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Quantum information processing (QIP) offers the promise of being able to do things that we cannot
do with conventional technology. Here we present a new route for distributed optical QIP, based on
generalized quantum non-demolition measurements, providing a unified approach for quantum com-
munication and computing. Interactions between photons are generated using weak non-linearities
and intense laser fields—the use of such fields provides for robust distribution of quantum informa-
tion. Our approach requires only a practical set of resources, and it uses these very efficiently. Thus
it promises to be extremely useful for the first quantum technologies, based on scarce resources.
Furthermore, in the longer term this approach provides both options and scalability for efficient
many-qubit QIP.

PACS numbers: 03.67.Lx, 03.67.-a, 03.67.Mn, 42.50.-p

INTRODUCTION

It is well known that using quantum information can
enable certain communication and computation tasks
that cannot be performed with conventional IT, or im-
prove some that can[1]. Quantum computers (or smaller
processors) for instance can search faster and simulate
better than their classical counterparts, and factor large
numbers efficiently[2, 3]. Quantum cryptography enables
secure communication, based on the laws of physics[4].
There is now considerable research activity devoted to
finding the best routes to realising new quantum infor-
mation technologies. Here we present a new paradigm for
all-optical quantum information processing (QIP), bring-
ing together communication and computation in a single
approach. This has many appealing features and signifi-
cant promise as a technology route:

• The approach is all-optical, so qubit interconver-
sion is not a prerequisite for combining communi-
cation and processing.

• Quantum information is distributed robustly, using
intense laser pulses.

• Our approach only requires a practical set of phys-
ical resources. In particular, we do not assume the
existence of single photon sources and detectors,
but describe how these can be constructed from
the underlying resources.

• Moving on from quantum cryptography, the
next technologies—based on limited resources—are
likely to involve few-qubit processing and some dis-
tribution of quantum information. Our approach
thus provides for this very efficiently.

• Our approach provides adaptable building blocks,
so the computational approach is not fixed. For ex-
ample gate- or measurement- or cluster-state-based

QIP can be performed, dependent upon the scale
and application.

• A longer term aim is for technologies based on
many-qubit and distributed QIP. Our approach
gives an efficient and scalable route for this.

Optical QIP is already a very active research area.
Knill, Laflamme and Milburn (KLM) provided an im-
portant theoretical breakthrough, showing that in princi-
ple universal quantum computation is possible with lin-
ear optics, quantum gates effectively being introduced
through photon bunching effects and measurement[5].
Furthermore, there have been a number of recent impres-
sive experimental demonstrations of the building blocks
for such optical QIP[6–8]. However, despite all this, gates
in linear optical QIP are intrinsically probabilistic, be-
cause they are based on photon bunching and measure-
ment. This means that the scheme is practically rather
inefficient (in terms of photon resources) to implement.
Even with the application of cluster-state methods, on
average over 100 photons are needed for a single two-
qubit gate[9, 10]. In addition, all these photons have to
be identical enough for bunching effects to occur, practi-
cally a very onerous requirement. So this road to actual
devices and technology looks tough.

An alternative method for realising a gate between two
photons is to get them to interact in a non-linear medium.
An example is a cross-Kerr non-linearity, with an interac-
tion Hamiltonian Hck = h̄χn̂an̂p (where n̂a = â†aâa and
n̂p = â†pâp are the photon number operators for the two
interacting modes and χ is the interaction strength). In
order to produce sufficient interaction for useful quantum
gates directly between photons, strong non-linearities are
needed, with θ ≡ χt ∼ π, t being the interaction time.
Unfortunately, in practice such non-linearities are not
available. In effect, an approach is needed that can “am-
plify” the effect of the rather weaker non-linearities that
are available (with θ ¿ 1),to enable QIP[11–15].
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A key feature of our work is to do just this, by us-
ing intense coherent states of light as a “bus” to medi-
ate interactions between photon qubits. The strength of
the coherent states can offset the weakness of the non-
linearities. Two other important advantages arise from
this approach. Firstly, photonic qubits never talk to each
other directly and so we do not rely on two-photon ef-
fects between identical photons. Our photon qubits do
not therefore have to be perfectly indistinguishable, as
they do in linear optical schemes. Secondly, the coher-
ent states used as bus modes also provide for the natural
communication and distribution of quantum information,
enabling gates between photonic qubits that never meet,
and that are separated by distances up to the scale over
which quantum communications work. As some quan-
tum communication tasks are more simply and robustly
implemented with coherent states (continuous variables
(CV), as opposed to qubits), it is natural to combine both
qubit and CV resources in a truly distributed computing
scheme.

