

Utility-Driven Workload Management using Nested Control Design

Xiaoyun Zhu, Zhikui Wang, Sharad Singhal
Enterprise Software and Systems Laboratory
HP Laboratories Palo Alto
HPL-2005-193(R.1)
March 29, 2006*

virtualization,
workload
management,
utility function,
control theory,
nested control

The emerging interests within the IT industry on utility computing and
virtualization technologies have created a need for more effective
workload management tools, one that dynamically controls resource
allocation to a hosted application to achieve quality of service (QoS)
goals. These goals can in turn be driven by the utility of the service
provided, typically based on the application’s service level agreement
(SLA) as well as the cost of resources allocated to the application. In this
paper, we build on our earlier work on dynamic CPU allocation to
applications on shared servers, and present a feedback control system
consisting of two nested integral control loops for managing the QoS
metric of the application along with the utilization of the allocated CPU
resource. The control system was implemented on a lab testbed using the
Apache Web server as the application and the 90th percentile of the
response times as the QoS metric. By testing the system using a synthetic
workload based on an industry benchmark, we validate the two important
features of the nested control design. First, compared to a single loop for
controlling response time only, the nested design is less sensitive to the
bimodal behavior of the system resulting in more robust performance.
Second, compared to a single loop for controlling CPU utilization only,
the new design provides a framework for dealing with the tradeoff
between better QoS and lower cost of resources, therefore resulting in
better overall utility of the service.

* Internal Accession Date Only
Published in and presented at the American Control Conference, 14-16 June 2006, Minneapolis, MN, USA

© Copyright 2006 American Automatic Control Council

1

Abstract—The emerging interests within the IT industry

on utility computing and virtualization technologies have

created a need for more effective workload management

tools, one that dynamically controls resource allocation to a

hosted application to achieve quality of service (QoS) goals.

These goals can in turn be driven by the utility of the service

provided, typically based on the application’s service level

agreement (SLA) as well as the cost of resources allocated to

the application. In this paper, we build on our earlier work

on dynamic CPU allocation to applications on shared servers,

and present a feedback control system consisting of two

nested integral control loops for managing the QoS metric of

the application along with the utilization of the allocated

CPU resource. The control system was implemented on a lab

testbed using the Apache Web server as the application and

the 90th percentile of the response times as the QoS metric.

By testing the system using a synthetic workload based on an

industry benchmark, we validate the two important features

of the nested control design. First, compared to a single loop

for controlling response time only, the nested design is less

sensitive to the bimodal behavior of the system resulting in

more robust performance. Second, compared to a single loop

for controlling CPU utilization only, the new design provides

a framework for dealing with the tradeoff between better

QoS and lower cost of resources, therefore resulting in better

overall utility of the service.

I. INTRODUCTION

HE information technology (IT) industry has in the

past few years undergone a major trend of

infrastructure consolidation to improve utilization of IT

resources, reduce operational cost, and increase return on

IT investments. As a result, there has been emerging

interest on virtualization technologies that allow common

IT resources (such as processors, networks, storage, and

software licenses) to be shared across multiple users,

organizations, or applications. Examples of these

technologies include workload management tools such as

HP-UX workload manager [1], IBM enterprise workload

manager [2], and virtual machine technologies such as

VMware [3] and Xen [4]. In this paper, we present two

approaches for improving current workload management

tools so that they can be used more effectively.

A. Dynamic Feedback-Driven Resource Allocation

A typical workload management tool allows multiple

applications to share the system resources (CPU, memory,

disk bandwidth) of a single server, while maintaining

performance isolation and differentiation between them.

Email: {xiaoyun.zhu, zhikui.wang, sharad.singhal@hp.com}

The amount of resource allocated to a particular

application can be fixed or dynamically adjusted based on

certain policies. However, it is a challenging task for the

data center operators to provision sufficient resources for

enterprise applications running on shared servers using

workload management tools. One reason is that many of

these applications have time-varying resource demands

with a high peak-to-mean ratio.

Fig. 1(a) shows the measured average CPU usage of

one server in an enterprise data center on a typical day,

with one sample for every five minutes. Because this

server has 6 CPUs, the first observation is that the average

CPU utilization is very low (< 10%) most of the time.

