
                                              

       
Predictive Control for Dynamic Resource Allocation in Enterprise 
Data Centers 
 
Wei Xu, Xiaoyun Zhu, Sharad Singhal, Zhikui Wang 
HP Laboratories Palo Alto 
HPL-2005-194(R.1) 
January 23, 2006* 
 
  
 
 
utility computing, 
virtualization, 
resource allocation, 
predictive control, 
feedback control 

It is challenging to reduce resource over-provisioning for enterprise applications 
while maintaining service level objectives (SLOs) due to their time-varying and 
stochastic workloads. In this paper, we study the effect of prediction on dynamic
resource allocation to virtualized servers running enterprise applications. We
present predictive controllers using three different prediction algorithms based
on a standard autoregressive (AR) model, a combined ANOVA-AR model, as 
well as a multi-pulse (MP) model. We compare the properties of the predictive
controllers with an adaptive integral (I) controller designed in our earlier work
on controlling relative utilization of resource containers. The controllers are 
evaluated in a hypothetical virtual server environment where we use the CPU
utilization traces collected on 36 servers in an enterprise data center. Since these
traces were collected in an open-loop environment, we use a simple queuing 
algorithm to simulate the closed-loop CPU usage under dynamic control of CPU 
allocation. We also study the controllers by emulating the utilization traces on a
test bed where a Web server was hosted inside a Xen virtual machine. We
compare the results of these controllers from all the servers and find that the
MP-based predictive controller performed slightly better statistically than the
other two predictive controllers. The ANOVA-AR-based approach is highly 
sensitive to the existence of periodic patterns in the trace, while the other three 
methods are not. In addition, all the three predictive schemes performed
significantly better when the prediction error was accounted for using a
feedback mechanism. The MP-based method also demonstrated an interesting 
self-learning behavior. 

 

* Internal Accession Date Only 
To be published in and presented at the 10th IEEE/IFIP Network Operations and Management Symposium, 3-7 April 
2006, Vancouver, Canada                                                 Approved for External Publication     
© Copyright 2006 IEEE  



 

Predictive Control for Dynamic Resource Allocation 
in Enterprise Data Centers 

 
Xiaoyun Zhu    Sharad Singhal     Zhikui Wang Wei Xu 

University of California, Berkeley 
Berkeley, CA 94720, USA 

xuw@cs.berkeley.edu 

Hewlett-Packard Laboratories 
Palo Alto, CA 94304, USA 

{xiaoyun.zhu, sharad.singhal, zhikui.wang}@hp.com 
 
 

Abstract—It is challenging to reduce resource over-provisioning 
for enterprise applications while maintaining service level 
objectives (SLOs) due to their time-varying and stochastic 
workloads.  In this paper, we study the effect of prediction on 
dynamic resource allocation to virtualized servers running 
enterprise applications. We present predictive controllers using 
three different prediction algorithms based on a standard auto-
regressive (AR) model, a combined ANOVA-AR model, as well as 
a multi-pulse (MP) model. We compare the properties of the 
predictive controllers with an adaptive integral (I) controller 
designed in our earlier work on controlling relative utilization of 
resource containers. The controllers are evaluated in a 
hypothetical virtual server environment where we use the CPU 
utilization traces collected on 36 servers in an enterprise data 
center. Since these traces were collected in an open-loop 
environment, we use a simple queuing algorithm to simulate the 
closed-loop CPU usage under dynamic control of CPU allocation. 
We also study the controllers by emulating the utilization traces 
on a test bed where a Web server was hosted inside a Xen virtual 
machine. We compare the results of these controllers from all the 
servers and find that the MP-based predictive controller 
performed slightly better statistically than the other two 
predictive controllers. The ANOVA-AR-based approach is highly 
sensitive to the existence of periodic patterns in the trace, while 
the other three methods are not. In addition, all the three 
predictive schemes performed significantly better when the 
prediction error was accounted for using a feedback mechanism. 
The MP-based method also demonstrated an interesting self-
learning behavior.  

Keywords-utility computing, virtualization, resource allocation, 
predictive control, feedback control 

I.  INTRODUCTION 
The recent IT industry initiatives in utility computing 

envision that today’s enterprise data centers will become 
computing utilities that can provide infrastructure on demand to 
business critical applications such as enterprise resource 
planning applications, database applications, customer 
relationship management applications, and general e-commerce 
applications. A key enabler for this vision is server 
virtualization that allows applications to be hosted inside 
virtual servers instead of physical ones. A challenge that comes 
with virtualization is how to effectively manage capacities of 
such virtual servers to increase resource utilization while 
ensuring that the hosted applications can meet their service 
level objectives (SLOs). As opposed to capacity planning that 
deals with long-term allocation of resources to virtual servers, 

dynamic resource allocation responds to changes in demands in 
real time. Control-theory based techniques have been applied to 
deal with this challenge. In this paper, we study both predictive 
and feedback control-based techniques that can be used to 
periodically determine the amount of resource needed for each 
virtual server.  

Standard feedback controllers such as the PI (proportional 
and integral) controllers compare the measured attributes with 
their desired values and use the errors to compute the actuation 
levels for the next interval. Such a controller is reactive in the 
sense that it relies on the feedback mechanism to handle 
disturbances in the system caused by uncontrollable factors 
such as changes in the workload. It cannot respond to such a 
change until its effect on the output metric has been observed, 
which normally results in at least a one step delay, which in 
turn may lead to SLO violations due to buffer overflows, lost 
connections, or long latencies. In this paper, we explore the use 
of time series prediction to exploit repeatable patterns or short-
term correlation in the workload so that more proactive control 
actions can be taken to avoid the potential SLO violations in 
face of workload changes. 

Time series prediction is a well-understood technique used 
in the financial or other industries to handle changes and 
uncertainties in an environment. A commonly used prediction 
approach uses auto-regressive (AR) models that account for 
temporal correlations between the current value of an attribute 
and its recent history [20]. Another method, ANOVA, analyzes 
long-term repeatable patterns in a time series [21]. A 
combination of ANOVA analysis and short-term AR-based 
correlation analysis is another common technique used for 
prediction [17]. We introduce yet another prediction algorithm, 
a multi-pulse (MP) model, first used in speech processing [22], 
which performs searches for both long-term and short-term 
patterns in an online fashion and therefore eliminates the need 
for offline analysis as in the ANOVA approach. 

Predictive control is a technique that determines the 
actuation levels for the next control interval(s) based on 
prediction(s) of certain attributes for the next interval(s). It is a 
proactive approach as opposed to the reactive, feedback-driven 
approach, e.g., in the standard PI control.  In this paper, we 
introduce a simple predictive controller that directly sets the 
actuation level for the next control interval based on the target 
value for the output metric and the predicted value for a related 
variable. We then compare the performance of the predictive 
controller using AR-, ANOVA-, and MP-based algorithms to 
that of an adaptive integral (I) controller using a case study. 