Our distributed optical QIP scheme requires various
fundamental physical resources. Some of these are linear
in nature, but for resource efficiency non-linear elements
are also necessary—for these we will specify their nature
and quantify the strength required. In our proposal the
fundamental physical resources required are:

1. Sources of large coherent states (which can clearly
be filtered to make weak ones).

2. Highly efficient homodyne/heterodyne detection.

3. Standard linear optical elements, such as beam-
splitters, phase shifters and the ability to perform
fast classical feed-forward).

4. Weak cross-Kerr non-linearities.

With a view towards actual technology, this list is de-
liberately practical, so it only includes coherent states of
light—a standard optical resource—of the form |α〉 =

e−|α|2/2
∑

n α
n/

√
n!|n〉, and weak non-linearities (with

θ ¿ 1). Quantum buffers or storage for the qubits are not
absolutely necessary; however, adding them to the list
renders actual implementations much simpler and even
more efficient.

These core physical resources are all the elements
needed to perform any distributed single photon compu-
tation and communication task. All the other necessary
elements (photon sources, detectors and gates) needed
to enable the information processing can be created from
these core resources. Very importantly, no further hid-
den source of non-linearities are needed in any of the
elements, so it is straightforward to cost the actual non-
linear resources needed for any given QIP task.

SINGLE PHOTON SOURCES AND DETECTORS

Our scheme embodies the actual quantum information
in single photon qubits, encoding into polarization of the
photon (|H〉, |V 〉), or which of two paths it takes. (These
encodings are equivalent, and physical transformation
between the two is achieved through a linear polarizing
beam-splitter.) So single photons need to be created from
the core physical resources detailed above. We begin with
a brief discussion of how these core resources can be used
to create a high efficiency quantum non-demolition sin-
gle photon detector[11, 17, 18], which can be used to
condition incoming photon states and thus also serve as
a single photon source. In the quantum non-demolition
detector (depicted schematically in Fig. 1a) there are two
optical modes, a signal mode a and a probe mode p. In
our scheme the signal mode is some superposition of Fock
states and the probe beam is an intense coherent state
|α〉. The signal and probe modes interact via a weak
cross-Kerr non-linearity that generates a unitary evolu-
tion Uck = exp [iθn̂an̂p], where θ is the total strength of
the non-linearity. If the signal mode is initially prepared
in the state |ψ〉 = c0|0〉a + c1|1〉a + c2|2〉a, the cross-Kerr
interaction causes the combined signal and probe system
to evolve to

c0|0〉a|α〉p + c1|1〉a|αeiθ〉p + c2|2〉a|αe2iθ〉p (1)

Now a highly efficient homodyne/heterodyne measure-
ment of the probe field will effectively project this onto
some state of a chosen field quadrature x(ξ) = ape

iξ +
a†pe

−iξ, and the signal mode into a corresponding def-
inite number state |n〉a [11, 16]. There is of course
an error in the discrimination of the |n〉a states due
to the fact that the measured probe quadrature prob-
ability distributions for the different n have overlap-
ping tails—the phase shifted coherent states of the probe
beam are not completely orthogonal to |α〉p. In terms
of the measured quadrature value, the natural discrimi-
nation boundary for adjacent n values is the mid-point
between the probability peaks. For the case of just
two peaks (c2 = 0 in state (1)), real α and measure-
ment of x(π/2), the discrimination error is the probabil-
ity in the tails of the distributions on the wrong side
of the mid-point, which is 1

2erfc
[

|α| sin θ/
√

2
]

. With
more peaks the total discrimination error doesn’t exceed
Perr = erfc

[

|α| sin θ/
√

2
]

which can be made small by
ensuring that αθ À 1. In fact for αθ ∼ π this discrim-
ination error Perr ∼ 10−3, which is likely to be smaller
than other error and noise processes, so this approach
enables accurate non-absorbing photon measurement.