Second, the maximum CPU usage is approximately an

order of magnitude higher than the minimum. Therefore,

if the application running on this server were consolidated

onto a shared server, fixed CPU allocation based on either

the peak or the mean would not work because the former

would waste a lot of resource while the latter would leave

the application overloaded during the demand surge

between 10am and 2pm causing performance degradation.

Dynamic CPU allocation to this application should be

desirable. On the other hand, this application actually has

strong periodicity where the pattern shown in Fig. 1(a)

repeats itself daily. One might argue that the operator can

schedule the CPU resource accordingly once this pattern

is learned. However, not every server or application has a

resource demand that is predictable.

0 2 4 6 8 10 12 14 16 18 20 22 2424
0

0.5

1

1.5

Time (hours)

C
P
U
 u
s
a
g
e

0 40 80 120 160 200 240
0

0.5

1

1.5

2

Time (hours)

C
P
U
 u
s
a
g
e

(a) (b)

Fig. 1. CPU usage of server A in a data center for one day (a) and CPU

usage of server B for ten days (b)

Fig. 1(b) shows ten days worth of data for the CPU

usage on another server from the same data center. Clearly

there is no daily pattern in this trace, and spectrum

analysis on seven weeks of data shows that no other

periodicity is present either. For this type of applications,

real-time feedback mechanisms are necessary to allocate

“capacity on demand” so that the application gets what it

needs and resources are utilized more efficiently.

Utility-Driven Workload Management using Nested Control Design

Xiaoyun Zhu, Zhikui Wang and Sharad Singhal

Hewlett-Packard Laboratories

Palo Alto, CA 94304

T

2

B. Utility-driven QoS goals

A second reason why it may be hard to configure

workload management solutions is that, although the tools

usually allow the users to specify goals (fixed value or a

range) for certain quality of service (QoS) metrics, such as

throughput or latency, operators often find it hard to

define such goals that are sensible to a particular

application. One way to resolve this is to relate these goals

to a meaningful utility function. Let y be the QoS metric

for an application, then the payoff z defined in a service

level agreement (SLA) may be a convex or concave

function (depending on what the metric is) or piecewise-

linear function of y. Fig. 3 shows an example where y is

the latency, so higher value of y means poorer QoS, and

the payoff function }0),1(max{)(myy
eyz

−−= α . This

means that the service provider gets a positive payoff from

the user only when y is below a threshold ym, and the

payoff decreases more and more rapidly as the latency

approaches the threshold, after which the payoff becomes

zero. Let us also assume that the cost of resources

allocated to the application, c, is a monotonically

decreasing function of y because higher cost is usually

involved in providing better QoS (smaller y). Fig. 3 gives

an example of a cost function where c(y) = β/y. Now let

the utility of the service be h(y) = z(y) – c(y). Fig. 3 shows

that h(y) is a concave function for y < ym. Ideally, we

would like to find the optimum operating point for y with

maximum utility, but it may be hard to maintain y exactly

at the optimum. An alternative is to find a range [YL, YH]

such that h(y) is above a threshold, or close to the

optimum. (See Fig. 3 for an example.) In this paper, we

assume that both the payoff function and the cost function

are known so that such a range can be computed. We then

focus on designing a closed-loop control system that

maintains the QoS metric within this range.

Quality of Service Metric (y)

E
c
o
n
o
m
ic
 M

e
tr
ic
s

Y
L Y

H

payoff z(y)

cost c(y)

utility h(y)

threshold

Fig. 3. Economic metrics (payoff/cost/utility) vs. quality of service

(QoS) metric (e.g., latency) for a hosted application

C. Related Work

Feedback control theory has been applied to solve a

number of performance or quality of service problems in

computing systems in the past few years [5][6]. However,

the intrinsic complexity of computing systems poses many

challenges on control system designs [7].

Much of the early work assumed that the system under

control has linear dynamics, and the model parameters can

be identified offline, e.g., in [8], where a MIMO controller

was used for automatic parameter tuning of a Web server.

However, due to the wide variation of demands observed

in computing systems, the parameter values or even the

structure of the models may change slowly or rapidly over

time. To deal with time-varying parameters in linear

models, adaptive control theory has been applied to

systems in the context of, for instance, caching services

[9], storage systems [10] and resource containers [11].

