

An Adaptive Optimal Controller for Non-Intrusive Performance
Differentiation in Computing Services

Magnus Karlsson, Xiaoyun Zhu, Christos Karamanolis
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2005-20
February 7, 2005*

E-mail: {magnus.karlsson, xiaoyun.zhu, christos.karamanolis}@hp.com

QoS, performance
differentiation,
control theory,
adaptive enterprise,
utility computing

Shared computing services must control resource usage to meet
contractual performance goals for hosted customers. They must ensure
performance isolation among the workloads of different customers and
enforce prioritization when the service is overloaded. Existing solutions
are domain-specific and require modifications to the service. We propose
a generic, non- intrusive approach that uses a fair scheduler to intercept
incoming requests and enforce proportional sharing of the service
resources among workloads. The relation between workload shares and
obtained performance varies over time depending on system dynamics.
We design an adaptive optimal MIMO controller that dynamically sets
the workload shares based on the observed performance. Experimental
results from an NFS server and a 3-tier e-commerce site demonstrate that
the controller achieves effective performance differentiation, even when
the system state or the performance goals change significantly.

* Internal Accession Date Only
To be published in the International Conference on Control and Automation, 26-29 June 2005, Budapest, Hungary
 Approved for External Publication
 Copyright 2005 IEEE

An Adaptive Optimal Controller for Non-Intrusive
Performance Differentiation in Computing Services

Magnus Karlsson, Xiaoyun Zhu and Christos Karamanolis
HP Labs, Palo Alto, CA 94304, U.S.A.

{magnus.karlsson,xiaoyun.zhu,christos.karamanolis }@hp.com

Abstract— Shared computing services must control resource
usage to meet contractual performance goals for hosted cus-
tomers. They must ensure performance isolation among the
workloads of different customers and enforce prioritization
when the service is overloaded. Existing solutions are domain-
specific and require modifications to the service. We propose
a generic, non-intrusive approach that uses a fair scheduler to
intercept incoming requests and enforce proportional sharing of
the service resources among workloads. The relation between
workload shares and obtained performance varies over time
depending on system dynamics. We design an adaptive optimal
MIMO controller that dynamically sets the workload shares
based on the observed performance. Experimental results from
an NFS server and a 3-tier e-commerce site demonstrate that
the controller achieves effective performance differentiation,
even when the system state or the performance goals change
significantly.

I. I NTRODUCTION

Service providers and enterprises are increasingly hosting
services and applications on shared pools of computing and
storage resources. Multiplexing workloads onto a shared
infrastructure allows for on-demand allocation of resources
to workloads and, thus, can improve overall resource effi-
ciency by overbooking. Resource sharing and consolidation
create a need to control how competing clients’ workloads
consume the resources of a shared computing service, such
as a database server, a 3-tier e-commerce system, or a file-
server.

Ensuring performance differentiationamong the work-
loads that share the service resources is a key require-
ment in such environments. First, the service must en-
forceapplication-level performance goals, response times and
throughputs in particular. Second, it must provideperfor-
mance isolationto ensure that the actions of one workload
cannot negatively affect the performance of other workloads.
Third, it must enforce aprioritization among workloads
when the service capacity is not sufficient to meet all the
goals, e.g., due to overbooking.

A solution to this problem must satisfy three properties.
First, it has to beadaptive, as the relationship between
allocated resources and the performance a workload re-
ceives may vary over time. For example, the performance
experienced by the clients of a file server depends on the
ratio of requests that are served by the in-memory cache
of the server; this ratio may change over time depending
also on what other clients are doing. Second, it must be
non-intrusive, as most computing services have no native

support for performance differentiation and, in the general
case, cannot be easily modified to do so. Third, it must
automatically detect workload correlations due to dependen-
cies on internal service components—a computing service
typically comprises an ensemble of hardware and software
resources (servers, disks, queues, network links, etc).