Next we focus on the generation of single photons on
demand. The QND detector is the required element for
such a source. Consider that the signal mode a is now
injected with a weak coherent state |αa〉 (αa real). Such
states are straightforward to prepare, and are in our list
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FIG. 1: Schematic diagram of a QND based single photon
detector (a) and a single photon source (b). For the QND
based detector (a) the inputs to the weak cross-Kerr material
are Fock states |na〉 (with na = 0, 1,...) in the signal mode
labeled a and a coherent state with real amplitude α in the
probe mode labeled p. The presence of photons in mode a

causes a phase shift on the coherent state |α〉p directly pro-
portional to na which can be determined with a quadrature
measurement. The single photon source (b) uses the QND
detector from (a) with a weak coherent state (mean photon
number |αa|

2 ∼ 1) input to the signal mode. The homodyne
measurement of the probe then allows the signal mode to be
projected into a definite number state.

of core resources. The QND detector with an appropriate
homodyne/heterodyne measurement of the probe mode
will project the signal mode into a photon number state
|n〉a. The value of n is identified by the probe measure-
ment result. So production of a single photon state |1〉a is
heralded and occurs with probability P = exp

[

−α2
a

]

α2
a

which has a maximum value of 1/e ∼ 0.367 when αa ∼ 1.
Several such driven sources can therefore give a very high
probability for the heralded generation of a single pho-
ton. This photon then simply needs routing to where it
is required. Clearly the addition of a controlled quantum
buffer or storage device enables a probabilistic heralded
single photon source to be turned into an “on-demand”
single photon source. Essentially a probabilistic source
can be used repeatedly until a single photon is generated;
it can then be held in a buffer until it is required.

THE DISTRIBUTED PARITY GATE

We have described how to produce both single pho-
ton sources and means to detect them from our core
physical resources. Now we turn our attention to pho-
ton qubit interactions. There are obviously a number of
techniques or methods we could use to enable interac-
tion between single photon qubits, such as the approach
of KLM[5]. However, we propose using weak cross-Kerr
non-linearities and strong coherent states, as this makes
efficient use of resources from our core list and also en-
ables a naturally distributed quantum gate. Clearly a sin-
gle weak non-linearity (θ ¿ 1) is not sufficient to enable

a maximally-entangling gate (such as CPhase) directly
between two single photon qubits—a great many non-
linearities would be needed with this approach. How-
ever, in conjunction with an intense probe beam just two
weak non-linearities are sufficient to implement a two-
qubit parity gate[13]. Such a gate is illustrated in Fig. 2.
The parity gate works as follows: consider that the two

+θ Measurement+θ

   φ

Alice Bob

−θ

qubit qubit

communication bus

FIG. 2: Schematic diagram of a distributed two-qubit po-
larization QND parity gate. The basic gate consists of two
spatially separated photonic qubits, an intense coherent state
communication bus (the probe beam) and two weak cross-
Kerr non-linearities. The polarization encoded qubits are
converted to “which path” qubits on polarizing beam-splitters
and one path of each qubit interacts with a weak cross-Kerr
non-linearity to induce a phase shift θ on the communication
bus. After both qubits have interacted with the non-linear
media a further linear phase shift of −θ is applied to the com-
munication bus, followed by a measurement. This projects the
two-qubit state into a subspace of even or odd parity.

parties Alice and Bob have the shared two polarization
qubit state β0|HH〉ab+β1|HV 〉ab+β2|V H〉ab+β3|V V 〉ab

with each qubit at a different spatial location (and po-
tentially stored or buffered). This state may be separable
or entangled depending on whether Alice and Bob have
interacted previously. The first action of the parity gate
is to entangle the probe beam |α〉p with Alice’s polariza-
tion qubit. The |H〉a component of Alice’s qubit causes
a θ phase on the probe beam while the |V 〉a component
leaves the probe beam unchanged. After this interaction
the probe beam is transmitted to Bob, who also uses a
weak cross-Kerr nonlinearity θ to interact his |V 〉b com-
ponent with the probe field. This entangles Bob’s qubit
to the probe field and Alice’s qubit. A linear phase shift
of −θ is then applied to the probe beam. The resulting
three-party state (Alice, Bob and probe) is

|Ψ〉abp = [β0|HH〉ab + β3|V V 〉ab] |α〉p (2)

+ β1|HV 〉ab|αeiθ〉p + β2|V H〉ab|αe−iθ〉p.

We notice immediately that dependent upon the type
of measurement on the probe beam p, the state of Al-
ice’s and Bob’s system can be conditioned into a number
of distinct pieces. A parity measurement could be ef-
fected by distinguishing the probe state |α〉p from |αeiθ〉p
and |αe−iθ〉p, but not (even in principle) distinguishing
|αeiθ〉p from |αe−iθ〉p.

