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In this letter we investigate the linear and nonlinear models of optical quantum computation and
discuss their scalability and efficiency. We show how there are significantly different scaling prop-
erties in single photon computation when weak cross-Kerr nonlinearities are allowed to supplement
the usual linear optical set. In particular we show how quantum non-demolition measurements are
an efficient resource for universal quantum computation.
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In classical computation, we can always decompose a
circuit by a complete set of gates, such as the AND, OR
or NOT gates. These decompositions can be similarly ap-
plied to quantum computation and several sets of gates
are known to be able to construct an arbitrary compu-
tational circuit to an arbitrary precision. These sets are
called a universal set of gates and in principle, a univer-
sal set of gates with initializable qubits and projective
measurement onto the computational basis states gives
one the power to perform wuniversal quantum computa-
tion. This representation of the universality of quantum
computation is gate-based in analogy to classical compu-
tation. A typical universal set of quantum gates could
be arbitrary single qubit rotations and the CNOT gate
(a two qubit gate)[1]. With these gates, the resources
required for universal quantum computation are then
initializable qubits, arbitrary single qubit rotations, the
CNOT gate, projective measurements in the computa-
tional basis, and classical feed-forward.

These universal sets of gates gives one a partial un-
derstanding of how quantum computers may differ from
their classical counterparts. As the Gottesman-Knill the-
orem states[2—4], a computational circuit which consists
of a set of gates including CNOT gate and some single-
qubit rotations (the Hadamard and Pauli gates) can be
efficiently simulated on a classical computer. The gate
set in the Gottesman-Knill theorem is not universal as a
gate set, however it is known that an additional operation
such as the m/8-gate makes the gate set universal[5]. An-
other typical example of a universal gate sets is the pair
of the Toffoli Hadamard and 7 /4-gate [6], which is more
computer-scientifically interesting as Toffoli gate is clas-
sically universal by itself. Suppose that quantum model
of computation is strictly more powerful than the classi-
cal one, then in general a quantum computation cannot
be simulated efficiently on a classical computer. In fact,
so far all the sets of gates which can be simulated on a
classical computer are not universal. In this sense, uni-
versality can be used as a simple but useful criterion to
distinguish quantum computational circuits from classi-

cal computational ones.

Implementing a universal set of gates is certainly a
way to achieve universal quantum computation, however
in real quantum mechanical systems, it is generally dif-
ficult to implement such a universal gate set. Generally
speaking, systems with small decoherence have difficul-
ties with controlled operations between two (or more)
qubits and where such controlled operation are natural,
it is often difficult to maintain quantum coherence in the
system and to ensure the accessibility to each individual
qubit. Given the fact that universal quantum computa-
tion requires both good quantum coherence and entangle-
ment in the computational system, this trade-off relation
between quantum coherence and multi-qubit interaction
seems to be an obstacle to universal quantum compu-
tation, when one considers the requirement for universal
gate sets. However, implementation of universal gate sets
is not the only way to achieve universal quantum compu-
tation. In fact, some implementations of non-universal
gate sets can achieve universal quantum computation in
a scalable manner. Such implementations are not allowed
to access to the entire Hilbert space, yet is possible for
these gates to simulate universal quantum computation
on a lower dimensional subspace of a larger Hilbert space.
The controlled-rotation gate allowing the qubit space to
only be in real coefficient states, which is a rebit sub-
space, is such an example|[7].

As long as we aim to achieve universal quantum com-
putation, there is an alternative approach to it. Uni-
versal quantum computation can be achieved by mea-
surement alone or are based on measurements[8-10]. In
classical computation, measurement schemes are trivial,
and hence classically universal computation may be con-
sidered with gate sets alone, however in quantum compu-
tation this is not the case. Measurement alone can be as
powerful as a universal gate set. There has been a num-
ber of measurement-based universal quantum computa-
tion schemes considered. The universal quantum compu-
tation can be broadly classified in three categories:

e Universal sets: A universal set can construct an



arbitrary circuit with an arbitrary precision.

e Universal computational set: a universal computa-
tional set is not universal by the definition of uni-
versality by not being able to construct an arbitrary
operation, however can simulate universal quantum
computation in a larger Hilbert space with polyno-
mial extra resource. This class of sets does not
allow the initial state to go to a certain subspace in
the enitre Hilbert space. An example of this class
is the rebit compuation in the previous paragraph.

e Non-universal sets: a non-universal set can be effi-
ciently simulated on a classical computer and can-
not simulate universal computation with polyno-
mial extra resource. It can construct universal com-
putation only with additional measurement strate-
gies.