Nevertheless, it is usually not enough to consider only the

linear behavior since much of systems’ behavior exhibits

strong nonlinearity, for instance, actuator saturation and

bounded buffer sizes [12], and the nonlinear relation

between the content adaptation level and the CPU

utilization [6]. It is usually difficult to handle these

nonlinearities, among which is the notoriously challenging

problem of response time regulation. In this paper, we

study this issue based on our prior work described in [13],

where the nonlinear relation between the client-perceived

response times and CPU allocation to a Web server is

studied quantitatively. When the server is switching

between the underload and overload operating regions

because of the time-varying workload, this relation shows

a strong bimodal property.

Single-loop feedback control is usually not satisfactory

in most cases of computing systems control. More

complex techniques are introduced, for instance, MIMO

control [8] and predictive control with multiple constraints

[14]. Recently, combination of reactive and proactive

control techniques are applied, where the workload and its

effect on the performance metrics can be predicted so that

the system can react proactively, and the predictive errors

can be corrected through feedback schemes [15][16] [17].

In our earlier work [13], an adaptive controller was

developed to deal with the bimodal behavior of the Web

server, where one extra measurement, i.e., CPU usage,

was incorporated into the response time control loop so

that more accurate model parameters and more robust

controllers can be obtained. In this paper, we consider the

nested (or cascaded) control technique [18] since we have

two measurements, the response time and the CPU usage,

but only one actuator, the CPU allocation. This scheme

helps to improve the robustness of response time control,

which is in the primary (outer) loop, by controlling CPU

utilization in the secondary (inner) loop.

Utility functions have been used for resource sharing

and SLA enforcement in self-managed systems. For

instance, Internet congestion control was modeled as a

distributed control problem to maximize the aggregate

utility [19]. In computing systems, the low-level resource

allocation and high-level SLA enforcement can be

formulated as a utility optimization problem. In [20] the

utility of e-commerce servers’ performance was defined in

3

terms of business metrics such as revenue and profit. In

[21], the feedback control of the performance of an email

server was designed to maximize SLA profits. Discrete

resource allocation in a utility data center was formulated

as a utility maximization problem in [22]. Utility functions

for response time and throughput were defined in [23],

based on which hierarchical control structure was

developed to optimize the global utility of a data center.

D. Main Contributions

The main contributions of this paper compared to prior

work are the following. We proposed a new design of two

nested control loops for dynamic resource allocation to

applications hosted on virtualized servers. The control

target is driven by the service utility, which is in turn

defined by certain payoff function in an SLA and cost of

resources allocated. We implemented the new design on a

real system and evaluated its performance through

experiments. Compared to a single loop for controlling

response time only, the nested design is less sensitive to

the bimodal behavior of the system resulting in more

robust performance. On the other hand, compared to a

single loop for controlling CPU utilization only, the new

design provides a framework for dealing with the tradeoff

between better QoS and lower cost of resources, therefore

resulting in better overall utility of the service.

The remainder of the paper is organized as follows. We

describe the testbed and workloads used in Section II, and

review the single-loop control of response time or

utilization in Section III. In Section IV, we present the

new design of a nested control system, performance of

which is evaluated in Section V. Finally, we offer

conclusions and discuss future work in Section VI.

II. TESTBED SETUP AND WORKLOAD DESIGN

A. Testbed Setup

Our testbed is based on the testbed used in our earlier

work [11][13]. Its setup is shown in figure 4.

Fig. 4. Setup of the experimental testbed

The testbed consists of two computers connected with

100Mbps Ethernet. One computer (dual-processor

HP9000-L server running HP-UX B11.11) contains the

plant to be controlled, which can be any application that is

CPU intensive, utilizes resources on a shared server, and

has a target range for a QoS metric as described in Section

I. Here we choose the Apache Web Server version 2.0.52

[24] as an example of the application, and use the HP-UX

Workload Manager (WLM) [1] to configure one partition

of the server for hosting the Web server, leaving the

remaining resources for other processes on the same

system. The WLM implements a weighted Fair Share

Scheduler (FSS) that runs inside the HP-UX kernel and

assigns a portion of the CPU to a process based on its

weight relative to other competing processes. We define

the number of CPUs (can be fractional) allocated to the

Web server during a time interval as our control variable

u(k). The WLM acts as the actuator in our control loop,

which allows u(k) to be changed dynamically. It also

serves as a sensor (Sensor B in Fig. 4) that measures the

Web server’s average CPU usage, v(k), for each sampling

interval. We define another variable r(k) to be the relative

utilization of the CPU allocation, i.e., r(k) = v(k) / u(k).

