-
anismwould have to bereinvokedat certain points.

Business customersare increasinglydemanding that system vendors pre-configure
complexsystems,includingsoftwareinstallation,beforeshippingthem.Thiscanhelpes-
tablish abaselinefor sameness, but vendorprocessessometimeschangeduring aproduct
lif etime.A sameness-proof mechanismcouldensurethatvendorprocesschanges do not
leadto environmental differencesthatwouldaffectapplicationcorrectness.

5.2 Quantifyi ng the valueof IT

A businesscannoteffectively managean IT system whenit does not know how much
businessvaluethat systemgenerates. Most businessescanonly estimatethis value,for
lackof any formal way to measure it. Similarly, a businessthatcannotquantify thevalue
of its IT systemsmight notknow whenit is in needof IT-level change.

ITOs typically have budgets separate from the profit-and-loss accountability of
customer-facingdivisions, andthushave much clearer measuresof their coststhanof
their benefitsto theentire business.An ITO is usually drivenby its local metrics (cost,
availability, numberof help-deskcallshandledperhour). ITOshave a muchharder time
measuringwhat value its usersgain from specificpracticesand investments, andwhat
costsare absorbed by its users.As a result, largeorganizationstendto lackglobalration-
ality with respectto their IT investments.This canleadto either excessive or inadequate
cautionin initiating business changes. (It is also a serious problemfor accountantsand
investors,because“the inability to accountfor IT valuemeans[thatit is] not reflectedon
thefirm's [financialreports]”,often creatingsignificantdistortionsin thesereports [23].)

Clearly, most businessvalue is createdby applications, rather than by infrastruc-
ture andutilit ies suchasbackup services[23]. This suggeststhat mostwork on value-
quantification mustbe application-specific;why shouldwe think operatingsystemre-
search hasanything to offer?

Onekey issueis thataccounting forvalue,andespecially in ascribing thatvalueto spe-
cific IT investments,canbequitedifficult in thekindsof heavily sharedandmultiplexed
infrastructuresthat we have beenso successful at creating. Technologiessuchastime-
sharing,replication, DHTs, packet-switchednetworks and virtualizedCPUs, memory,
andstoragemakevalue-ascription hard.

This suggests that the operatingenvironmentcould track application-level “service
units” (e.g., requestsfor entire Web pages)alongwith statisticsfor responsetime and
resource usage.Measurementsfor each category of serviceunit (e.g., “ catalogsearch”
or “shopping cart update”)could thenbe reported,alongwith direct measurementsof
QoS-relatedstatisticsandof what IT assets were employed. The ResourceContainers

6

abstract[2] providesasimilar feature,but wouldhaveto beaugmentedto includetracking
information andto spandistributedenvironments.Magpie[3] also takessome stepsin
this direction.

Accountingfor valuein multiplexedenvironmentsisnotaneasyproblem,and it might
be impossible to getaccurateanswers. We might be limited to quantifying only certain
aspects of IT value,or we might have to settlefor measuring“negative value,” suchas
theopportunity cost of unavailability or delay. (An IT changethat reducesa delaythat
imposesaclearopportunity cost hasa fairly obviousvalue.)

5.3 Pricing for software licenses

Another value-relatedproblemfacingITOsis thecostof software licenses.Licensefees
for many major softwareproductsarebasedonthenumberof CPUsused,or ontotalCPU
capacity. It is now widely understoodthat this simplemodel candiscouragethe useof
technologiesthat researchersconsider “obviously” good,includingmulti-coreandmulti-
threadedCPUs, virtualized hardware,grid computing [22], andcapacity-on-demandin-
frastructure. Until softwarevendorshave a satisfactoryalternative, this “tax on techno-
logy innovationwith lit tle return” [8] coulddistort ITO behavior, andinhibit a “business
change”directly relevantto ourfield (albeita one-timechange).

Thesolution to thesoftware pricing crisis(assuming thatOpenSource softwarecan-
not immediatelyfill all thegaps) is to price basedon valueto thebusiness thatbuys the
software;this providesthe right incentivesfor both buyer andseller. (Softwarevendors
might imposea minimumprice to protectthemselvesagainstincompetentcustomers.)

Lots of software is alreadypriced per-seat(e.g., Microsoft Office and many CAD
tools) or per-employee (e.g., Sun's Java Enterprise System [18]), but these models do
not directly relatebusinessvalueto softwarecosts,andmight not extend to softwarefor
service-orientedcomputing.

Suppose one could insteadtrack the number of application-level service units suc-
cessfully deliveredto users within proscribeddelaylimi ts; thenapplicationfeescould be
chargedbasedon these serviceunits ratherthan on crudeproxiessuchas CPUcapacity.
Also, software vendors would have a direct incentive to improve the efficiency of their
software,since that could increasethe numberof billable service units. Such a model
would require negotiation over the price per billable serviceunit, but by negotiating at
this level, thesoftware buyerwouldhave a muchclearer basisfor negotiation.