This paper focuses on providing performance differenti-
ation according to the above requirements. We propose a
solution that is applicable to many computing services. Our
approach is based on interposing a fair-queuing scheduler [6]
on the request path between a service and its clients, as
illustrated in Figure 1. The scheduler enforces a configurable
share of the service’s capacity that each workload receives.
Based on the observed throughputs and response times of
the workloads, a MIMO controller sets the share of each
workload to achieve performance differentiation.

Intercepting and controlling the workloads that access
a computing service has been previously proposed in the
context of 3-tiered Web sites [7] and storage systems [2],
[8], [13]. All these approaches attempt to enforce some
performance goals under certain assumptions about the work-
load behavior and the system state. With the exception of
Triage [8], none of these approaches can ensure performance
differentiation when the workloads or system deviate from
those specifications. Triage provides differentiated through-
put allocation, but only for fixed latency goals. Moreover, no
existing approaches can automatically detect and deal with
workload dependencies on internal resources. For example,
Triage penalizes all workloads when a performance degra-
dation occurs due to an internal conflict between just two
workloads. Last but not least, most existing approaches are
designed assuming some knowledge of the target computing
service. There have been a number of intrusive control theo-
retic approaches that provide performance differentiation by
modifying the target service and/or using application-specific
hooks. The systems targeted include Web servers [4], [12],
[16], e-mail servers [14], databases [15], file systems [10]
and middleware platforms [11].

This paper proposes the use of anadaptive optimal
controller for providing non-intrusive performance differ-
entiation in computing systems. We formulate an optimal
control problem such that conforming to the performance
differentiation specification equals a constrained performance
optimization. The controller needs to be adaptive to track
workload and system dynamics. Finally, the use of aMIMO

Scheduler

MIMO
Controller

Service
Computing

Replies
and

Requests

Throughput
& Latency

Shares

from Workloads

Fig. 1. Architecture of a generic, non-intrusive approach to performance
differentiation in computing services.

model is imperative for correctly estimating performance
correlations among the workloads.

II. PROBLEM FORMULATION

We assume a system architecture as depicted in Figure 1.
A computing service, comprising an ensemble of resources,
is accessed by a number ofclients. The service can be any
computing system that given a request returns a reply with
some data. Examples of such computing services include file
servers, 3-tier systems, Web servers, and databases. Client
requests are grouped into service classes calledworkloads.
A performance goal is associated with a workload. The
objective is to meet the performance goals of the workloads
by controlling the rates at which they consume the service
resources. To do this, we use a fair-queuing scheduler,
which is interposed on the path between the service and its
clients [6]. The scheduler intercepts the requests sent to the
service; it limits the resource consumption of each workload
in proportion to ashareassigned to that workload. A con-
troller sets the shares dynamically; it enforces performance
differentiation by setting each individual workload’s share
appropriately given latency and throughput measurements.

To derive a model of throughput and response time as a
function of the share assignment, assume for convenience
that the shares of a service’s workloads sum up to 1. That
is, if a workload has a share of 0.3, it is entitled to 30%
of the service’s capacity to serve requests. If the service is
fully utilized, the workload never receives anything above
the share it is allocated. Thus, the scheduler enforces perfor-
mance isolation among workloads. In the case ofthroughput
goals, the share is directly related to the portion of the
service’s total throughput a workload receives. Given that
the total service throughput is sufficiently large to avoid
quantization effects (i.e., the sample period is adequately
long), this relation can be assumed to be linear. However, the
total throughput of a computing service varies over time, as
shown in Figure 2. This may be due to a number of reasons
including other traffic on the network, in-memory caching
effects, or background tasks (e.g., backup scripts) executing
in the service. In the case oflatency goals, queuing theory
implies that the relation between the share and latency is
nonlinear. For a high share, there is little difference in latency
when the share is adjusted. But an adjustment when the
share is small makes a large difference in the response time.
Locally, though, a linear approximation of this relation is

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

re
q/

s)

Execution time (seconds)

Service throughput

Fig. 2. The throughput of the NFS server described in Section IV as it
varies over time.

adequate. For the same reasons that throughput varies given a
fixed share setting, latency also varies. To approximate these
system characteristics with a linear model, we use adaptive
control.