For instance, if the Web server is allocated 0.8 CPU in

one interval but only uses 0.6 CPU on average, then u(k)

= 0.8, v(k) = 0.6, and r(k) = 75%.

A scalable client workload generator, httperf [25], runs

on another computer (HP LPr Netserver running Red Hat

Linux 7.3 with kernel version 2.4.18) to continuously send

HTTP requests to the Web server. We modified httperf

0.8 to record the response time of every request in a log

file. A sensor module (Sensor A in Fig. 4) runs on the

same machine that computes some statistical measure of

the response times for all the requests completed during a

sampling interval. Here we assume that either the mean

response time (MRT) or the p
th
 percentile of the response

times (RTp) is the QoS metric defined in the SLA. Let

y(k) denote its value for the k
th
 sampling interval.

At the beginning of every sampling interval, the

controller pulls the measurements of the QoS metric and

the CPU usage for the last interval from both sensors,

computes the CPU allocation for the current interval using

some control law, and passes it on to WLM for actuation.

B. Design of Workload

The workload used in our experiments is chosen to create

varying amount of CPU demand for the Web server, while

capturing statistical properties of real-world workloads.

Here we use the static portion of the workload model

from the SPECweb99 benchmark [26], an industry

standard for testing Web server performance. We

populated our Web server with the SPECweb99 data set

that contains 418 directories and 36 files in each directory

with sizes ranging from 100 Bytes to 900 KB, with a total

working data set of 2.3 GB. We use httperf to generate a

Computer 2 Computer 1

Workload

generator

(httperf)

Sensor A

Plant

Web server

Actuator/

Sensor B

WLM

Controller

HTTP

requests

responses

MRT/

RTp

measured

RT per

request

CPU

cycles

CPU

allocation

CPU

usage

target RT/

utilization

4

workload emulating many concurrent users accessing the

Web server simultaneously. The number of user sessions

per second is generated using a Poisson distribution with

an average rate λ. Each session has a burst length with a

Normal distribution N(5,3). Each file accessed is chosen

using a combination of a series of distributions (e.g., a

Zipf distribution for the directory accessed) specified in

the SPECweb99 documentation [26]. The session rate

allows us to control the average intensity of the workload,

while the file distributions and access patterns are used to

add stochastic fluctuations to the resource demand the

workload places on the Web server.

III. SINGLE-LOOP CONTROL OF UTILIZATION OR MRT

The Web server application can be modeled as a discrete-

time input-output system that maps the CPU allocation,

u(k), to the QoS metric, y(k), or the relative utilization of

the allocation, r(k). Because the CPU allocation is not the

only factor potentially affecting the QoS metric, other

factors such as the workloads are considered as

disturbance to the system.

In this section, we review the results of the modeling

experiments and the single control loops designed in our

earlier work [13] for controlling the MRT or CPU

utilization and discuss their features and problems.

A. Results from Modeling Experiments

Fig. 5 shows the static mapping between u(k), r(k), and the

90
th
 percentile of response times, RT90, or y(k), at steady

state. The experiments were described in detail in [13],

where we basically set the sampling interval at 60 seconds

(long enough to pass transients), and measured r(k) and

the mean response time (MRT) for different values of u(k)

with different workload intensities. We repeated the

experiments with the workload described in Section II.B,

in varying number of sessions per second, and measured

RT90 instead of MRT as the output metric.

0.2 0.5 1 1.5 1.8
0

0.2

0.4

0.6

0.8

1

CPU Allocation

C
P
U
 U

til
iz
a
ti
o
n

Rate=25

Rate=50

Rate=75

Rate=100

Rate=125

0.2 0.5 1 1.5 1.8

5

10

15

20

25

30

CPU Allocation

R
T
9
0

Rate=25

Rate=50

Rate=75

Rate=100

Rate=125

(a) r(k) vs. u(k) (b) y(k) vs. u(k)

Fig. 5. Steady-state relation between CPU allocation u(k), its relative

utilization r(k), and RT90 y(k)

It is easy to see that the system displays a clear bimodal

behavior. For example, the relative utilization r(k) can be

approximated using the following model:

>=

<
=

VkuifkuV

Vkuif
kr

)(),(/

)(,1
)((1)

where V is the average number of CPUs needed for a

given workload (unknown). When u(k) < V, the Web

server is overloaded therefore it always uses 100% (r=1)

of its allocated CPU; when u(k) > V, the Web server is

underloaded, then the relative utilization is inversely

proportional to the CPU allocation. Note that in this

relation, the transient queueing dynamics are not

considered.