There are various measurement strategies for the probe
beam that can realise this state conditioning. The sim-
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plest is a high efficiency x(0) quadrature homodyne
measurement[13, 14]. Whilst this is in principle a
straightforward measurement to implement, it is by no
means optimal. A near-optimal measurement is prefer-
able as this enables the strength of the cross-Kerr nonlin-
earities used to be near-minimal. To this end we propose
performing a QND photon number measurement on the
probe beam. However, during the action of the gate the
probe beam has to have a large mean photon number in
order to “amplify” the effect of the weak non-linearities.
Therefore, before measurement the probe beam must be
displaced by an amount D(−α)[24]. This results in the
three mode state

|Ψ〉abp = [β0|HH〉ab + β3|V V 〉ab] |0〉p
+ e−iα2 sin θβ1|HV 〉ab|α(eiθ − 1)〉p
+ eiα2 sin θβ2|V H〉ab|α(e−iθ − 1)〉p . (3)

Note that the |HV 〉ab and |V H〉ab amplitudes have
picked up a phase shift due to the displacement. These
phase shifts are unwanted but can be simply removed
by static phase shifters (no feed-forward is required).. .
The overlap between the probe components of the even
parity (|0〉p) and odd parity (|α(e±iθ − 1)〉p) amplitudes
is very small if αθ ∼ π. In this case the mean photon
number of the odd parity components is not large, be-
ing approximately n̄p,odd ∼ 10. Hence a measurement of
np with a QND photon number resolving detector can-
not distinguish the |α(e±iθ − 1)〉p components from each
other, but can distinguish these from the |0〉p compo-
nents. This results in Alice’s and Bob’s combined state
being conditioned to

|Ψ〉ab =

{

β0|HH〉ab + β3|V V 〉ab for np = 0
β1e

iφ(np)|HV 〉ab + β2e
−iφ(np)|V H〉ab for np > 0

(4)

where φ(np) = np tan−1 [cot(θ/2)]. For θ ¿ 1, φ(np) can
be simplified to φ(np) = −np

π
2 which is in affect a sign

flip for np odd and no change for np even. This phase
shift φ(np) can then simply be eliminated via a classical
feed-forward operation (a phase shift dependent on the
result of the measurement) as the QND measurement
gives np and θ is known. The classical feed-forward op-
eration is needed because a different operation is needed
depending on whether np is even or odd. In many compu-
tational circuits this feed-forward operation (determined
by the result of the QND measurement) can be delayed
and performed at the final measurement stage for the
qubits. We also need to point out that the error in dis-
criminating the two components (even and odd parity
states) is approximately Perr ≈ 10−4 for αθ ∼ π. This is
a near optimal measurement.

Decoherence

The distributed parity gate approach is clearly a very
appealing method for the remote creation of entangled
states which, as we shall explain, can be extended to
perform distributed quantum computation. However, it
is necessary to examine the effects of noise and decoher-
ence on this distributed approach to judge its real prac-
ticality. One of the main sources of decoherence in the
transmission of the probe field from Alice to Bob is likely
to be amplitude damping or photon loss in the chan-
nel. For instance if the channel is a fiber then photons
from the probe beam will be absorbed as it is transmit-
ted between the remote locations. There are a number of
ways to treat this loss, with the simplest being to model
it via a beam-splitter of reflectively η which discards a
portion of the probe beam while it is being transmitted
between the remote locations. It is assumed that η does
not vary with time, and that it can be measured in ad-
vance through suitable test experiments, so its value is
known.

Consider now the distributed parity gate, but with
such loss on the probe beam. Alice and Bob again
prepare their qubits as |Ψ〉a = c+|H〉a + c−|V 〉a and
|Ψ〉b = d+|H〉b + d−|V 〉b respectively. The parity gate
is performed as before, but now, crucially, with a slightly
reduced displacement of D(−α

√

1 − η2) applied to the
probe beam, due to the fact that some of this beam
has been lost during transmission and a phase correction
η2|α|2 sin θ applied to one of the two qubits. The beam
loss (the discarded output from the model beam-splitter)
has to be traced over, which leaves Alice and Bob with
a mixed state. We focus on an example case, the regime
with (1 − η2)|α|2 [1 − cos θ] ∼ 10, which can certainly be
attained with physically reasonable parameters. Then
the resulting mixed state is