Given the assumptions above, performance differentia-
tion in a computing service can be formulated as a linear
quadratic optimization problem. Letu(k) = [u1(k) . . .uN(k)]T

be the vector of the shares for theN workloads of the service
during sampling intervalk. Let y(k) = [y1(k) . . .yN(k)]T be
the vector of the performance metrics (either latency or
throughput) of theN workloads, measured at the begin-
ning of interval k. Performance differentiation can then
be accomplished by minimizing the quadratic cost func-
tion ‖W(yre f (k) − y(k))‖2, subject to the constraint that
the shares sum up to one, i.e.,∑N

i=1ui(k) = 1. Here, the
vectoryre f (k) = [yre f,1(k) . . .yre f,N(k)]T captures the desired
performance goals of theN workloads and‖ · ‖ is the 2-
norm in ℜN. The cost is zero when all workloads achieve
the desired performance goals. In this way, we can achieve
independent performance goalsfor each workload.

The weighting matrixW in the cost function, commonly
chosen as a diagonal matrix, provides a means of prioriti-
zation among workloads. When the capacity of the system
is not adequate to satisfy all workloads andW = I , then
the cost function is minimized when the performance of
all workloads is degraded equally. If, instead,W 6= I , then
workloads are prioritized. For example,W11 > W22 implies
that workload 1 has higher priority than 2. Under overload
conditions, the cost function is minimized by degrading more
of the performance of workload 2 than that of workload 1.

III. A N ADAPTIVE CONTROLLER FORPERFORMANCE

DIFFERENTIATION

A. Recursive Parameter Estimation

We consider a service, which is shared byN concur-
rent workloads. We assume that the mapping from theN
workload shares (u(k)) to the N measured performance
metrics (y(k)), such as response times or throughputs, can
be described by the following multiple-input-multiple-output
(MIMO) model:

A(q−1)y(k) = B(q−1)u(k)+e(k) (1)

where A(q−1) and B(q−1) are matrix polynomials in the
backward-shift operator:

A(q−1) = I −A1q−1− . . .−Anq−n

B(q−1) = B0q−1 + . . .+Bn−1q−n (2)

Note that Ai ∈ ℜN×N, B j ∈ ℜN×N, 0 < i ≤ n, 0 ≤ j < n,
wheren is the order of the system.{e(k)} is a sequence of
independent, identically distributedN-dimensional random
vectors with zero means. It is further assumed thate(k)
is independent ofy(k− j) and u(k− j) for j > 0. We use
e(k) to represent disturbances in the system that are not
accounted for by the model. The linear model was chosen
for tractability, as the real system dynamics will indeed, in
all but the most trivial cases, be nonlinear.

The reason for choosing a MIMO model over a number
of independent SISO models is that it allows us to cap-
ture correlations between various shares and performance
measurements. For example, increasing the share of one
workload may decrease the performance of another if they
use the same resource within the service. Such dependencies
cannot be captured by individual SISO models. Moreover,
a MIMO controller facilitates providing flexible policies
when the system does not have enough capacity to meet all
individual goals. For example, ensuring that all workloads
receive the same performance degradation would be difficult
to enforce using independent SISO controllers, as it requires
coordination among the controllers.

Some form of system identification is required to estimate
the order of the system (n) as well as the parameter matrices
Ai and B j , with 0 < i ≤ n and 0 ≤ j < n. The estimated
parameters are then used in the controller design.n is usually
fixed and low in computer systems [5] and can be estimated
offline. However, the values of the parameter matrices are
likely to vary in a typical computing service due to changes
in system operating conditions and workload dynamics. For
example, a workload may shift from accessing data from
the disk to accessing data from the in-memory cache of a
server. Such a change would result in more than an order
of magnitude better performance, and thus would require
different model parameters. Therefore, we use an adaptive
controller where model parameters are estimated on-line and
controller parameters are calculated accordingly.