Now because of the power of measurement in quan-
tum computation, it is obvious that it does not much
make sense to evaluate quantum computation schemes
solely either on gate sets or on measurement schemes.
This aspect of quantum computation can be exploited
to construct a circuit bypassing the difficulties on some
particular operations, however at the same time it adds
an extra complication into our criteria for universal quan-
tum computation. The aim of this paper, instead of using
the conventional gate sets, is to introduce essential phys-
ical elements which inherit fundamental physical proper-
ties required in universal quantum computation, which
we call physical primitives. The physical primitives are
hence free from the concept of gates and measurements,
and it is an advantage of this evaluation that we can
specify the requirements of the physical properties for
universal quantum computation.

There are typically three types of encoding we can
consider in quantum information processing. The most
well investigated ones are the qubit and qudit encodings.
These are discrete in nature and can be mapped to each
other relatively easily. The last qunat computation[11]
can be quite different from qubit and qudit computations
as it is based on continuous variable encoding rather than
discrete bits or dits. As we aim to obtain a physical cri-
teria to achieve universal quantum computation, these
differences should not be a matter for the criteria. It
is necessary to merge these different coding schemes in
terms of requirements. To do this, we first discuss optical
qubit computation and then proceed to qunat computa-
tion.

In this paper, we set optics as our primary physical
system as the criteria make more sense with a certain
physical implementation, though the criteria are gen-
eral. The typical universal set of gates for optical qubit-
computation are single-qubit rotations and the two-qubit
CNOT gate[l, 12]. There are obviously other combina-
tions of fundamental logic gates for universality, however

as we are focusing on the physical properties required to
satisfy universality the combination of fundamental gates
is not practically important. So we conveniently choose
the universal set to check universality of our new crite-
ria. In optics (and especially with a polarization encoded
qubit), single-qubit rotations are rather easy to and ef-
ficient to implement, but on the other hand two-qubit
operations such as CNOT gate are hard to perform. We
can set the typical computational requirements for single
photon universal quantum computation as: on demand
single photon sources, arbitrary single-qubit rotations, a
two qubit gate such as the CNOT gate, single photon
counting and classical feed-forward. Now, for this sin-
gle photon based computation any two-qubit operation
requires an optical nonlinearity, and hence the general
difficulties in optical implementation arise from the lack
of materials with an intrinsic optical nonlinearity. En-
tangling gates such as the CNOT are essential to perform
the universal quantum computation and hence we require
a mechanism to entangle the optical qubits. One well-
known measurement-based scheme has been proposed by
Knill, Laflamme and Milburn (KLM) who showed that a
non-deterministic CNOT gate can be constructed using
only single photon sources, linear optical elements and
single photon number resolving detectors[12-16]. This
probabilistic but heralded gate can then be teleported
into the main stream quantum circuit enabling scalable
computation[12, 17, 18], and hence the whole computa-
tion reminds scalable. Thus for this approach the physi-
cal devices for universal quantum computation are

e On demand single photon sources,
e Linear optical elements,

e Single photon counting,

e Classical feed-forward.

Now, continuous variable (qunat-based) quantum
computation[11] appears and looks rather different to
this.  First, the generalization of Gottesman-Knill
theorem[19] states that a computational circuit staring
from a computational basis state and using only opera-
tions with linear or quadratic Hamiltonians[20], and fi-
nally measuring onto the computational basis states can
be efficiently simulated on a classical computer. What
is interesting here is that these quadratic Hamiltonians
include entangling gates such as the SUM gate (similar
to the qubit CNOT gate). To make this gate/operation
set universal, a third or higher order nonlinear Hamilto-
nian is required (the self-Kerr or cross-Kerr nonlinearities
are such examples). This means the typical resources for
universal continuous variable quantum computation are

e A coherent state source,

e Linear and Quadratic Hamiltonian gates,
e Homodyne measurement,

e classical feed-forward,

e A third order or higher optical nonlinearity.