ρab(np = 0) = λ+|Ψ+〉ab〈Ψ+|ab + λ−|Ψ−〉ab〈Ψ−|ab(5)

ρab(np > 0) = λ+|Φ+〉ab〈Φ+|ab + λ−|Φ−〉ab〈Φ−|ab(6)

where |Ψ±〉ab = c±d±|HH〉ab ± c∓d∓|V V 〉ab, |Φ±〉ab =
c±d∓|HV 〉ab + c∓d±|V H〉ab, and λ± = 1

2 (1 ± e−γ) with
γ = η2|α|2 [1 − cos θ]. There are now two interesting
points; first the effect of loss in the probe beam lead to
mixing of the two qubits (rather than the loss of the qubit
if it has been transmitted) and second the probe beam
even with finite loss can project the qubits into parity
states. We obviously want to operate in the regime of
small γ as we then effectively have the pure state |Ψ+〉ab,
|Φ+〉ab. However with moderate loss our two qubits can
be heavily mixed but still retain some degree of entangle-
ment which can be purified/distilled using standard tech-
niques on the photonic qubits (the effect of loss on the
probe causes a dephasing error in the photonic qubits).
Next to be able to perform the parity measurement we
require (1 − η2)|α|2 [1 − cos θ] ∼ 10 to have a low failure
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rate. If this cannot be achieved then the parity mea-
surement gives one of three possible results: even parity,
odd parity or indeterminate. In the indeterminate case
the gate fails, but the information encoded in the pho-
tonic qubits is not necessarily lost and could be recov-
ered. Alternatively the gate could be attempted again
with fresh/re-prepared qubits.

There will obviously be other forms of error that one
needs to deal with (for instance loss of photons in the
qubits), but these can be deal with using the standard
techniques available for linear optical quantum computa-
tion.

TECHNIQUES OF COMPUTATION

We have indicated how to produce the components
needed for optical quantum information processing—
sources of single photons, detectors of single photons and
two photon parity measurements—from our list of funda-
mental resources. We now consider the potential models
for distributed optical processing. There are a number
of computational models available; here we consider the
standard gate-based schemes and computation by mea-
surement. This illustrates the flexibility of our approach,
as these two schemes can be realised from the same basic
ingredients.

Gate based computation

The standard gate-based model of universal compu-
tation requires sources of single photons, single qubit
rotations, an entangling operation and projective mea-
surements on these photons. For polarization or which
path encoded qubits, the single qubit operations are es-
sentially trivial and can be implemented using linear el-
ements; beam-splitters, phase shifter etc.. Historically
the tricky operation has been the entangling (two-qubit)
gate. For distributed processing we propose using co-
herent state bus modes, which can suffer some loss, and
thus avoid sending single photons between remote loca-
tions. We propose an efficient distributed gate based
on an application of the linear optical CNOT ideas of
Franson[19]. Our new gate is depicted in Figure (3)
and comprises several local parity gates plus a shared
maximally entangled Bell state. This distributed max-
imally entangled Bell state can be created by an ap-
plication of the parity gate to photonic qubits initially
prepared as |H〉 + |V 〉 and, crucially, just involves the
transmission of a coherent state between the two parties.
Consider the control and target qubits initially in the
state β0|HH〉ct+β1|HV 〉ct+β2|V H〉ct+β3|V V 〉ct. With
a maximally entangled ancilla Bell state |HH〉ab+|V V 〉ab

the action of the control location (left) parity gate and
subsequent ancilla qubit measurement projects and con-

45-PBS

CNOT Gate

Parity Gate
Parity Gate 
 45 - PBS

D

D

σz
  classical  

feedforward

Single

Photon

H

Single

Photon

V

  classical  

feedforwardσx_

Distributed Parity Gate

Control in Target in

Control out Target out

FIG. 3: Schematic diagram of a near deterministic CNOT
comprising a Bell state generator, two polarization qubit en-
tangling gates (one with PBS in the {H,V} basis and one
with PBS in the {H+V,H-V} basis), feed-forward elements
and four single photon resolving QND detectors.

ditions the remaining three photons into β0|HH〉ct|H〉a+
β1|HV 〉ct|H〉a + β2|V H〉ct|V 〉a + β3|V V 〉ct|V 〉a. Here a
bit flip has been applied on the remaining ancilla qubit
for an odd parity gate measurement result and a sign
flip on the |V 〉a ancilla photon amplitude for a D̄ an-
cilla qubit measurement result. Application of the target
location (right) parity gate, with the standard PBS re-
placed with 45 PBS, to the target and remaining ancilla
qubit followed by a measurement on the ancilla qubit,
conditions the control and target qubits to

β0|HH〉ct + β1|HV 〉ct + β3|V H〉ct + β2|V V 〉ct .