 

Our case study is based on a hypothetical virtual server 
environment using a set of CPU utilization traces collected on 
36 servers from an enterprise data center. Due to the fact that 
these traces were collected in an open-loop environment, we 
use a simple queuing algorithm to simulate the closed-loop 
CPU usage based on the original data and the computed CPU 
allocation. We also emulate the workload on a test bed using a 
Web server hosted inside a Xen virtual machine [27] to re-
create the original utilization traces inside the virtual servers. 
The CPU allocation to a virtual server was controlled using the 
two classes of controllers. We compare the results of these 
predictive or feedback controllers from all the servers. We find 
that the MP-based predictive controller performs slightly better 
statistically than the other two predictive controllers by 
achieving a better balance among multiple metrics. It also 
demonstrates an interesting self-learning behavior. The 
ANOVA-based approach that derives the fixed model offline 
does not perform well compared to the other methods that 
adapt their models or parameters online. Finally, all the three 
predictive schemes performed significantly better when the 
prediction error was considered using a feedback mechanism. 

The remainder of this paper is organized as follows. Section 
II discusses related work. Section III reviews the three different 
prediction algorithms. Section IV introduces a standard 
feedback controller and a predictive controller. Section V 
describes the data for our case study and the utilization control 
system. Section VI presents the results from our simulation 
study. Section VII describes our test bed set up and presents the 
emulation results. Finally, we conclude in Section VIII. 

II. RELATED WORK 

A. Feedback control in computer systems 
Feedback control theory has been applied to solve a number 

of performance or quality of service (QoS) problems in 
computing systems in the past several years (see [1] [2] and the 
references therein). In these applications, we see two major 
challenges for appropriate system modeling and effective 
controller designs: the complex behaviors of computing 
systems themselves, and the time-varying demands placed on 
these systems by stochastic and sometimes bursty workloads.  

Most early work in this area assumed that the system under 
control is linear, and the parameters can be identified offline, 
e.g., in [3], where a MIMO controller was used for automated 
configuration tuning for a Web server. However, due to the 
wide variation of demands observed in computing systems, the 
parameters or even the structure of the models could change 
over time.  To deal with the time-varying parameters in linear 
models, adaptive control theory has been applied to systems in 
the context of, for instance, caching services [4], storage 
systems [5] and resource containers [6]. This approach allows 
the parameters of the model to automatically adapt to changes 
in operating conditions using online system identification.  

Nevertheless, it is usually not enough to consider only the 
linear behavior since much of systems’ behavior exhibits clear 
nonlinearity, for instance, the nonlinear relationship between 
the response time and CPU allocation [7], the saturation of the 
control actuators and bounded buffer sizes [8], and the intrinsic 

time-varying delay in queuing systems. In [2] the authors 
modeled the relationship between the content adaptation level 
and the CPU utilization as a time-varying static gain with no 
dynamics but with a time delay. In [7], the system’s nonlinear 
and bimodal behavior in different operating regions was 
studied quantitatively, and controllers that could adapt to the 
bimodal behavior were developed.  

B. Proactive control algorithms 
Many algorithms have been described in the literature for 

proactive control. For instance, the derivative operation [8] in 
PID controllers anticipates potential changes and improves the 
responsiveness of the closed-loop system. However, it is very 
sensitive to noise, therefore is often unsuitable for many 
computing systems. Model Predictive Control [9] is a widely 
applied methodology, which uses a model to predict the 
system’s behavior over a finite future horizon and chooses the 
control action that optimizes a cost function subject to 
constraints. This approach was used in [10] to control CPU 
utilization in distributed real-time systems. It requires online 
solution to a constrained optimization problem, which may not 
be feasible for all systems. It is also usually limited to fixed 
linear models that are known a priori. 

Another technique is feed-forward control [8], which sets 
the actuator directly based on the predicted behavior so that the 
system can react to disturbance before it takes effect. This 
scheme can be combined with feedback control to correct the 
steady-state errors from the estimation. In [11], queuing theory 
was applied to predict the future queuing delay based on 
observation of request arrival rate and estimation of service rate, 
from which the queuing delay in the steady state can be 
computed with a simple formula [12]. In [13], this predictor 
was improved to respond to sudden and transient workload 
changes and the impact on the latency of future requests were 
estimated through heuristic flow-level approximation. Similar 
techniques and control structures were also applied in [14] for 
relative delay guarantees in Web servers. In [15], resource 
allocations to meet certain SLOs were computed based on the 
predicted workloads using on-line measurements of the request 
arrival process, service demand distribution and queue length.  

The queuing theory based predictors can better model the 
queuing behavior and anticipate the impact of the workload 
changes on the controlled target such as the response time. 
However, it does require additional implementation of schemes 
to model and estimate the arrival process and service demand. 
The relationship between these workload metrics and SLO 
metrics such as response time and throughput has to be 
analyzed. In contrast, we study in this paper the possibility of 
predicting future resource demands through resource utilization 
metrics such as CPU consumption. This metric is intuitive, 
easy to measure, and applicable to a wider class of workloads.  

C. Workload modeling and capacity planning 
Workload forecasting has also been widely studied in 

capacity planning [23] and fault detection. In [16], application 
demand profiles were computed from historic resource 
utilization traces that demonstrated clear daily and weekly 
patterns.  Admission control algorithms for a data center were 
then designed so that statistical assurances can be offered to the 



 

hosted applications. The workload model in [17] consists of a 
number of regular calendar patterns and an AR(2) process with 
model parameters estimated from historic data. These models 
were then used to predict the probability of threshold violations 
(in HTTP operations per second) so that proactive actions can 
be taken by the service provider. This approach was further 
studied in [18] for analyzing the trend and distribution of the 
residual process. Case studies on the application of predictive 
algorithms to computing system management were presented in 
[19] to deal with system failures in long-term or short-term. As 
opposed to these approaches that require offline training, we 
explore in this paper some online prediction schemes that can 
adapt to changes in workload patterns. 

III. REVIEW OF THREE PREDICTION ALGORITHMS 
In this section we provide an overview of three prediction 

methods and discuss their relationship.  

A. Auto-Regressive (AR) Model for Prediction 
Let {x(k)} be the time series of an attribute x that is of 

interest to a particular problem, where x(k) represents the 
measured value of x during time interval k. At the beginning of 
every interval k, a standard auto-regressive model predicts an 
attribute’s value for the current interval using a linear 
combination of its measured value in the past several intervals, 

,)()(ˆ
1

∑
=

−=
m

i
i ikxakx    (1) 

where )(ˆ kx  is the predicted value for x(k), ai’s are the predictor 
coefficients, and m is the order of the model that indicates the 
number of past samples used for the prediction. This model is 
useful for systems with some amount of memory and therefore 
an attribute’s value is strongly correlated to its recent past. 

The predictor coefficients can either be computed offline 
using the least-squares method on training data, or estimated 
online using the recursive least-squares (RLS) algorithm [24]. 
The latter approach allows the AR model to be updated 
periodically, adapting to possible changes in the system. 

The standard AR model is not sufficient to represent long-
term repeatable patterns in an attribute. For example, if the 
attribute x demonstrates certain behavior at the fixed time every 
day, while the sampling interval for x is one minute, then such 
periodic pattern will not be captured in the above model. 