Similarly, the mapping between u(k) and y(k) also

demonstrates a bimodal behavior. Extensive system

identification experiments in [13] verified that the

dynamic relation between u(k) and the inverse of the mean

response time can be modeled using a first-order

autoregressive model in the overload region. However,

when increasing u(k) pushes the system into the underload

region, y(k) immediately drops to very small values.

B. Adaptive Integral Controller for regulating

utilization

The CPU utilization of an application is a common metric

that is monitored to determine whether more or less CPU

resource should be allocated to the application. To

regulate the relative utilization r(k) of the Web server’s

CPU allocation at around a target value rref, the following

adaptive-gain integral (I) controller was designed in [13]:

)),1()(()1()(1 −−−−= krrkKkuku ref (2)

where

,20 ,/)1()(1 <<−= αα refrkvkK (3)

and v(k) means the measurement of CPU usage in the kth

interval. Note that the gain parameter K1 self-tunes based

on the resource usage in the last sampling interval. The

intuition behind this design is from the bimodal behavior

of the system. The controller aggressively allocates more

CPU when the system is overloaded, and slowly decreases

CPU allocation in the underload region. (See the technical

report [27] version of [13] for stability analysis for this

controller.) Experimental results in [13] showed that this

adaptive controller resulted in lower response time and

higher throughput with less average CPU allocation

compared to a fixed-gain integral controller when the Web

server was subject to a time-varying stochastic workload.

This controller is fairly easy to implement where the

only measurement needed is the CPU usage of the

controlled application, which is widely available on many

systems. Its disadvantage is that no guarantees can be

given to SLA-related QoS metrics such as the response

time metrics for an arbitrary workload when only r(k) is

being controlled. The next subsection reviews another

adaptive controller we designed in [13] for regulating the

MRT directly.

C. Adaptive PI controller for regulating MRT

The existence of a first-order linear dynamic model

between the CPU allocation, u(k), and 1/MRT, in the

overload region makes it relatively easy to regulate the

MRT by dynamic control of the CPU allocation when the

5

system is overloaded. The adaptive PI controller we

presented in [11] works reasonably well in this region. In

[13] we presented an improved version of this PI

controller that incorporates the measured CPU usage of

the application, v(k), so that the closed-loop control

system can more robustly track a target value for the MRT

in or close to the overload region. However, when the

system is significantly underloaded (r < 0.8), the MRT

becomes independent of the CPU allocation, therefore

MRT is uncontrollable using u(k) in this region.

From a practical point of view, no operators would

allow their systems to be running in an overloaded mode

because that usually implies degraded performance such

as longer latency or lower throughput. In the next section,

we present the design of a control system that keeps the

application reasonably underloaded while meeting QoS

goals such as bounds on response times.

IV. A NESTED CONTROL DESIGN

Consider the control loop in Section III.B that

maintains the relative utilization r(k) at a target value rref.

The relation between a given rref value and the resulting

QoS metric y(k) varies with the workload. For example,

rref=50% may be necessary for highly interactive and

bursty workloads, while rref=80% may be appropriate for

less variable workloads. It is desirable to have the rref
value automatically driven by the application’s QoS goals

rather than manually chosen by an operator for each

application. Given this insight, we design another control

loop outside of the utilization control loop to adjust the rref

value dynamically to ensure that the QoS metric, y(k), is

within the desirable range, [YL, YH] . Fig. 6 shows the

block diagram of the two nested control loops in detail.

Fig. 6(a) illustrates the inner loop as described in

Section III.B that contains an adaptive I controller with a

self-tuning gain parameter K1 to regulate the measured

relative utilization, r(k), at a target value, rref, by

dynamically adjusting the CPU allocation u(k) to the

controlled application G(z). The workload to the

application acts as a disturbance, d(k), to the control

system. The block B1 implements an anti-windup rule to

ensure that u(k) is always within the specified minimum

(UL) and maximum (UH) CPU allocation allowed for an

application.