Here an odd parity measurement result conditions a bit
flip on the ancilla qubit and a sign flip on the |V 〉 ampli-
tude of the control qubit. Similarly if the QND measure-
ment on the ancilla yields V then a bit flip is performed
on the target qubit. The action of all these measurements
and corrections implements a CNOT operation on the
distributed initial state without transmitting single pho-
tons between the remote locations. Using similar ideas
it is straightforward to show how three-qubit gates such
as the Toffoli and Fredkin gates can be constructed. It
is obvious that these can be constructed directly from
their logical breakdown into two-qubit gates. However,
it is far more efficient to construct them directly from the
fundamental resources, using extensions of the primitives
employed in the parity and CNOT gates and only trans-
mitting coherent probe (bus) states between separated
locations.

Computation by projective measurements

An alternative approach to performing quantum com-
putation is through direct measurements applied to a col-
lection of qubits. One of the most well know examples is
the cluster state approach[21]. This requires the creation
of a specific type of entangled state—a cluster state—of
the qubits as an initial resource. The computation is then
accomplished by sets of single qubit measurements ap-
plied to this entangled state. In linear optics this scheme
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can be implemented using the Browne and Rudolph fu-
sion techniques[10] and recently demonstrated in [20] . A
significant resource saving can be achieved by replacing
the beam-splitter based fusion gates with the parity gate.
This means that on average only one photon is needed to
add one photon to the cluster state (rather than 45 Bell
pairs in the original Browne and Rudolph scheme). The
addition of qubits to the cluster is thus near determin-
istic in nature. Also, because of the distributed nature
of the parity gate it is possible to envisage situations in
which local micro-clusters are generated and then joined
via distributed entangling operations (Fig 4). Clearly
the single qubit measurements needed to accomplish the
computation once the cluster state is constructed can be
made within our proposed framework.

Local Clusters

Distributed Parity

 Gate

FIG. 4: Schematic diagram of a distributed cluster formed by
joining two local cluster states with the parity detector.

Other measurement-based approaches to quantum
computation are also available. Single qubit measure-
ments first need the construction of a cluster state. How-
ever, if any non-destructive two-qubit (or more) projec-
tive measurements can be implemented these can facili-
tate computation directly using the techniques of Nielsen
and Leung[22, 23]. A specific example is that of near-
deterministic Bell state measurements, which do not ab-
sorb the photon qubits. Such measurements can be im-
plemented in our framework by two applications of the
parity gate, with the second parity gate operating in a 45
degree rotated basis compared to the first. The imple-
mentation of distributed projective measurements in an
entangled basis is another very appealing feature of our
weak non-linearity approach.

Clearly the use of weak non-linearities enables several
different approaches to perform very efficient distributed
optical computation. The choice of approach will depend
on many factors, such as the scale and architecture of the
processor, how distributed it is, and the actual physical
resources available. It is quite possible that a hybrid
approach, combining various computational techniques,
will be the most effective.

DISCUSSION

We have presented a new paradigm for all-optical
quantum processing, based on generalized quantum non-
demolition measurements. The starting point is a practi-

cal list of resources (coherent states, homodyne measure-
ments, linear optical elements and weak non-linearities)
and we have shown how everything that is needed can
be built from these resources. As the approach is all-
optical, communication and computation blend together
seamlessly with no need for qubit inter-conversion. Dis-
tributed processing is enabled naturally and, as coherent
states mediate the quantum information over distance, it
is robust to photon loss. Furthermore, the use of QND
measurements makes our approach very efficient in terms
of its use of the fundamental resources.

The two basic QND building blocks in our approach
are single photon QND detectors and distributed two-
qubit parity gates. The photon detectors can be made
very high fidelity and can also be used to generate single
photon qubit resources. The parity gate is near-optimal
in terms of its measurement scheme. Both detector and
parity gate require θα ∼ π; this scaling is very impor-
tant as it enables weak non-linearities (θ ∼ 10−5) to be
used with modest coherent states in the probe or bus
modes. The detectors and gates are not deterministic,
but near-deterministic. However, the errors arise due to
overlapping tails of different probe coherent states and
these can be made very small.