B. Prediction based on ANOVA Decomposition 
If we assume that the measured attribute x is affected by 

certain independent factors, such as time-of-day, or day-of-
week, then x can be modeled with two processes based on 
ANOVA decomposition [21]: 

),()()( krkckx +=    (2) 
where c(k) captures the periodic patterns and r(k) represents the 
residual process. For a pattern based on two factors, for 
instance, c(k) can be modeled as,  

,)ijji (c(k) αββαμ +++=   (3) 

where µ is the overall mean of the series, i and j indicate the 
location of index k in each individual period, αi and βj 
represent the main effects of the two factors, and the last term 
represents the interactive effect between the two factors. 

If time dependency still exists after factoring out the known 
effects, the residual process can be further decomposed as 

),()()( kkykr ε+=    (4) 

where y(k) represents the non-stationary process and ε(k) is a 
stationary process with zero mean. Sometimes y(k) can be 
described with an AR model [17]: 

∑
=

−=
m

i
i ikybky

1
)()( .   (5) 

By identifying repeatable patterns and estimating 
parameters from historic data, we can predict the value of x(k) 
based on the patterns and its past values as  

.)()()(ˆ
1

∑
=

−++++=
m

i
iijji ikybukx αββα  (6) 

We refer to such a combined approach as the ANOVA-AR 
approach later in the paper. The shortcomings of using the 
ANOVA approach are two fold. First, for the time series to be 
predicted, it requires a large amount of historic data so that 
repeatable patterns can be identified and built into the model. 
Second, different data traces may have different periodicity. 
Therefore, a model with fixed periodic pattern may not be 
applicable to all traces. The second point will be further 
illustrated in the case study. 

C. A Multi-Pulse (MP) Model for Prediction 
Here we introduce another prediction model that attempts 

to track both long-term patterns and short-term correlations in a 
time series. It maintains the online learning capability of the 
AR model and eliminates the need for offline analysis as in the 
ANOVA approach. The model follows: 

∑
=

−=
m

i
ii nkxakx

1
)()(ˆ    (7) 

The only difference between model (1) and model (7) is 
that rather than using the samples immediately preceding the 
attribute value to be predicted, (7) can use sample values from 
much earlier in the history for prediction. The model in (7) was 
first used in [22] to compute excitation signals in high-fidelity 
speech coding using a closed-loop analysis-by-synthesis 
technique called multi-pulse analysis. We refer to it as the MP 
model in this paper. Unlike the AR model in (1), both the 
predictor coefficients {ai} and the predictor delays {ni} have to 
be computed dynamically in this model. The predictor delays 
are computed by minimizing the mean-squared error between 
the predicted value and the samples over an optimization 
window, while searching for the predictor delays over some 
history. The computational aspects of this predictor are 
described further in [22]. For the purpose of this paper, we 
define two parameters, the history length H and the size of the 
optimization window W, besides the number of coefficients m.  



 

IV. PREDICTIVE AND FEEDBACK CONTROL 
A classical feedback control system uses an input-output 

relationship to represent a system, where the variable y 
represents one or more system metrics that the designer or user 
of the system cares about, such as the throughput or response 
times of an Internet service, and the variable u represents one 
or more control knobs that the controller can tune, such as 
some configuration parameters of the Web server, so that y can 
satisfy certain requirements. A standard feedback loop consists 
of an input-output system as described above, a controller, a 
sensor, and an actuator. Typically, discrete-time control is used 
for controlling computing systems. A discrete-time control 
system works around the notion of a sampling interval. At the 
beginning of each sampling interval k, the controller obtains 
y(k-1), the measured value of y in the last sampling interval, 
from the sensor, and decides the value for u for the current 
interval, u(k), and passes it to the actuator for execution. The 
parameters of the control algorithm can be designed offline, or 
online while the system is in operation. The latter is referred to 
as adaptive control, which is particularly useful for systems 
whose model parameters vary over time due to changes in the 
operating conditions. 

This section reviews a simple adaptive feedback controller, 
and introduces a predictive controller that uses predictive 
methods as the basis of control actions. Finally, we discuss the 
relationship between these two types of controllers.  

A. An Adaptive Feedback Controller 
A common design goal for a feedback control system is to 

ensure that the output variable, y(k), remains within the 
neighborhood of a target value, yref. This is referred to as a 
regulation problem. An integral controller is a commonly used 
feedback controller for a regulation problem, because it ensures 
zero steady state error, i.e., convergence of y(k) to yref if the 
closed-loop system is stable. The following equation defines an 
adaptive integral (I) controller: 

)),1()(()1()( −−+−= kyykKkuku refI   (8) 

where KI(k) is the integral gain that measures the 
aggressiveness of the control actions. Note that this controller 
is different from a standard integral controller because KI is a 
function of time, meaning that it can adapt to varying operating 
conditions of the system over time. The following diagram 
illustrates the key components of the closed-loop system. 

 

Figure 1.  Block diagram of an adaptive integral controller 

Note the sensor and actuator are omitted to simplify the 
diagram. In [7] we presented an adaptive I controller for 
regulating the relative utilization of a resource partition, which 
outperformed both I controllers and PI controllers with fixed 

gain values. Other adaptive controllers, such as adaptive PI or 
PID controllers can be designed with more parameters to be 
self-tuned online. 

B. A Direct Predictive Controller 
Suppose that the output, y, is a function of both the control 

action, u, and some state of the system, x: 

)),(),(()( kukxgky =    (9) 

where the functional form )(⋅g  is known. Also assume that x(k) 
is predictable using the prediction algorithms described in 
Section III, and )(ˆ kx is the predicted value of x(k). A simplest 
possible predictive controller has the following form: 

,*)),(ˆ(    s.t.    *)( refyukxguku ==   (10) 

This controller directly sets the value of u(k) to be such that 
the predicted value, )(ˆ ky , for the next interval equals to its 
target value. Therefore, we refer to it as the “direct predictive 
controller”. The key components of the control loop are shown 
in the following diagram.  

 

Figure 2.  Block diagram of the direct predictive controller 

Note the backward-shift operator z-1 is used because the 
predicted value )(ˆ kx  only depends on past values for x(k). An 
underling assumption for the direct predictive controller is that 
such u* value exists. We will see later that this assumption is 
valid for the case study we performed. 

C. Relationship between Predictive and Feedback Control 
The controllers in (8) and (10) appear quite different, 

because (8) performs incremental corrective control actions 
based on the gap between the measured output value and its 
target, while (10) may be more aggressive because it attempts 
to reach the target value in one interval assuming that the 
prediction is accurate. However, as we will show in the next 
section, when the adaptive gain KI takes a particular form, the 
adaptive controller in (8) can be viewed as a special case of the 
predictive controller in (10).  