It is now obvious there is a difference between the qubit-
based computation and qunat-based computation in the
way that qunat-entangling gate such as the SUM gate
can be implemented by linear elements, but by contrast
the qubit CNOT gate is fundamentally nonlinear and
hence in linear optics it has to be non-deterministically
constructed. Universal qunat computation does require
nonlinear elements/gates (though the form of nonlinear-
ity is arbitrary) while linear optics quantum computa-
tion seems to remove the fundamental need for a non-
linear gate. This apparently suggests that there is also
difference in physical resources between these two plat-
forms. However, it is known that optical nonlinear el-
ements/gates can be replaced by ideal photon counting
in universal qunat computation[11]. It is thus not clear
whether or not these two sets of requirements can be
merged to a common set of physical requirements, i.e.
physical primitives or these need to be different. To an-
swer this question, we need to decompose these elements
much further into physical primitives, focusing on the
nonlinear optical elements. For instance, the equivalent
effect of ideal photon counting to optical nonlinear gates
may suggest that there is a sufficient amount of nonlin-
earity hiding in ideal photon counting, and probably also
in single photon sources. The ambiguities here may arise
from the fact that single photon sources and detectors
are not physically trivial elements. It is thus necessary
to examine the procedure for the generation of the single
photons and their detection and identify the potential
nonlinear elements embedded in them.

To achieve this, we will require all computation to be-
gin with a coherent state and end with projective mea-
surement on to a quadrature amplitude. These are all
linear optical elements and operations and as such these
is no hidden nonlinearity in the preparation procedure
and the detection devices. With these optically linear
elements, this is a natural setting for qunat computa-
tion, however for qubit computation we need to have a
mechanism to generate our initialized qubits and detect
them. There are a number of ways this can be achieved
and here we will discuss one of the theoretically simpler
approaches. It is known that quantum non-demolition
(QND) measurements can be used to generate and de-
tect photon-number states[21-23]. The QND measure-
ment can be constructed from an optical nonlinearity
(such as a cross-Kerr nonlinearity) and a coherent state
probe field and homodyne detection. The efficiency of
the QND measurement as detector for qubit computa-
tion can be improved by either increasing the effective
size of the optical nonlinearity or the amplitude of the
coherent state |o). The QND measurement requires a
cross Kerr nonlinearity, and hence the requirements for
qunats are applicable to qubit computation. Therefore,
on these grounds, in terms of universality of quantum
computation, qubit-based computation and qunat-based
computation are unified in one set of conditions. Linear

optical elements and cross Kerr nonlinear coupling are
physical primitives for universal quantum computation
no matter the coding you have in in mind.

These physical primitives are deterministic and hence
might give a different scalability to the general linear op-
tical quantum computation schemes. In linear optical
quantum computation, it is usual that entangling gates
have a very complicated structure. These gates are struc-
tured based on linear optics elements and measurement,
hence in other words, linear optical quantum computa-
tion is measurement assisted computation without a uni-
versal set of gates. Only when the right measurement
signature is obtained do the linear optical elements im-
plement an entangling operation. This means these gates
are naturally probabilistic (but heralded) and scales con-
stant for each gate, hence the entire circuit scales polyno-
mially. Similarly, universal computation with the phys-
ical primitives shows polynomial scalability. Although
the physical primitives are deterministic operations, a
nonlinear coupling may realistically give a huge constant
overhead for each gate. This is simply because the physi-
cal systems/materials providing the optical nonlinearities
are typically weak in nature (can not provide a 7 nonlin-
ear phase shift)[24]. The size of weak nonlinearity does
not bring fundamental differences in the physical criteria,
however, the subtlety here is that the polynomial scaling
property of deterministic gates is dependent on the size
of nonlinearity and hence the scaling property is slightly
different from the one with linear optics quantum com-
putation (Note that the polynomial scaling with a huge
overhead for each nonlinear gate is the best scaling linear
optical quantum computation can achieve.). This eval-
uation of efficiency is somewhat disturbing because the
scaling is dependent on how we count the gates. That is
if we count a set of the same nonlinear gates with small
nonlinearity for each gate as one gate with nonlinearity
large enough to construct CNOT gate, we have different
scalabilities from one to another. Although the differ-
ence is only marginal being polynomial or constant and
further the concept of scalability is a measure to distin-
guish the scaling from exponential to polynomial and/or
to constant, it is still important to distinguish these dif-
ferences in polynomial (and constant) scalability more
precisely. Physically these differences in scalability are
important to compare the potential power in the set of
physical resources. When a circuit involves probabilistic
features in its in-line circuit, the amount of computa-
tional resources increases with the probability of success
going to one. Roughly speaking, this give us polyno-
mial scaling with a constant overhead. The case with
small nonlinearity, since the gate is deterministic, gives
a constant scaling, however each logic gate may carry
a rather huge overhead. There is a practical problem
in the scalability in these two cases, since both are ineffi-
cient in terms of realistic scaling even for quite large scale
quantum computation. The fundamental question here