For notational convenience, we rewrite the system model
in the following form, which we use in the rest of the paper:

y(k+1) = X(k)φ(k)+e(k+1) (3)

where

X(k) = [B0 . . . Bn−1 A1 . . . An]
φ(k) = [uT(k) . . . uT(k−n+1) yT(k) . . . yT(k−n+1)]T

We use a recursive least squares (RLS) estimator with
exponential forgetting to estimate the time varying parameter
matrixX(k). This type of estimator has been used extensively
in adaptive control systems as it converges fast and rejects

noise well. The estimator is defined by the following equa-
tions:

X̂(k+1) = X̂(k)+
ε(k+1)φT(k)P(k−1)
λ+φT(k)P(k−1)φ(k)

ε(k+1) = y(k+1)− X̂(k)φ(k) (4)

P−1(k) = P−1(k−1)

+(1+(λ−1)
φT(k)P(k−1)φ(k)

(φT(k)φ(k))2)φ(k)φT(k)

where X̂(k) is the estimate of the true value ofX(k), ε(k)
is the estimation error vector,P(k) is the covariance matrix
andλ is theforgetting factor(0< λ≤ 1). We usedirectional
forgetting [9] to avoid wind-up of the covariance matrix.

B. Linear Quadratic Controller Design

For the controller design, we aim at minimizing the
following quadratic cost function:

J = E{‖W(y(k+1)−yre f (k+1))‖2 +‖Qu(k)‖2} (5)

s.t.
N

∑
i=1

ui(k) = 1 (6)

whereW∈ℜN×N is a positive-semidefinite weighting matrix
on the tracking errors andQ ∈ ℜN×N is a positive-definite
weighting matrix on the control settings.

The goal of the controller is to steer the system into a state
of optimum reference tracking with minimum variance, while
penalizing large control settings. TheW and Q weighting
matrices are commonly chosen as diagonal matrices. Their
relative magnitude provides a way to trade-off tracking
accuracy for stability. Also, in the case ofW, the values
of the diagonal terms capture the relative priorities of the
corresponding workloads, when the service is overloaded.

The minimization should be over the set of all admissible
controllers, where a controller is admissible if each control
action u(k) is a function of vectorφ(k−1) and of the new
measurementsy(k). In the following, we derive the optimal
controller by explicitly capturing the dependency of the cost
function J on u(k). We first define

φ̃(k)= [0 uT(k−1) . . . uT(k−n+1) yT(k) . . . yT(k−n+1)]T

(7)
Then we have,

J = E{‖W(y(k+1)−yre f (k+1))‖2 +‖Qu(k)‖2}
= E{‖W(X̂(k)φ̃(k)+ B̂0u(k)+ ε(k+1)

−yre f (k+1))‖2}+‖Qu(k)‖2

= ‖W(X̂(k)φ̃(k)−yre f (k+1))‖2 +‖WB̂0u(k)‖2

+2uT(k)B̂0
T
WTW(X̂(k)φ̃(k)−yre f (k+1))+

+‖Qu(k)‖2 +E{‖Wε(k+1)‖2}
Without the normalization constraint (6), the cost functionJ
is at its minimum where the following derivative is zero.

∂J
∂u(k)

= 2(WB̂0)TW(X̂(k)φ̃(k)−yre f (k+1))

+2(WB̂0)TWB̂0u(k)+2QTQu(k) = 0 (8)

1 k = 0, chooseX̂(0) andP(0)
2 k = k+1 at the beginning of every sampling interval
3 Obtain new measurementsy(k)
4 if total throughput for all the workloads< 5
5 u(k) = u(k−1); go to step 2
6 estimate new model parametersX̂(k) using RLS (4)
7 calculateu(k) according to the optimal control law (14)
8 if mini{ui(k)}< 0 ∀i
9 ui(k) = ui(k)−mini{ui(k)} ∀i
10 normalize theui(k)’s s.t. they add up to 1
11 go back to step 2

Fig. 3. Pseudo-code description of the adaptive controller.