In general, the two controllers are different. Intuitively, 
when the predictor does a perfect job, the predictive controller 
should work better, especially if the system experiences large 
spikes in the workload periodically. On the other hand, when 
the prediction error is large, then the predictive controller may 
make poor decisions or even cause the system to be unstable. 
These observations can be further demonstrated in our case 
study. 

x(k) u(k) yref Controller System 

g(x,u) y(k) 

z-1Predictor 
)(ˆ kx

x(k-1) 

I Controller System

-

Tuner y(k) 

u(k) e(k) 

KI(k) 

yref 



 

V. VIRTUAL SERVER UTILIZATION:  CASE STUDY 
This section presents a case study that demonstrates how 

the above predictive and feedback controllers may be applied 
in practice to manage capacities of virtual servers in a 
consolidated environment. Through both simulation and 
emulation studies, we explore the impact of using predictive 
techniques and compare the results with those from the 
feedback-driven adaptive integral controller. For the purpose of 
our study, we consider CPU utilization information from 48 
servers in an enterprise data center. In this section, we describe 
our hypothetical virtual server environment, the architecture 
and goal for the closed-loop control system, the design of our 
simulations and the results we obtained. 

A. Description of Data 
We obtained CPU utilization information from a collection 

of 48 servers hosting enterprise applications. The servers have 
between 2 and 8 CPUs each, with the majority having either 4 
or 6 CPUs. The data was collected between September 5, 2001 
and October 24, 2001 for seven weeks. For each server, the 
average CPU utilization across all processors on the server was 
reported for each five-minute measurement interval. The 
information was collected using MeasureWare (Openview 
Performance Agent) [25]. 

We conduct a hypothetical server consolidation practice 
where the above servers are consolidated onto a virtual server 
environment. We interpret the CPU utilization of each physical 
server as the CPU “demand” within a virtual server. For 
instance, if a physical server consumed an average of 1.5 CPUs 
in a five-minute interval, then the CPU demand for the 
corresponding virtual server for that interval is also 1.5 CPUs. 
We exploit the fact that changes in server utilization reflect real 
changes in the activities of the applications hosted on these 
servers. Therefore, our virtual servers demonstrate the same 
temporal patterns and dynamic characteristics of the workloads 
that resulted in the original utilization traces. However, since 
our purpose is simply to evaluate our predictive and feedback 
control techniques, we are not concerned about scaling the 
loads with respect to processor speed, memory or I/O capacity. 

We reviewed the utilization data from each server, and 
found 12 servers with significant missing data or with an 
almost constant load. We disregard the traces for these servers, 
and found that the remaining 36 servers can be classified into 
two groups: 

1. Group A (24 servers): with fairly strong periodicity based on 
spectrum analysis of the time series. The cyclic patterns in 
the utilization may be hourly, daily, or weekly, with daily 
patters being the most dominant. 

2. Group B (12 servers): with no periodicity or very weak daily 
or weekly patterns. 

The following figure demonstrates two example traces from 
the two different groups respectively. We only show the data 
for the first ten days so that we can clearly see the daily pattern 
in the first trace. There is no visible periodicity in the second 
trace, which is verified by spectrum analysis of the trace. Note 
that both servers had 6 CPUs, therefore neither was heavily 
utilized when the data was collected. This is true for the 

majority of the 48 servers we observed. This further motivates 
our study of more efficient resource allocation schemes so that 
higher resource utilization can be reached. 

0 40 80 120 160 200 240
0

0.5

1

1.5

2

Time (hours)

C
P

U
 u

til
iz

at
io

n

 
(a) A server from Group A, shows strong daily pattern 

0 40 80 120 160 200 240
0

0.5

1

1.5

2

Time (hours)
C

P
U

 u
til

iz
at

io
n

 
(b) A server from Group B, shows no periodicity 

Figure 3.  Measured CPU utilization from two servers for a week 

B. Utilization Control for Virtual Servers 
The CPU utilization of a server is a commonly watched 

metric to determine whether more or less CPU resource should 
be allocated to the server. Controlling CPU utilization of a 
virtual server in a consolidated environment is an effective way 
of ensuring sufficient allocation of CPU resources to hosted 
applications as well as increasing overall resource utilization of 
the host machine. For example, the usage-based operation 
mode in the HP-UX Workload Manager [26] allows the 
relative CPU utilization of a resource partition to be controlled 
within a user-specified range. Compared to SLO-based metrics 
such as response times, CPU utilization is easier to measure on 
the server side and is more intuitive to control because its 
relationship to the CPU allocation of the virtual server is more 
straightforward. The downside is that the relationship between 
a given relative utilization level and the client-perceived 
service level varies with the demand of the workload. 
Therefore, headroom is often provided to handle variations in 
the demands of the hosted applications. For example, 50% can 
be a control target for highly interactive applications, and 80% 
may be used for applications with more predictable demands. 
In this section, we study how effective the predictive and 
feedback controllers we introduced in Section IV are by 
simulating their application to utilization control of these 
virtual servers.  

Before presenting the simulation algorithms, we need to 
define some notation for this particular case study. For any 
virtual server, let d(k) be the average CPU demand of its hosted 
applications in (possibly fractional) number of CPUs for 



 

sampling interval k. Let u(k) be the control knob, i.e., the 
(possibly fractional)  number of CPUs allocated to that virtual 
server for interval k. The measured CPU usage by the virtual 
server, x, should be a function of both d and u, which will be 
described later. We define relative utilization of a virtual server, 
y(k), as the ratio of the measured CPU usage to the CPU 
allocation. That is,  

)(/)())(),(()( kukxkukxgky == .  (10) 

The goal of the controller is to maintain the relative 
utilization of each virtual server at a specified level, yref. In this 
case, an adaptive I controller has the following form: 

))1(/)1()(()1()( −−−−−= kukxykKkuku refI . (11) 

Note that in this particular case, a negative sign is used 
before KI(k) to ensure a negative feedback loop. We have tested 
different adaptation rules for KI(k), among which we found the 
following to be the most effective: 

refI ykxkK /)1()( −= λ ,  (12) 

where λ is a positive constant that affects the aggressiveness of 
the control actions (see [7]) for analysis of this controller). In 
our simulations, we set λ = 1.5. 

C. Predictive Control for Tracking Utilization 
Now let us see if we can apply the predictive controller 

described in Section IV to track a utilization target on a virtual 
server.  Based on the relationship in (10), if the measured CPU 
usage, x(k), is predictable using its values from the previous 
intervals, and )(ˆ kx  is its predicted value, then the direct 
predictive controller simply determines u(k) as follows: 

refykxku /)(ˆ)( = .   (13) 

Now the question is whether x(k) can be accurately 
predicted. From the data center CPU utilization data described 
earlier, we do observe that many of them demonstrate long-
term or short-term correlation that can be exploited by some 
prediction algorithm. That reflects certain degree of 
predictability in the CPU demand, d(k), of the applications on a 
virtual server. The measured CPU usage in a closed-loop 
system, x(k), depends on both d(k) and the CPU allocation u(k). 
In a memoryless system, the following relationship holds: 

)}.(),(min{)( kdkukx =   (14) 

When d(k)<=u(k), i.e., the demand is less than the 
allocation, the virtual server is underloaded, therefore the CPU 
usage equals the demand, i.e., x(k) = d(k). In this case, the 
application demand is observable through the measured CPU 
usage, and its timely patterns can be learned by our prediction 
models. However, when d(k)>u(k), the virtual server is in an 
overload state, then the resulting CPU usage is capped by the 
CPU allocation, i.e., x(k) = u(k), and the original application 
demand becomes unobservable. The hope is, if the controller is 
successful in tracking the target utilization, which is typically 
less than 100%, the virtual server should always be 
underloaded so that d(k) remains observable. This assumption 
will be tested in our simulation and emulation studies. 