is whether the difference between linear optical quantum
computation and nonlinear optical quantum computa-
tion is just a matter of size of nonlinearity. We address
this question next.

We might think that it should be trivial that gates
have to be either deterministic or probabilistic (non-
deterministic). However, there is a subtlety can come
in here when we take experimental reality into account.
Recently some logic gates using QND measurement have
been shown to be near-deterministic[23, 25-27]. There
gates are near-deterministic in a sense that they can,
in principle, be made arbitrary close to deterministic.
Mathematically speaking, these gates must be counted
as probabilistic, however these type of gates show an
asymptotic failure rate behavior going to zero as a limit.
Here, we define that a gate is near-deterministic if the
theoretical error of failure in the gate can be suppressed
arbitrarily small without investing extra physical primi-
tives. Such a gate can be constructed with the physical
primitives as Fig.(1). This gate works as two-qubit parity
gate[26, 27], which entangles the two qubits. We call this
gate a primitive gate to distinguish it from fundamental
logic gates. The gate is primitive in a sense that it is
a building block of entangling gates such as the CNOT
and Toffoli gates, but is not a physical primitive because
it can be constructed by the combination of the physical

primitives.
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FIG. 1: Schematic diagram of a two qubit parity gate for
qubits encoded in the polarization of single photons. This
gate uses only linear optical elements, classical feed-forward,
and weak cross- Kerr nonlinearities and works as follows.
Consider the four two qubit basis states |[HH), |[HV), |VH),
|VV) with the probe beam in the coherent state |a). After
the interaction with both weak cross-Kerr nonlinearities cer-
tain of these basis states cause a phase shift on the probe
beam. Namely the |[HV) (|[VH)) basis state causes a +6
(—0) phase shift on the probe beam. An appropiate homo-
dyne measurement will distinguish whether the probe beam
was phase shifted or not (without determining the sign of the
phase shift). For instance with the initial two qubit state
|HH) + |HV) + |VH) + |VV) our parity gate conditions the
state to either |HH) + |VV) for the even parity result or
e HV) 4+ e )|V H) for the odd parity result. Here
¢(X) is a measurement dependant phase shift which can be
simply removed with passive optics. This shows how this gate
can act as an entangling operation.

The state discrimination by the measurement in Fig.
(1) on the coherent mode is not deterministic in a sense
that the measurement result always carries theoretical
imperfection due to the non-zero overlap in two coher-

ent states. The failure probability of this gate scales in-
versely proportional to the exponential of the distance
between the two coherent states, and hence can be the-
oretically arbitrarily small and still satisfy the condition
for near-deterministic gates. Practically, the failure prob-
ability of the gate can be controlled to be smaller than
any other imperfection arising from physical elements in
the computational circuits. This control on the failure
probability is done by the intensity of the coherent state
and hence there is no extra computational resources re-
quired. Thus this gate can be considered as a primitive
gate. Recalling the upper bounds in the success prob-
ability and No-Go theorems in linear optics quantum
computation[28] and quantum computation with deter-
ministic nonlinear gates, it is clear that the primitive gate
gives us a different scaling properties.