The outer loop as shown in Fig. 6(b) implements

another I controller to periodically tune the rref value so

that the measured QoS metric, y(k), can be maintained

within [YL, YH]. As was discussed in Section III, if the

inner loop is effective in regulating the relative utilization

r(k), then the whole closed-loop subsystem can be viewed

as a black-box. Therefore, we can model it using a

discrete-time operator F(z) that maps the reference signal

rref(k) to the measured the QoS metric y(k). Note that

although the same time index k is used in the two loops,

the functions G(z) and F(z) may not be based on the same

sampling frequency. Typically the inner loop uses a

shorter sampling interval than what the outer loop uses

because the former usually has faster dynamics. The block

E implements the following error function:

>−

≤≤

<−

=

HH

HL

LL

y

YkykyY

YkyY

YkykyY

ke

)(),(

)(,0

)(),(

)((4)

This means when the measured y(k) is within [YL, YH],

rref(k) remains the same; otherwise, rref(k) is reduced when

y(k) is too large and rref(k) is increased when y(k) is too

small. The gain parameter K2 of the integral control law

determines how aggressively rref(k) is adjusted. Again the

block B2 ensures that the computed rref(k) value is always

within a specified range [RL, RH], e.g., [50%, 90%]. The

reason for setting the lower bound RL is to ensure that, as

long as the QoS goal for y(k) is met, the CPU cycles

allocated to the application should be utilized at least

50%, if not more. On the other hand, the allocated CPU

should never be utilized more than 90% on average so that

there is always some headroom to prevent the application

from becoming overloaded. We will see the impact of

these parameters in the experimental results in the next

section.

(a) The inner loop controls the CPU allocation u(k) to regulate the

relative utilization r(k)

(b) The outer loop controls rref to regulate the QoS metric y(k)

Fig. 6. Block diagrams of the two nested control loops

1/z

K2

RH RL

1/z

rref(k) B2

YH YL

E

y(k-1) rref(k-1)

e2(k)

F

1/z

1/z

K1

UH UL

G

d(k)

r(k)

v(k-1)

u(k)
v(k)

1/z

B1

r(k-1) u(k-1)

e1(k)
rref

y(k)

6

V. PERFORMANCE EVALUATION

To evaluate the performance of the nested control loops,

we implemented the above design on our testbed

described in Section II.A. For comparison, we also

implemented the single utilization control loop shown in

Fig. 6(a) with rref being a range [RL, RH] instead of a

single value, as well as a single integral control loop that

regulates the QoS metric y(k) to be within [YL, YH]. The

latter is similar to the loop shown in Fig. 6(b) except that

the control variable is the CPU allocation u(k) (bounded

by [UL, UH]) instead of rref(k).

We tested the three control loops using a SPECweb99

workload shown in Fig. 7(a), with its key parameters and

statistical properties described in Section II.B. The

workload lasts 30 minutes in time. The mean session rate

was set to 50 sessions/sec in the first 10 minutes,

increased to 90 sessions/sec in the second 10 minutes, and

decreased to 50 sessions/sec again in the last 10 minutes.

We attempt to use this workload to mimic the real-world

demand pattern shown in Fig. 1 that stays at a low level

the majority of the time but has a square-wave surge in

demand for certain period of time. In these experiments,

we use RT90, the 90
th
 percentile of all the response times

during a sampling interval, as our QoS metric y(k), and

assume that its utility-driven target range is [0.2, 1]

seconds. We also set the bounds on the relative utilization

r(k) to be [50%, 90%], and the bounds on the CPU

allocation to be [0.1, 1.6] CPU (i.e., 5% to 80% of the

CPU cycles). The parameter α in the utilization controller
(2)(3) is set to 1.5 in both the inner loop of the nested

control design and the single utilization control loop. The

gain K2 in the nested loops is 0.1, the same as that used in

the single control loop on response time. We set the

sampling interval of the utilization controller (in both the

inner loop and the single loop) to be 5 seconds, and the

sampling interval of the response time controller (in both

the outer loop and the single loop) to be 20 seconds.