The two controllers in (11) and (13) appear drastically 
different since the former uses feedback while the latter relies 
on prediction to handle changes in the application demand.  
However, if we make refI ykukK /)1()( −=   in (11), we have:  

refykxku /)1()( −= .   (15) 

Comparing the control laws in (13) and (15), it is easy to 
see that, with a special way of adapting KI, the adaptive I 
controller in (11) is indeed the simplest possible direct 
predictive controller, where the measured CPU usage for the 
last sampling interval is used as the prediction for the next 
interval, i.e., )1()(ˆ −= kxkx . In this paper, we will not show 
results for this particular controller because it did not perform 
as well as other controllers in our simulations for obvious 
reasons.  

D. Simulation of Closed-loop Usage 
The simulations were run using each 5-minute utilization 

trace from a physical server as the CPU demand d for a virtual 
server, so that it captures the patterns and dynamics of real 
enterprise applications’ resource demand. We then apply one of 
the formerly described controllers to compute the CPU 
allocation u for that virtual server. One caveat is, the original 
traces were collected in an open-loop fashion. Therefore, we 
need to simulate the closed-loop CPU usage, x, that would have 
been measured on a real controlled server, as a function of the 
CPU allocation, u, and the application demand, d.  

The model in (14) is attractive for its simplicity. However, 
various queuing and timeouts in software systems can cause 
systems to violate the memoryless assumption, and the excess 
demand from the last period may have a strong impact on the 
current performance. We use the algorithm in Fig. 4 to simulate 
the queuing behavior of our virtual server, where L is the total 
queue capacity (in number of CPUs), and q(k) represents the 
queue length at the end of interval k. Basically, the queue keeps 
all the excess demand during overload periods up to a total 
capacity of L, and submits work to the CPU during subsequent 
underload intervals. When the total excess demand exceeds the 
queue capacity, the extra demand is dropped. 

 

Figure 4.  Pseodu code for simulation of closed-loop utilization 

Inputs: u(k), d(k), q(k-1),L

Outputs: x(k), q(k) 

Algorithm: 

1. if u(k) <= d(k) 

2.  Δq = min(d(k)-u(k), L-q(k-1)); 

3.  x(k) = u(k);  

4. else 

5.  Δq = - min(u(k)-d(k), q(k-1)); 

6.  x(k) = d(k) - Δq; 

7. q(k)=q(k-1) + Δq. 



 

This simulation model may appear simplistic. One 
assumption here is that CPU demand can be delayed without 
additional cost on CPU (e.g. to manage the queue, or to do 
scheduling). Also, we choose L to be 1 in our simulations, 
which is arbitrary. However, we find that it is sufficient to 
compare the difference between these controllers. It is also 
consistent with our emulation results that will be described in 
the next section.  

VI. SIMULATION RESULTS 
In this section, we present simulation results from applying 

both the direct predictive controller and the adaptive integral 
controller to the control of virtual server utilization. Inside the 
predictive controller, each of the three prediction algorithms, 
referred to as AR, ANOVA-AR, and MP, was used. In both the 
AR and MP-based predictive controllers, a fourth-order model 
(m=4) was estimated online. The search algorithm for the MP 
model also used a history of H=1152 (4 days) and an 
optimization window of W=288 (1 day). The ANOVA-AR 
model was estimated offline based on the first three weeks of 
trace data using a combination of a weekly pattern and a 
fourth-order AR model. It was then applied to the remaining 
four weeks of data in the predictive controller in the simulation. 
In each case, after simulating the closed-loop CPU usage, x, we 
calculated the relative utilization of a virtual server, y=x/u. The 
target utilization, yref, was set at 75% in all the simulations. 

Fig. 5 demonstrates a statistical evaluation of the four 
controllers for the two server groups A (top) and B (bottom) as 
described in Section V.A. Each figure shows the cumulative 
distribution function (CDF) of the achieved relative utilization, 
y(k), during the simulated 7-week period from all the servers in 
the respective group.  

 
Figure 5.  CDF of relative utilization from four controllers for server group A 

(top) and server group B (bottom): predictive-MP (solid), predictive-AR 
(dash-dot), predictive-ANOVA-AR (dashed), adaptive-I (dotted) 

For each server group, we can compute the following 
statistical metrics from the CDF of the relative utilization y: 
mean (μy), standard deviation (σy), the percentage of time when 
the controller did not allocate enough CPU capacity to meet the 
target (P[y>yref]), and the percentage of time when the system 
is overloaded (P[y=100%]). We can also compute the mean 
CPU allocation (μu) and the mean simulated queue length (μq). 
Table I and II show the values of these metrics from server 
group A and B, respectively. 

TABLE I.  STATISTICAL METRICS COMPUTED FROM SERVER GROUP A 
(NO CONSIDERATION OF PREDICTION ERROR) 

Metrics MP AR ANOVA-
AR 

Adaptive  
I 

μy 0.73 0.76 0.72 0.66 

σy 0.21 0.20 0.27 0.25 

P[y>yref] 0.48 0.58 0.51 0.41 

P[y=100%] 0.20 0.24 0.28 0.12 

μu 0.63 0.63 0.63 0.74 

μq 0.09 0.09 0.18 0.04 

TABLE II.  STATISTICAL METRICS COMPUTED FROM SERVER GROUP B 
(NO CONSIDERATION OF PREDICTION ERROR) 

Metrics MP AR ANOVA-
AR 

Adaptive  
I 

μy 0.75 0.75 0.77 0.74 

σy 0.09 0.09 0.26 0.10 

P[y>yref] 0.46 0.51 0.64 0.47 

P[y=100%] 0.03 0.04 0.37 0.02 

μu 1.44 1.44 1.21 1.46 

μq 0.02 0.02 0.35 0.01 

 

For servers in group A that have strong periodicity, the 
performance from the three predictive controllers is fairly 
comparable, although the MP-based approach in general offers 
the best balance between multiple metrics, resulting in a mean 
utilization close to the target (μy=73%) and a smaller variance 
(σy=0.21), lower probability of under-allocation 
(P[y>yref]=48%), lower overload probability 
(P[y=100%]=20%), as well as less queuing activity (μq=0.09), 
without requiring higher average CPU allocation (μu=0.63). 
The adaptive I controller on average allocated more CPU 
capacity (0.11 more CPU than the predictive controllers) and 
resulted in lower average utilization of the virtual servers 
(μy=66%). Consequently, its values for the other four metrics 
are better than those from the three predictive controllers. This 
is because this particular controller was designed to be fast-
increasing (when under-allocating) and slow-decreasing (when 
over-allocating) to reduce oscillation between the two 
operating regions. 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) Achieved relative utilization (Server group A)

C
D

F

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) Achieved relative utilization (Server group B)

C
D

F

control target
predictive-MP
predictive-AR
predictive-ANOVA-AR
adaptive-I



 

For servers in group B that have no or fairly week 
periodicity, the ANOVA-AR-based approach performed 
particularly poorly, resulting in an overloaded virtual server for 
37% of the time across all the servers in group B. This is 
understandable given that the model was computed offline 
based on the underlying assumption of a weekly pattern in the 
demand. Because there are a fair number of traces with 
multiple cyclic patterns, a multi-period analysis along with 
online-adaptation of the AR model may improve the 
performance of the ANOVA-AR-based approach.  