Solving for u(k) would give us the following unconstrained
optimal control law.

u∗uc(k) = ((WB̂0)TWB̂0 +QTQ)−1

(WB̂0)TW(yre f (k+1)− X̂(k)φ̃(k)) (9)

Note that X̂(k) and B̂0 are estimates of the model param-
eters obtained using the RLS estimator ((4)). The resulting
controller is referred to as the linear quadratic self-tuning
regulator [1]. The derivation of the control law here is
adapted from the controller synthesis in [17].

Now, let us take the normalization constraint (6) into
account using a Lagrangian multiplier,λL. Let

L(u(k),λL) = J+λL(
N

∑
i=1

ui(k)−1) (10)

The derivative equation can be updated as follows:

∂L(u(k),λL)
∂u(k)

=
∂J

∂u(k)
+λLIN = 0 (11)

where IN = [1. . .1]T ∈ ℜN is a constant vector. Again,
solving for u(k) gives us the following adjusted control law:

u∗(k) = u∗uc(k)−
λL

2
SIN (12)

where S = ((WB̂0)TWB̂0 + QTQ)−1 can be viewed as a
scaling matrix.λL can be calculated by substituting the above
u(k) into equation (6). Then we have,

λL =
2(IT

Nu∗uc(k)−1)
IT
NSIN

(13)

Therefore, the constrained optimal control law is

u∗(k) = u∗uc(k)−
IT
Nu∗uc(k)−1

IT
NSIN

SIN (14)

As we can see,λL = 0 when IT
Nu∗uc(k) − 1 = 0, i.e.,

the unconstrained optimal control law already obeys the
normalization constraint. Otherwise, individual shares are
adjusted according to the scaling matrixS so that the sum
equals 1.

The pseudo-code in Figure 3 outlines the algorithm that
implements the above control law. Since the adaptive con-
troller requires that the structure of the prediction model
be fixed, we determine the order and time delay of the
system in offline system identification experiments. These

experiments also help us choose initial values forX̂(0) and
P(0). The above algorithm also handles special cases such
as when there are not enough samples or when at least one
control setting is negative. It has shown to work well in our
experimental evaluations.

IV. EXPERIMENTAL EVALUATION

In this section, we present experimental results to demon-
strate the applicability of the proposed controller to real
systems. In particular, we make the following points:
• The controller can adapt to workload and system dy-

namics as well as to changes in performance goals.
• The linear quadratic optimal controller can be used

to prioritize among workloads when the service is
overloaded.

A. Experimental Methodology

We perform our experimental evaluation on two different
systems. First, we use a 3-tier e-commerce system that
consists of three components: a Web server, an application
server and a database. Client requests arrive at the Web
server. Unless they are for static content, they are forwarded
to the application server, which creates a dynamic page
by accessing the database. The generated page is then
sent to the client. The workload applied mimics real-world
user behavior [3], e.g., browsing, searching and purchasing
behaviors including their respective time scales and occurring
probabilities. All three components of the system run on
separate machines. For the experiments here, we emulate
75 users partitioned into two performance classes. Each
class is considered to be one “workload”. The scheduler and
controller are implemented as part of the workload generator
program, httperf 1. The control interval for gathering
measurements and setting the shares is 1 s.

Second, we use an NFS file server that is shared by
multiple workloads. Each workload performs repeated read
operations on its own data set stored on the server. The full
data set is large enough that it does not fit in the in-memory
cache of the file server. The scheduler and controller are
implemented in a proxy server which runs on a separate
machine. For NFS, we use a control interval of 500 ms.