Presumably, basingsoftwarefeesonserviceunitswould requireasecureand/oraudit-
ablemechanism for reporting serviceunitsback to thesoftwarevendor. Thisseemslikely
to require infrastructural support (or elsebuyersmight be ableto concealservice units
fromsoftwarevendors). SeeSection5.5 for morediscussionof auditability.

Onemight alsowant a systemof trustedthird-party brokersto handlethe account-
ing, to prevent softwarevendors from learning too much, too soon, aboutthe business
statisticsof specific customers.A brokercouldanonymizetheper-customer accounting,
andperhapsrandomly time-shift it, to provide privacyaboutbusiness-level detailswhile
maintaininghonest charging.

7

5.4 Name spaces that don't hinder organizational change

Operating systems andoperatingenvironments includelots of namespaces;namingis
keyto muchof computersystemsdesignand innovation.1 Wenamesystemobjects(files,
directories,volumes, storageservers,storage services),network entities (links, switches,
interfaces,hosts,autonomoussystems), andabstract principals (users, groups, mailboxes,
messaging servers).

Whathappensto thesenamespaceswhenanorganizationscombineorestablish anew
peering relationship?Often thesebusiness eventslead to name spaceproblems, either
outright conflicts(e.g., two serverswith the samehostname)or more abstract conflicts
(e.g.,differentdesignsfor namespacehierarchies). Fixing theseconflicts is painful, slow,
error-prone,andexpensive. Alan Karp hasarticulatedtheneedto “design for consistency
undermerge” to avoid theseconflicts[10].

And whathappens to namespaceswhenanorganizationis split (e.g., asin a divestit-
ure)? Somenamesmight have to be localizedto onepartition or another, while other
namesmight have to continueto resolve in all partitions. Onemight imaginedesigning
anamingsystemthatsupports “completenessafterdivision,” perhapsthrough a meansto
tagcertainnamesandsubspacesas“clonable.”

Whensystemsresearchersdesignnew name spaces,we cannot focus only on tradi-
tional metrics (speed, scale, resiliency, security, etc.); we must also considerhow the
designsupports changesin name-spacescope.

5.5 Auditabilit y for outsourcing

IT practiceincreasinglytendstowardsoutsourcing (distinct from“offshoring”) of critical
businessfunctions. Outsourcing can increase business flexibility, by giving a business
immediateaccess to expertiseandsometimes by better multiplexing of resources, but
it requiresthe business to trust the outsourcing provider. Outsourcing exposesthe dis-
tinction betweensecurity and trust. Security is a technicalproblem with well-defined
specifications,on which onecan, in theory, do mathematicalproofs. Trust is a social
problemwith shifting, vaquerequirements;it dependssignificantly on memory of past
experiences.Just becauseyou canprove to yourself that your systemsaresecureand
reliabledoesnot meanthatyou cangetyour customersto entrust their data andcritical
operationsto you.

This is a variant of what economistscall the “principal-agentproblem.” In other
settings,a principal couldestablishits trust in anagentusinga third-party auditor, who
hassufficient accessto the agent's environmentto checkfor evidence of incorrect or
improperpractices. Theauditor hasexpertisein this checkingprocessthat theprincipal
doesnot, and alsocaninvestigateagentswho serve multiple principalswithout fear of
information leakage.

Pervasive outsourcing might thereforebenefitfrom infrastructural supportfor audit-
ing; i.e., theoperatingenvironmentwouldsupportmonitoringpointsto provide“sufficient

1I think RogerNeedhamsaidthat (more eloquently), but I haven't beenable to track down a quote.

8

access” to third-partyauditors. Giventhatmuchoutsourcing will bedoneat the level of
operating systeminterfaces,someof the auditing support will comefrom the operating
system. For example,thesystemmight needto provide evidence to prove thatprincipal
A cannot possibly seethefilesof principalB, andalsothat thishasneverhappenedin the
past.

6 Operating outsideour comfort zone

Theproblemsof enterprisecomputing, andespecially of improving business-level (rather
thanIT) metrics, is far outside the comfort zoneof most operating systemresearchers.
Problemsinclude

! Theapplicationsarenottheonesweuseorwriteourselves; it ishardtodooperating
systemresearchusingapplicationsone doesnotunderstand.

! Most of theseapplicationsare not OpenSource; researcherscannotafford them,
andsomevendors banunauthorizedbenchmarking.

! Theapplicationscan be hardto install. A typical SAP installationmight involve
millions of dollarsof consultantfeesovermonthsoreven yearsto customizeit [11].

! Wedo nothave agooddescription of “real workloads”for theseapplications.