Interestingly, the MP and AR-based predictive controllers 
and the adaptive I controller performed almost equally well, 
tracking the utilization target closely and resulting in less than 
5% of overload time and very minimum queuing. It may seem 
counter-intuitive that the two predictive controllers performed 
better for servers with less periodicity as in group B. This is 
because predictability in a demand can be due to shorter-term 
correlations as well as longer-term cyclic patterns. The AR 
model identifies the former, and the MP model can recognize 
both. When only the former exists or is dominant, the MP 
model acts like an AR model that utilizes samples from the 
recent past to predict the future. In addition, the servers in 
group B also happen to have less variable hence more 
predictable demands, therefore they are generally easier to 
control than those in group A. 

The predictive controllers used in the previous simulations 
did not take into prediction errors. In principle, any predictive 
scheme should be able to use how accurate the prediction was 
in previous intervals as feedback to help improve the prediction 
accuracy for the current interval. To evaluate this, we consider 
a modified predictive controller that keeps track of the past 
prediction errors: ,...2,1  ),()(ˆ)( =−−−=− llkxlkxlkep  It 
then estimates the mean, eμ , and standard deviation, eσ , of the 
prediction error in a sliding window of size Wpe, and computes 
the next CPU allocation as follows,  

refee ykxku /))(ˆ()( σμ +−= .  (16) 

Note that eσ  is added onto the prediction so that there is a 
higher probability of over-allocating than under-allocating the 
CPU resource. This is usually preferred by data center 
operators since the latter may lead to performance degradation.   

We reran the simulation on the 36 virtual servers with the 
modified predictive controller (with Wpe=4) using the same 
three prediction algorithms. Fig. 6 shows a comparison 
between the adaptive I controller and the predictive-MP 
controller with and without feedback of prediction errors (noted 
as “PEF”) for server group A. These three controllers represent 
three different but related approaches for dynamic resource 
allocation: feedback-based, prediction-based, and prediction-
feedback-combined. The results from the AR-based and 
ANOVA-AR-based predictive controllers are fairly similar to 
that from the MP-based controller when the CPU allocation 
was compensated with estimated prediction error. Statistical 
metrics as those in Table I can be computed from the results for 
server group A and are listed in Table III. 

 
Figure 6.  CDF of relative utilization from three controllers for server 
group A: predictive-MP (solid), predictive-MP-PEF (dash-dot), adaptive-I 

(dotted) 

TABLE III.  STATISTICAL METRICS COMPUTED FROM SERVER GROUP A 
(WITH CONSIDERATION OF PREDICTION ERROR) 

Metrics MP-PEF AR-PEF ANOVA-AR-PEF

μy 0.65 0.67 0.64 

σy 0.22 0.22 0.21 

P[y>yref] 0.28 0.36 0.25 

P[y=100%] 0.10 0.14 0.08 

μu 0.77 0.74 0.83 

μq 0.04 0.05 0.03 

 

As we can see from both Fig. 6 and Table III, due to the 
intended conservativeness of the modified predictive approach, 
all the three predictive controllers resulted in the mean 
utilization lower than the target (μy~65%), and higher average 
CPU allocation (μu=0.74~0.83). Compared to the unmodified 
predictive controllers and even the adaptive I controller (as in 
Table I), the new scheme offers lower probability of under-
allocation (P[y>yref]=0.25~0.36), lower probability of 
overloading the system (P[y=100%]=0.08~0.14), and less 
queuing (μq~0.04). The results from server group B are quite 
similar, therefore are not shown here. One observation, though, 
is that, in spite of the poor performance of the predictive-
ANOVA-AR controller for the server group B, the same 
scheme with compensation of prediction error delivered much 
better performance, similar to those from the other controllers. 
These results suggest that an approach combining prediction 
with even a simple feedback mechanism can be very powerful. 
Even when the prediction model being used is not accurate to 
start with, when observed prediction errors are fed back into 
the system and used to correct the control actions, the closed-
loop control system may still perform reasonably well. 

One important point we discussed in Section V.C is that, 
changes in the CPU demand, d(k), may be unobservable in the 
measured CPU usage, x(k), when a virtual server is overloaded, 
i.e., u(k) < d(k). Since x(k) is ultimately what we use in our 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) Achieved relative utilization (Server group A)

C
D

F

control target
predictive-MP
predictive-MP-PEF
adaptive-I



 

prediction algorithms, one may worry that the predictive 
scheme may not work. However, we observed in our 
simulations an interesting self-learning behavior of the MP-
based predictive controller. Fig. 7 demonstrates the simulation 
result from both the predictive-MP and predictive-MP-PEF 
controllers on the utilization trace as shown in Fig. 3(a). The 
CPU demand demonstrates a strong daily pattern. To make the 
figure more readable, we only show the first seven periods (i.e., 
the first week) here.  

Fig. 7(a) shows the CPU demand from the original trace 
(dark dot solid) and the computed CPU allocation (light solid). 
The predictive algorithm started from a blank memory. 
Therefore, when there was a surge in the CPU demand in the 
first period (as in the first square wave), the controller did not 
allocate enough CPU capacity to handle the load. As a result, 
the virtual server was overloaded and the measured CPU usage 

was capped by the insufficient CPU allocation. In the next few 
periods, the allocation was still insufficient because what the 
predictive-MP algorithm observed from the earlier weeks was 
the truncated demand instead of the original square wave, 
which was unobservable during overload periods. However, the 
demand pattern was gradually being learned over time as the 
controller always allocates more CPU than what was predicted.  
In the last period, the allocation had almost caught up with the 
demand resulting in much better tracking performance. 
Interestingly, the predictive-MP-PEF controller with 
compensation of prediction error enhances this self-learning 
behavior because it intentionally allocates slightly more 
capacity at every interval to avoid overload. As shown in Fig. 
7(b), the learning process was sped up and the controller was 
allocating enough capacity starting from the 3rd period. We will 
see confirmation of this learning behavior in the emulation 
results in the next section. 

 

Figure 7.  Simulation results by predictive-MP (top) and predictive-MP-PEF (bottom) controllers for one virtual server for the first week

VII. EMULATION ON A TEST BED 

A. Experiment Setup 
In addition to the simulations, we built a test bed to emulate 

the application demands seen in the data center utilization 
traces. We used Xen virtual machine [27] with an SEDF 
(Simple Earliest Deadline First) scheduler as the virtual server. 
The EDF algorithm, like most real-time scheduling algorithms, 
is based on reservation. An application is guaranteed to have 
certain share of CPU time during a period of time, even if the 
time allocated is not used, and an application cannot use more 
CPU time than allocated. Thus, this scheduling technique is a 
good fit for our abstraction of a sizable virtual server. 

We used an Apache Web server [28] as the test application 
to be hosted inside a Xen virtual machine. The Apache server 
was configured to run with multiple pthread, and serves a 
trivial CGI program, which starts a process, does some random 

calculation, and returns the result in HTML. The reason for 
using this CGI workload is that it is CPU intensive, and has 
minimal impact of memory or I/O contention.  