Our approach does not force a choice of computation
scheme and processor architecture; rather it provides
building blocks which can be put together to suit the
task at hand. This, along with the very high resource
efficiency, makes our approach extremely flexible. In the
short term it provides a new way forward to distributed
few-qubit technologies based on scarce resources, and in
the longer term it provides a new approach to efficient,
scalable optical quantum computing either between dis-
tinct nodes or within a node.

Acknowledgments: We thank Rod van Meter, S. Bar-
rett, R. Beausoleil, S. L. Braunstein, P. Kok and G. J.
Milburn for numerous valuable discussions. This work
was supported in part by Japanese JSPS, MPHPT, and
Asahi-Glass research grants and the European Project
RAMBOQ.

∗ Electronic address: bill.munro@hp.com
† Electronic address: nemoto@nii.ac.jp
‡ Electronic address: timothy.spiller@hp.com

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information, (Cambridge University Press,
Cambridge, U.K., 2000).

[2] P. W. Shor, “Polynomial-Time Algorithm for Prime Fac-
torization and Discrete Logarithms on a Quantum Com-
puter”, Proc. 35th Annual Symposium on the Founda-
tions of Computer Science, ed. S. Goldwasser, 124 (IEEE
Computer Society Press, Los Alamitos, CA, 1994); SIAM
J. Computing 26, 1484 (1997); quant-ph/9508027.

[3] L. K. Grover, “A fast quantum mechanical algorithm for
database search”, Proc. 28th Annual ACM Symposium



7

on the Theory of Computing (STOC), 212 (May 1996);
quant-ph/9605043; Phys. Rev. Lett. 79, 325 (1997);
quant-ph/9706033.

[4] C.H. Bennett and G. Brassard ”Quantum Cryptography:
Public Key Distribution and Coin Tossing”, Proceedings
of IEEE International Conference on Computers Systems
and Signal Processing, Bangalore India, pp 175-179 De-
cember 1984.

[5] E. Knill, R. Laflamme and G. Milburn, Nature 409, 46
(2001).

[6] T. B. Pittman, M.J. Fitch, B.C Jacobs and J.D. Franson,
Phys. Rev. A 68, 032316 (2003).

[7] J L O’Brien, G J Pryde, A G White, T C Ralph, D
Branning, Nature 426, 264 (2003).

[8] S. Gasparoni, J. Pan, P. Walther, T. Rudolph and A.
Zeilinger, Phys. Rev. Lett. 93, 020504 (2004).

[9] M. Nielsen, Phys. Rev. Lett. 93, 040503 (2004)
[10] D. E. Browne and T. Rudolph, quant-ph/0405157
[11] W. J. Munro, Kae Nemoto, R. G. Beausoleil and T. P.

Spiller, Phys. Rev. A 71, 033819 (2005)
[12] P. Grangier, J. A. Levenson and J.-P. Poizat, Nature 396,

537 (1998).
[13] Kae Nemoto and W. J. Munro, Phys. Rev. Lett 93,

250502 (2004);

[14] S. D. Barrett, P. Kok, Kae Nemoto, R. G. Beausoleil, W.
J. Munro and T. P. Spiller, quant-ph/0408117.

[15] M. G. A. Paris, M. Plenio, D. Jonathan, S. Bose, G.M.
D’Ariano, Phys Lett A 273, 153 (2000).

[16] G. J. Milburn and D. F. Walls, Phys. Rev. A 28, 2065
(1982).

[17] G. J. Milburn and D. F. Walls, Phys. Rev. A 30, 56
(1984).

[18] N. Imoto, H. A. Haus, and Y. Yamamoto, Phys. Rev. A
32, 2287 (1985).

[19] T.B. Pittman, B.C. Jacobs and J.D. Franson, Phys. Rev.
A 64, 062311 (2001).

[20] P.Walther, K.J.Resch, T.Rudolph, E.Schenck,
H.Weinfurter, V.Vedral, M.Aspelmeyer and A.Zeilinger,
Nature 434, 169-176 (2005)

[21] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86,
5188 (2001).

[22] M. A. Nielsen, Phys. Lett. A 308, 96 (2003).
[23] D. W. Leung, Int. J. Quant. Inf. 2, 33 (2004).

[24] A displacement operation D̂p(−α) = exp(α∗âp − αâ†
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