In addition, many of theproblems inhibiting businesschangeare cultural, not technical.
Thatdoesnotmeanthatweareexcusedfromaddressingthe technicalchallenges, but this
is anengineering science,soour results needto respecttheculture in which they would
beused. Thatmeansthatcomputerscienceresearchers needto learnaboutthat culture,
not justcomplainaboutit.

6.1 What about metrics?

Perhapsthebiggest problemis thatwe lack quantifiedmetrics for thingslike “business
flexibility.” (Low-level flexibility metrics,suchas“time to adda new device driver to the
kernel,” arenot theright concept.) Lackingthemetrics, we cannotcreatebenchmarksor
evaluateour ideas.

RobPikehasarguedthat“In amisguidedattempt to seemscientific,there's too much
measurement: performanceminutiaeandbadcharts. ... Systemsresearchcannot bejust
science;there must beengineering, design,andart.” [20]. But wemust measure,because
otherwisewecannotestablishthevalueof IT systemsandprocesses;however, weshould
not measure the wrong things (“performanceminutiae”) simply because those are the
easiest for usto measure.

Metrics for evaluatinghow well IT systems support businesschangewill not be as
simpleas, for example,measuring Webserver transactionrates,for at least two reasons.
First, because suchevaluationscannot beseparatedfrom context; successful change in-
evitably dependson peopleandtheir culture,as well ason IT. Second, becausebusiness
changeevents,while frequentenoughto beproblematic,aremuchrarerandlessrepeat-

9

ablethanalmost anything else computerscientists measure. We will have to learn from
other fields, such as humanfactorsresearchand economics, ways to evaluatehow IT
systems interact with largeorganizations.

I will speculateona few possiblemetrics:
" For software deployment: It might be tempting to simply measurethe time it

takesto deploy anapplication once it hasbeentested. However, suchtiming often
dependstoomuchonuncontrollablevariables, suchascompeting demandson staff
time. A morerepeatable metric would bethenumberof new problemsfoundin the
processof moving a“working” application fromatestenvironmentto aproduction
environment.Theuseof bugratesasa metricwasproposedin asimilar context by
DougClark [6], whopointedout thatwhatmattersis not reducingthetotalnumber
of bug reports, but findingthemas soonaspossible,and before a productshipsto
customers.
Nagarajaet al. reportedon small-scale measurementsof how frequently operators
mademistakesin reconfiguring Internetapplications[16]. Theydescribeda tech-
niqueto detectmany such errorsautomatically, using parallelexecutionof theold
systemandthenew system, comparingtheresults, with thenew systemisolated to
preventany errors from becomingvisible. Their approachmight be generalizable
to testingfor environmentalsameness.
One might also crudely measure a system's support for deployment of updated
applications by subjecting an application to increasingly drastic changesuntil
something breaks. For example,perhapsthe operating environmentcan support
arbitrary increasesin thenumberof server instancesfor an application,but not in
thenumberof geographicallyseparatedsites.

" For quantifyin g IT value: Supposethatanenterprise's IT systemsgeneratedes-
timatesof their value. Oneway to test theseestimateswould be to compare their
sumto theenterprise'sreportedrevenue,but thisprobablywouldnotwork: revenue
reports aretoo infrequentandtoo arbitrary, andit would require nearly complete
value-estimationcoverageover all IT systems.Instead,onemight beableto find
correlationsbetweenthe IT-value estimatesfrom distinct systems and the short-
term per-productrevenuemetrics maintainedby many businesses. If the correla-
tionscanbeusedfor prediction (e.g., they persist afterasystemimprovement)then
they would validatethe IT-valueestimates.

In the end, many important aspectsof IT flexibility will never be reducedto simple,
repeatable metrics. We shouldnot let this becomean excuse to give up entirely on the
problemof honest measurement.

7 Grand Challenge... or hopelesscause?

Section 6 describessome dauntingproblems. How canwe possiblydo research in this
space? I think the answeris “becausewe must.” Support for CS research, both from

10

government andindustry, is declining [9, 19]. If operatingsystemresearchcannothelp
solve critical businessproblems,ourfield will shrink.

Thesituation is notdire. Many researchersareindeedaddressing business-level prob-
lems.(Spaceprohibits a lengthydescription of suchwork, andit wouldbeunfair to pick
out just a few.) But I think we mustdo better at defining the problemsto solve, andat
recognizing thevalueof their solution.

Acknowledgments

In preparingthis paper, I hadhelp from many colleaguesat HP, including Martin Arlitt ,
Mary Baker, TerenceKelly, Bill Martorano, Jerry Rolia, and Mehul Shah. TheHotOS
reviewersalso provided usefulfeedback.

References

[1] Q&A with Robert Napier, CIO at Hewlett-Packard. CIO Magazine, Sep. 15 2002.
http://www.cio.com/archive/091502/napier.html.