On the client side, we used a slightly modified version of 
httperf [29], an open source Web server workload generator. It 
was modified so that it can generate variable number of 
concurrent connections. 

The experiments were performed on an HP ProLiant 
DL360 Generation 4 server, with two 3GHz Xeon processors 
and 3GB memory. We used the Xen unstable version, checked 
out on Jun 9th, 2005 and Linux kernel version 2.6.11 (patched 
for Xen), in all Xen domains. (Domain is a Xen terminology 
for virtual machine.) The domain with the Apache server runs 
on one processor, shared with one other competing domain. 
Domain-0, the controlling domain, runs the controller on a 
dedicated processor. We reserved 750MB memory for the Web 
server domain.  



 

In order to reproduce the CPU utilization from the observed 
traces, we first ran experiments to obtain the average CPU time 
a CGI request uses, and thus calculated the rate at which the 
requests should be generated to produce a given level of CPU 
utilization. In each trace, each sample is a five-minute average 
utilization. To shorten the time span of the emulation, we 
change the sampling interval to 10 seconds, which can almost 
reproduce the same utilization changes on the virtual machine. 
Fig. 8 shows CDFs of the CPU utilization from both the 
emulation and the real trace. 

This emulator has some advantages over a pure simulation 
algorithm, such as the one in Fig. 4. First, the emulator models 
the queuing behavior and degradation of application 
performance during overloading periods more accurately. 
Second, it captures the random disturbances in the system. 
Third, it also captures the inaccuracy in sensing and actuation. 
For example, the CPU utilization may not be accurate at every 
point, especially when overloaded, due to network I/O, thread 
scheduling and measurement errors. We can see the cost of 
control in the emulation as well.  

 
Figure 8.  CDFs of emulated utilization (dashed ) and real utilization (solid) 

Of course, the limitations of this approach are also obvious. 
First, we only emulate one type of workload on a single 
application, which may not be the application(s) from which 
the original trace was generated. For example, our emulation 
only represents the behavior of the Apache Web server. Our 
workload is purely CPU intensive, and generates very few page 
faults, so there may be disturbances that were not captured in 
the emulation. Second, we could only emulate the average 
utilization value, while the distribution of the real values is 
unknown, and may be application dependent. However, since 
we only care about the average behavior of the system in this 
study, we believe the emulation is a reasonable approach. 

B. Results 
Due to the time required for emulating the entire data set 

(36 servers with 7 weeks of data), we emulated a small subset 
of the traces used for the simulation study. In particular, we 
used traces where the simulation showed interesting dynamics 
to validate the transient behavior of different controllers. In this 
section, we describe the emulation results on one of the traces 
(shown in Fig. 3(a)) using a hand-tuned PI controller and the 
MP-based predictive controller, with m=4, H=1052, W=288 
(same as those used in the simulations). 

Fig. 9 shows two periods in the emulation log. The figures 
in the left column represent the first peak in Fig. 3(a), while 
those on the right column are the 7th peak in Fig. 3(a). The two 
peaks in the trace look almost the same. Fig. 9(a) shows the 
behavior of the PI controller. The PI controller, which forgets 
history quickly, responded to the two peaks in a very similar 
way, as expected. Like all feedback-driven controllers, it is 
reactive to changes in the CPU demand, thus causing some 
delay in the corresponding changes in the CPU allocation. 

 
Figure 9.  Transient response in CPU allocation (light solid) to step changes 
in CPU demand (dark solid-dot) from the PI controller (top) and the 
predictive-MP controller (bottom). 

Fig. 9(b) shows the result of the predictive-MP controller. It 
shows a clear self-learning behavior similar to what we saw in 
the simulations (as in Fig. 7). It performs worse than the PI 
controller in the beginning (slower tracking of the first peak in 
the CPU demand). However, at the 7th peak, it actually 
increased the CPU allocation before the demand surged, 
causing no delay, therefore resulting in better application 
performance.  

 
Figure 10.  Transient response in CPU allocation (light solid) to small 
periodic oscillations in CPU demand (daek solid-dot) from the PI controller 
(top) and the predictive-MP controller (bottom).  

3.3 3.6 3.8
0

0.2

0.4

 
15.4 15.6 15.8

Time (hours)

3.3 3.6 3.8
0

0.1

0.2
0.3

0.4

 
15.4 15.6 15.8

Time (hours)

CPU allocation
CPU demand

(a) PI controller

(b) Predictive-MP controller

11.06 11.08 11.1 11.12 11.14 11.16 11.18 11.2 11.22
0

0.05

0.1

0.15

0.2

Time (hours)

CPU allocation
CPU demand

11.06 11.08 11.1 11.12 11.14 11.16 11.18 11.2 11.22
0

0.05

0.1

0.15

0.2

Time (hours)

(a) PI controller

(b) Predictive-MP controller

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

CPU utilization

C
D

F

Emulated Utilization
Trace Utilization



 

Fig. 10 shows another interesting comparison of these two 
controllers. In a real system, small oscillations are often seen in 
many metrics at different time scales. If the oscillations have a 
period close to the control interval, reactive controllers, such as 
PI controllers, can ‘hunt’ by alternately setting the allocation 
either too high, or too low. This is visible in Fig. 10(a), where 
the PI controller is unable to track the changes in the demand. 
In contrast, as shown in Fig. 10(b), the predictive-MP 
controller can recognize this pattern quickly and predict the 
next demand accurately  

However, prediction can also lead to problems as illustrated 
in the next example. Fig. 11 shows the behavior of the PI 
controller and the predictive-MP controller for the 7th, 8th and 
9th peak of Fig. 3(a).  

The CPU demand from the trace shows a wide peak, 
followed by a small peak. The PI controller, shown in Fig. 
11(a), reacts to all the wide or small peaks in a similar fashion. 
In contrast, the MP-based predictor, as shown in Fig. 11(b), 
fails to predict the first small peak since such pattern did not 
exist in its history. At the second small peak, the predictive-
controller was able to allocate more CPU due to its self-
learning behavior. In the third period, the predictor increased 
the allocation where the small peak had occurred before, in 
anticipation of the increase in demand. However, this time, the 
small peak shifted to a different time, thus causing 
misalignment between the allocation and the demand. 

The reason for the failure of the predictive-MP controller in 
Fig. 11 is the large optimization window (1 day) used by the 
prediction algorithm. Thus, narrow peaks that have a 
significantly shorter duration do not cause the predictor to 
adjust its model immediately to focus only on the recent history, 
while the PI controller only looks at the immediate history (the 
last interval) and adjusts to it. We are currently exploring ways 
of combining the benefits of prediction with rapid feedback-

based adjustment in case of prediction errors, such as what we 
described in the last section. 