It is well known that any two-qubit unitary entangling
gate with local operations can be used to create a CNOT
gate and hence a universal set of gates[29]. However the
QND primitive gate is not a unitary gate and hence is
not a fundamental logic gate for quantum computation in
the usual sense. For quantum computation based on this
QND primitive gate the physical processes in a unitary
gate may not be unitary, however the logic flow of quan-
tum computation can remain unitary. To construct logic
gates from the QND primitive gate, the second qubit in
Fig (1) may necessarily be an ancilla mode for the logic
gate to be carry out, however the ancilla photon is not
destroyed in the gate and can be re-used in another gate
later in the process and hence it is more appropriate to be
considered as a part of computational qubits. In Fig (2)
we illustrate how the primitive gates with the physical
primitives can construct a near-deterministic two-qubit
CNOT logic gate. As the CNOT gate with linear optical
elements is sufficient to construct a universal set of gates,
these physical primitives can achieve universal quantum
computation. Thus the primitive gate is at least inter-
changeable with CNOT gate and one-to-one correspon-
dence between physical implementation to logical com-
putational elements.

As we have proved that the gate set of the physi-
cal primitives is universal, we now need to discuss the
asymptotic properties of the primitive gate. When the
success probability of the primitive gate goes to one, the
intensity of coherent state has to go to infinity with the
given amount of nonlinearity in the physical primitive be-
ing constant. The rate of this divergence is rather slow.
The error rate decreases exponentially and the ampli-
fication of the nonlinearity by intense coherent state is
efficient. Considering the weak nonlinearity limit in the
QND-based quantum computation, we notice that when
the size of nonlinearity goes zero, the intensity of coher-
ent state has to go infinity. The limit of zero-nonlinearity
is discontinuous from the regime of physics primitives as
the amplification of the nonlinearity breaks down. In con-
trast, gate operations in linear optics quantum computa-
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FIG. 2: Schematic diagram showing the construction of a
CNOT gates from the qunat physical primitives. The gates
consists of three qubits (arbitrary control and target qubits
and a known ancilla |H)) plus several key elements including
the parity gates (large square box) and single photon QND de-
tectors. All these elements including the single photon states
can all be constructed from the physical primitives. A detailed
description of how the overall gate operates can be found in
Ref [26].

tion can approach perfect only when the computational
resource goes infinity.

Finally we must address the issue of the generation of
the single photon resources. The generation of these re-
sources with the physical primitives is not deterministic
nor near-deterministic. It is however heralded. This is a
weak point in single photon optical quantum computa-
tion. However, single photon generation is, unlike other
gates, applied only once in the computation to gener-
ate at least IV + 1 qubits for the N-qubit computation.
A simple estimation gives that allowing a certain fail-
ure probability for one single photon generation, ¢ x N
physical primitives are required where ¢ is a small con-
stant. For instance, for the size of 10-qubit computa-
tion ¢ = 7 gives the order of 10~° failure probability to
produce at least 10 single photons, while for N = 1000,
¢ = 3 gives a similar failure probability. The factor of the
constant overhead decreases even further when the com-
putational system size grows larger. Hence even though
single-photon generation does not exhibit the properties
of near-deterministic gates, it possesses a unique scal-
ing property which makes it sufficiently efficient for large
scale quantum computation.

We may summarize our physical primitives for univer-
sal optical quantum computation:

e Arbitrarily-intense coherent state source,

e Linear optical elements,

e Homodyne detection,

e Non-zero cross-Kerr nonlinearity,

e classical feed-forward.
These requirements are for universal quantum computa-
tion in optics.

To conclude, we have shown that our primitive gate
with linear optical elements is universal. This set of the
gates gives the physical requirements for universal quan-
tum computation in optics and these requirements can
be applied to other physical systems. This QND-based
quantum computation merges qubit(discrete)-quantum

computation and qunat-quantum computation by hav-
ing the physical primitives as the essential conditions for
universal quantum computation. The primitive gate was
shown to have a unique scaling property which allows
the gate to construct resource efficient logic gates such
as the CNOT gate, that is, there is essentially no physi-
cal overhead per logic gate. Finally the regime of optical
quantum computation given in this paper is shown to be
distinct from all linear optics quantum computation with
respect to the efficiency of the physical resources in the
computational system.
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