B. Evaluation Results

Figure 4 depicts a 90-second execution window from the
3-tier system with two client workloads. The two workloads
have throughput goals of 80 and 50 requests/s respectively.
Workload 2 has higher priority. Initially both workloads
access more static content, e.g., as a result of browsing
pre-generated product information pages. Over time, the
workloads access increasingly more dynamic content, as a
result of performing operations such as purchasing items.
At first, both goals could be met. But as the behavior of
the workloads changes, the capacity of the service becomes
insufficient to meet the goals of both workloads. Thus, the
controller tries to meet the 50 requests/s goal of the high-
priority workload while penalizing the low-priority one, as

1ftp://ftp.hpl.hp.com/pub/httperf

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90

T
hr

ou
gh

pu
t (

re
q/

s)

Execution time (seconds)

Workload 1
Workload 2

Throughput target 1
Throughput target 2

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 10 20 30 40 50 60 70 80 90

S
ch

ed
ul

er
 s

ha
re

s

Execution time (seconds)

Workload 1
Workload 2

-3

-2

-1

 0

 1

 2

 3

 4

 0 10 20 30 40 50 60 70 80 90

C
on

tr
ol

le
r

pa
ra

m
et

er
s

Execution time (seconds)

B0(1,1)
B0(1,2)
B0(2,1)
B0(2,2)

Fig. 4. Results for the 3-tier system with throughput goals.

shown by the top graph in the figure. The throughput of
workload 2 drops a little from its goal, but only as much as
specified inW. The second graph shows the workload shares
in the scheduler, as set by the controller during the execution
window. The third graph shows the elements in the estimated
B0 matrix in the controller and demonstrates how they adapt
as the workload characteristics change.

Figure 5 depicts a 100-second execution window from
the NFS server with two client workloads, each client with
two processes. In this case, both workloads are of equal
importance and have a response latency goal of 3 ms. For
the first 50 seconds of the execution, both workloads access
a small percentage of their data sets and thus all requests
are served from the server’s in-memory cache (the cache
has been pre-warmed). Their response latency is well below
their goals and thus both have their shares set to 0.5. At
50 seconds, workload 1 becomes disk-bound by iterating
over a much larger portion of its data set. As a result, the
latency of workload 1 increases and thus the controller has
to adjust the weights to track the performance goals. The
latency of workload 2 now varies much more as the latency
of disk accesses is more unpredictable than that of cache
accesses. In this experiment, the controller adapts to a much
more rapid change than that of the previous experiment. The
controller adapts in a similar fashion when there are changes

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(m
s)

Execution time (seconds)

Workload 1
Workload 2

Goal

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

S
ch

ed
ul

er
 s

ha
re

s

Execution time (seconds)

Workload 1
Workload 2

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50 60 70 80 90 100

C
on

tr
ol

le
r

pa
ra

m
et

er
s

Execution time (seconds)

B0(1,1)
B0(1,2)
B0(2,1)
B0(2,2)

Fig. 5. Results for the NFS system with latency goals.

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

re
q/

s)

Execution time (seconds)

Workload 1
Workload 2

Throughput target 1
Throughput target 2

Fig. 6. Adapting to performance goal changes.

in the service (as opposed to the workloads). For example,
when a background task starts on the server affecting its
overall performance.

Last, we show how the controller adapts to varying perfor-
mance goals. Figure 6 depicts a 50-second execution window
from the 3-tier system. There are two workloads that both
initially have throughput goals of 75 requests/s. Workload
1 has a higher priority. At time 30 seconds, the goal of
workload 1 is revised to 150 requests/s. We see how the
controller adjusts quickly to track the goal change. It meets
the new goal of workload 1 while it penalizes the low-priority
workload.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we propose a generic, non-intrusive approach
for enforcing performance differentiation among workloads
that share a computing service. We can enforce both latency
and throughput goals, provide performance isolation and
prioritize the performance of workloads under overload. An
adaptive optimal controller is used to dynamically translate
performance goals into the share of the service resources that
a workload receives. Experimental evaluation of a prototype
has demonstrated that our approach achieves performance
differentiation even when the system and the workload
conditions change.

Many challenges remain. Currently, manual tuning of
the weighting matricesW and Q is required for different
target services. We are investigating techniques to simplify
or eliminate this step. We also plan to examine controllers
that can provide more flexibility in the way workloads are
prioritized under overload, by using utility functions.

ACKNOWLEDGMENTS

The authors would like to thank Julie Symons for her all
help with the experimental system.