VIII. CONCLUTIONS AND FUTURE WORK 
In this paper, we study predictive closed-loop control 

techniques for systems management. Three predictive 
algorithms based on AR, ANOVA-AR and MP models and one 
adaptive I controller are evaluated in a case study on virtual 
server consolidation through simulations as well as emulation 
done on a Xen virtual machine. From both the simulation and 
emulation results, we found that, the predictive controller can 
deal with time-varying demands in a more proactive way once 
the demand pattern is learned and the prediction is accurate, but 
may also result in poor performance when the prediction error 
is big. In contrast, feedback-based adaptive controller always 
incurs some delay in responding to changes due to its reactive 
nature, but its behavior was more consistent across different 
demand pattens. We have explored in our simulations one way 
to improve the performance of the predictive controllers by 
taking into account estimated prediction error in future control 
actions. Further research and more experiments are required to 
evaluate other possible ways of combining predictive 
algorithms and feedback-based mechanisms to achieve better 
closed-loop performance in face of changes in demands or 
other system conditions. 

It will also be interesting to apply the controllers presented 
here to other resource utilization traces for possibly different 
applications collected at different time scales. We would like to 
validate that the observations we made in this paper about the 
relative performance of different prediction algorithms, the 
self-learning behavior of the predictive-MP controller, and the 
interaction between prediction and feedback are also applicable 
to other dynamic resource control problems in data centers. 

 

Figure 11.  Section of a trace showing the impact of prediction errors by comparing the PI controller (top) with the predictive-MP controller (bottom). For each 
controller, the top curve (light solid) is the CPU allocation, and the bottom curve (dark solid-dot) is the CPU demand.  

15.4 15.9 16.5
0

0.1

0.2

0.3

0.4

0.5

17.8 18.3 18.9 20.1 20.7 21.3
Time (hours)

CPU allocation
CPU demand

15.4 15.9 16.5
0

0.1

0.2

0.3

0.4

0.5

17.8 18.3 18.9 20.1 20.7 21.3
Time (hours)

(a) PI controller

(b) Predictive-MP controller



 

REFERENCES 
[1] J.L. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury, Feedback 

Control of Computing Systems, Wiley-Interscience, 2004. 
[2] T.F. Abdelzaher, K.G. Shin, and N. Bhatti, “Performance guarantees 

for Web server end-systems: A control-theoretical approach,” IEEE 
Transactions on Parallel and Distributed Systems, vol. 13, 2002.  

[3] Y. Diao, N. Gandhi, J.L. Hellerstein, S. Parekh, and D.M. Tilbury, 
“MIMO control of an Apache Web server: Modeling and controller 
design,” American Control Conference, 2002. 

[4] Y. Lu, C. Lu, T. Abdelzaher, and G. Tao, “An adaptive control 
framework for QoS guarantees and its application to differentiated 
caching services,” 10th IEEE International Workshop on Quality of 
Service, May, 2002. 

[5] M. Karlsson, C. Karamanolis, and X. Zhu, “Triage: Performance 
isolation and differentiation for storage systems,” 12th IEEE 
International Workshop on Quality of Service, June, 2004. 

[6] X. Liu, X. Zhu, S. Singhal, and M. Arlitt, “Adaptive entitlement 
control of resource partitions on shared servers,” 9th International 
Symposium on Integrated Network Management, May, 2005. 

[7] Z. Wang, X. Zhu, and S. Singhal, “Utilization and SLO-based control 
for dynamic sizing of resource partitions,”  16th IFIP/IEEE Distributed 
Systems: Operations and Management, October, 2005. 

[8] K. Astrom and T. Hagglund, PID Controllers: Theory, Design, and 
Tuning (2nd Edition), Instrument Society of America, 1995. 

[9] E.F. Camacho and C. Bordons, Model Predictive Control, Advanced 
Textbooks in Control and Signal Processing, Springer-Verlag, 2004. 

[10] C. Lu, X. Wang, and X. Koutsoukos, "Feedback utilization control in 
distributed real-time Systems with End-to-End Tasks," IEEE 
Transactions on Parallel and Distributed Systems, 16(6):550-561, 
June 2005. 

[11] L. Sha, X. Liu, Y. Lu and T. F. Abdelzaher, “Queueing model based 
network server performance control”, 23rd IEEE International Real-
Time Systems Symposium, Austin, Texas, December 2002.  

[12] L. Kleinrock, Queueing Systems Theory, Volume 1, John Wiely & 
Sons, January, 1975. 

[13] D. Henriksson, Y. Lu, T. Abdelzaher, “Improved prediction for Web 
server delay control,” 16th Euromicro Conference on Real-Time 
Systems, Catania, Italy, July 2004.  

[14] Ying Lu, Tarek F. Abdelzaher, Chenyang Lu, Lui Sha, and Xue Liu, 
“Feedback control with queueing-theoretic prediction for relative 

delay guarantees in Web servers,” 9th IEEE Real-Time/Embedded 
Technology and Applications Symposium, May 2003.  

[15] A. Chandra, W. Gong and P. Shenoy, “Dynamic resource allocation 
for shared data centers using online measurements”, 11th IEEE 
International Workshop on Quality of Service, June 2003. 

[16] J. Rolia, X. Zhu, M. Arlitt, A. Andrzejak, “Statistical service 
assurances for applications in utility grid environments”, Performance 
Evaluation Journal, Special Issue on Distributed Systems 
Performance, edited by S. Majumdar and A. Boukerche, Vol. 58/2-3, 
pp.319-339, 2004. 

[17] J. L. Hellerstein, F. Zhang, P. Shahabuddin, "A statistical approach to 
predictive detection," Computer Networks, January, 2000.  

[18] D. Sheng and J. L. Hellerstein, ``Predictive models for proactive 
network management: Application to a production Web 
server,"  IEEE/IFIP Network Operations and Management 
Symposium, April 2000.  

[19] R. Vilalta, C. V. Apte, J. L. Hellerstein, S. Ma, S. M. Weiss, 
``Predictive algorithms in the management of computer systems”, 
IBM Systems Journal, Vol. 41, No. 3, 2002. 

[20] L. Ljung, System Identification: Theory for the User (2nd Edition), 
Prentice Hall, 1999. 

[21] R. L. Mason, R. F. Gunst, J. L. Hess, Statistical Design and Analysis 
of Experiments with Applciations to Enginneering and Science, 
Second Edition, John Wiely & Sons, 2003. 

[22] S. Singhal and B.S. Atal, “Amplitude optimization and pitch 
prediction in multipulse coders,” IEEE Trans. On Acoustics, Speech, 
and Signal Processing, vol. 37, No. 3, March 1989. 

[23] D. A. Menasce, L. W. Dowdy, V. A.F. Almeida, Performance By 
Design : Computer Capacity Planning By Example, Prentice Hall, 
2004 

[24] K.J. Astrom and B. Wittenmark, Adaptive Control (2nd Edition), 
Prentice Hall, 1994.  

[25] HP Openview Performance Agent, 
http://www.openview.hp.com/products/performance. 

[26] HP-UX Workload Manager, 
http://h30081.www3.hp.com/products/wlm/index.html  

[27] Xen Virtual Machine,  http://www.xensource.com/xen/about.html. 
[28] Apache Web Server, http://www.apache.org 
[29] D. Mosberger and T. Jin, “Httperf --- A tool for measuring Web 

server performance,” Performance Evaluation Journal, Vol. 26, No. 3, 
pp. 31-37, December 1998. 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