[2] G. Banga,P. Druschel, and J. C. Mogul. Resourcecontainers:A new facility for resource
managementin serversystems. In Proc. OSDI, pages45–58, New Orleans,LA, Feb. 1999.

[3] P. Barham, A. Donnelly, R. Isaacs,andR. Mortier. Using Magpie for requestextraction and
workloadmodeling. In Proc. 6th OSDI, pages259–272, SanFrancisco,CA, Dec.2004.

[4] P. Barham, B. Dragovic, K. Fraser, S.Hand,T. Harris, A. Ho, R. Neugebauer, I. Pratt,and
A. Warfield. Xenandthe artof virtualization. In Proc. SOSP-19, pages164–177, 2003.

[5] A. Bavier, M. Bowman,B. Chun,D. Culler, S. Karlin, S. Muir, L. Peterson, T. Roscoe,
T. Spalink, andM. Wawrzoniak. Operating System Support for Planetary-ScaleServices.
In Proc. NSDI, pages253–266, SanFrancisco,CA, Mar. 2004.

[6] D. W. Clark. BugsareGood: A Problem-OrientedApproachto the Managementof Design
Engineering. Research-Technology Management, 33(3):23–27, May-June 1990.

[7] K. Fraser, S. M. Hand,T. L. Harris, I. M. Leslie, and I. A. Pratt. TheXenoservercomputing
infrastructure. Tech.Rep. UCAM-CL-TR-552, Univ. of Cambridge, Computer Lab., Jan.
2003.

[8] Garner, Inc. Gartnersayscostof software licensescould increase by at least50 percent by
2006. http://www3.gartner.com/pressreleases/asset115090 11.html, Nov. 2004.

[9] P. Harsha. NSF budget takeshit in final appropriations bill. Computing Research News,
17(1),Jan.2005. http://www.cra.org/CRN/articles/jan05/harsha.html.

[10] A. H. Karp. Lessons from E-speak. Tech. Rep. HPL-2004-150, HP Labs, Sep. 2004.
http://www.hpl.hp.com/techreports/2004/HPL-2004-150.html.

[11] C. Koch. Lump it and like it. CIO Magazine, Apr. 15 1997.
http://www.cio.com/archive/041597/lump.html.

[12] C. Koch. AT&T Wireless Self-Destructs. CIO Magazine, Apr. 15 2004.
http://www.cio.com/archive/041504/wireless.html.

[13] C. Koch. When bad things happen to good projects. CIO Magazine, Dec. 1 2004.
http://www.cio.com/archive/120104/contingencyplan.html.

11

[14] J.C.McGroddy andH. S.L. Editors.A Review of theFBI'sTrilogy Information Technology
ModernizationProgram. http://www7.nationalacademies.org/cstb/pub fbi.html, 2004.

[15] S. Minton, E. Opitz, J. Orozco,F. Chang, S. J. Frantzen, G. Koch, M. Coughlin, T. G.
Copeland, andA. Tocheva. Worldwide IT Spending 2004-2008 Forecast. IDC document
#32321,Dec. 2004.

[16] K. Nagaraja,F. Oliveira, R. Bianchini, R. P. Martin, andT. D. Nguyen. Understanding and
Dealing with Operator Mistakes in InternetServices. In Proc. OSDI, pages 61–76, San
Francisco,CA, Dec 2004.

[17] National Commission on Terrorist Attacks Upon the United States. Final report.
http://www.9-11commission.gov/report/index.htm,2004.

[18] J.Niccolai andD. Tennant. Sunpricingmodel impressesusers. ComputerWeekly.com, Sep.
2003. http://www.computerweekly.com/Article125119.htm.

[19] M. Pazzani, K. Abdali, G. Andrews, and S. Kim. Cise update: Adjust-
ing to the increase in proposals. Computing Research News, 16(5), Nov. 2004.
http://www.cra.org/CRN/articles/nov04/pazzani.html.

[20] R. Pike. Systemssoftware research is irrelevant. http://herpolhode.com/rob/utah2000.pdf,
2000.

[21] D. Rohrer. Pers.comm.,2005.
[22] P. Thibodeau. Software licensing emergesasgrid obstacle. ComputerWorld, May 2004.

http://www.computerworld.com/printthis/2004/0,4814,93526,00.html.
[23] J.Till quist and W. Rodgers.Using assetspecificity and asset scopeto measure thevalueof

IT. Comm. ACM, 48(1):75–80, Jan.2005.
[24] J. Wilkes, J. Mogul, and J. Suermondt. Util ification. In Proc.

11th SIGOPS European Workshop, Leuven, Belgium, Sep. 2004.
http://www.hpl.hp.com/research/ssp/papers/Utili fication-final.pdf.