REFERENCES

[1] K. J. Åström and B. Wittenmark.Adaptive Control. Electrical Engi-
neering: Control Engineering. Addison-Wesley Publishing Company,
2 edition, 1995. ISBN 0-201-55866-1.

[2] D. Chambliss, G. Alvarez, P. Pandey, D. Jadav, J. Xu, R. Menon, and
T. Lee. Performance virtulization for large-scale storage systems. In
Symposium on Reliable Distributed Systems (SRDS), pages 109–118,
Florence, Italy, October 2003.

[3] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, and J. Chase. Cor-
relating instrumentation data to systems states: A building block for
automated diagnosis and control. InUSENIX Symposium on Operating
Systems Design and Implementation (OSDI), page xxx, San Francisco,
CA, December 2004.

[4] Y. Diao, J. Hellerstein, and S. Parekh. MIMO control of an Apache
web server: Modeling and controller design. InAmerican Control
Conference (ACC), pages 4922–4927, Anchorage, AK, May 2002.

[5] J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury.Feedback Control
of Computing Systems. Wiley-IEEE Press, August 2004. ISBN: 0-
471266-37-X.

[6] W. Jin, J. Chase, and J. Kaur. Interposed proportional sharing for a
storage service utility. InInternational Conference on Measurement
and Modelling of Computer Systems (SIGMETRICS), pages 37–48,
New York, NY, USA, June 2004.

[7] A. Kamra, V. Misra, and E. Nahum. Yaksha: A Self-Tuning Controller
for Managing the Performance of 3-Tiered Web sites. InInternational
Workshop on Quality of Service (IWQoS), pages 47–56, Montreal,
Canada, June 2004.

[8] M. Karlsson, C. Karamanolis, and X. Zhu. Triage: Performance
Isolation and Differentiation for Storage Systems. InInternational
Workshop on Quality of Service (IWQoS), pages 67–74, Montreal,
Canada, June 2004.

[9] R. Kulhavý. Restricted exponential forgetting in real-time identifica-
tion. Automatica, 23(5):589–600, September 1987.

[10] H. D. Lee, Y. J. Nam, and C. Park. Regulating I/O performance of
shared storage with a control theoretical approach. InNASA/IEEE
Conference on Mass Storage Systems and Technologies (MSST),
College Park, ML, April 2004.

[11] B. Li and K. Nahrstedt. A control theoretical model for quality of
service adaptations. InInternational Workshop on Quality of Service
(IWQoS), pages 145–153, Napa, CA, May 1998.

[12] C. Lu, T. Abdelzaher, J. Stankovic, and S. Son. A feedback control
approach for guaranteeing relative delays in web servers. InIEEE Real
Time Technology and Applications Symposium (RTAS), pages 51–62,
Taipei, Taiwan, June 2001.

[13] C. Lumb, A. Merchant, and G. Alvarez. Façade: Virtual storage
devices with performance guarantees. InInternational Conference on
File and Storage Technologies (FAST), pages 131–144, San Francisco,
CA, March 2003.

[14] S. Parekh, J. Hellerstein, T. Jayram, N. Gandhi, D. Tilbury, and
J. Bigus. Using control theory to achieve service level objectives
in performance management.Journal of Real-Time Systems, 23(1-
2):127–141, July-September 2002.

[15] S. Parekh, K. Rose, Y. Diao, V. Chang, J. Hellerstein, S. Lightstone,
and M. Huras. Throttling Utilities in the IBM DB2 Universal Database
Server. InAmerican Control Conference (ACC), pages 1986–1991,
Boston, MA, June 2004.

[16] A. Robertsson, B. Wittenmark, and M. Kihl. Analysis and design
of admission control in web-server systems. InAmerican Control
Conference (ACC), Denver, CO, June 2003.

[17] L. Sun, J. Krodkiewski, and Y. Cen. Control Law Synthesis for
Self-Tuning Adaptive Control of Forced Vibration in Rotor Systems.
In International Symposium MV2 on Active Control in Mechanical
Engineering, pages S9–25–37, Lyon, France, October 1997.