0 600 1200 1800

30

60

90

120

0 600 1200 1800
0.01

0.2

1

10

0 600 1200 1800

0.5

0.9
1

0 600 1200 1800

0.1

1

1.6

2

RT
90

Workload(sess/sec)

Utilization

Reference of Util

Allocation

Usage

(a) (b)

(c) (d)

Time(sec)

Time(sec)Time(sec)

Time(sec)

Fig. 7. Performance of the nested control loops

The performance of the nested control loops is shown

in Fig. 7(b), (c), and (d). Fig. 7(b) shows in logarithmic

scale the resulting QoS metric RT90 sampled at 20 seconds

intervals. The control of the target utilization rref in the

outer loop as shown in Fig. 7(c) presents strong fast-

decrease-slow-increase bimodal behavior. Similarly, the

control of CPU allocation as shown in Fig. 7(d) shows a

clear fast-increase-slow-decrease pattern. (All the

horizontal dash-dot lines in each figure indicate the

respective bounds on that variable.) As a result, the Web

server is underloaded most of the time, where RT90 is

below the 0.2 second lower bound (YL). In this case, the

outer loop controller is activated and starts pushing up rref

(shown in Fig. 7(c)), which in turn causes the inner loop to

reduce the CPU allocation (shown in Fig. 7(d)). However,

the increase of rref in each control interval is bounded by

the product of the gain K2 and the bound YL, which is

0.02 in this case. This causes the value of rref to increase

gradually so that the system does not fall into the overload

region immediately. Eventually, whenever rref gets closer

to 90%, the relative utilization r(k) may become 100%

sometimes causing the application to be overloaded, then

the response time measure RT90 increases rapidly due to

heavy queueing in the system, Once RT90 exceeds the 1

second upper bound (YH), the outer loop controller starts

to reduce rref sharply so that the inner loop can allocate

significantly more CPU to the application to bring it out of

the overload region.

The result from the single-loop response time control is

shown in Fig. 8(a) and (c). This controller is clearly even

more aggressive in quickly allocating more CPU under

overload conditions, which immediately pushes the

response time measure RT90 below the 0.2 seconds lower

bound. It then takes a long time to recover because it

reduces allocation very slowly in the underload region. As

a result, the Web server spends even more time producing

lower-than-needed response times due to significant over-

allocation by the control system. By comparing these

results with those in Fig 7(b) and (d), we observe that by

placing a 50% lower bound on the relative utilization, the

nested control design is able to reduce overshooting of the

controller therefore increasing resource utilization.

The performance of the single-loop utilization control

with a fixed target utilization range is shown in Fig 8(b)

and (d). Fig. 8(b) shows the resulting RT90 values that are

below the lower bound of 0.2 seconds most of the time. A

spike reaching 4 seconds occurred at around 600 seconds

due to the surge in the workload intensity, but then the

controller quickly increased CPU allocation to

accommodate the increased demand. This controller

shows the same fast-increase-slow-decrease behavior that

results in lower response times in general, which is

desirable without considering the cost of resource

allocation. In comparison, the added outer loop in the

nested control design compares the measured RT90 with

7

its target and adjusts the target utilization level

accordingly, thereby providing a tradeoff between better

QoS and lower infrastructure cost.

0 600 1200 1800
0.01

0.2

1

10

0 600 1200 1800
0.01

0.2

1

10

0 600 1200 1800

0.1

1

1.6

2

0 600 1200 1800

0.1

1

1.6

2

RT
90

RT
90

Allocation

Usage

Allocation

Usage

Time(sec) Time(sec)

Time(sec) Time(sec)

(a) (b)

(d)(c)
Fig 8: Performance of single-loop response time control ((a) and (c)) and

single-loop utilization control ((b) and (d))

This tradeoff is more visible in the overall statistics of

these experimental results shown in Table 1. To compare

the three designs, we computed the following five metrics:

the percentages of time when RT90 is below YL (Plow),

within [YL, YH] (Pgood) and above YH (Phigh), as well as the

average CPU allocation and the average utilization of the

allocated CPU cycles. As we can see, the single-loop

response time control allocates 24% more CPU cycles to

the Web server than the nested control does (0.84 vs. 0.60

CPU), resulting in the system spending 90% of the time in

the low response time, high cost region, and only 3% of

the time in the good response time, lower cost region. On

the other hand, the single-loop utilization control spends

even more time (94%) in the low response time, high cost

region, but requires only 0.65 CPU on average. In

comparison, the nested control implementation guides the

system to spend more time (11%) in the good response

time, lower cost region, requires the minimum CPU

allocation (0.6 CPU), and results in the maximum CPU

utilization (68%) overall.

Table 1: Overall statistics of results from the three control systems

Control

system design
Plow Pgood Phigh mean

allocation

mean

utilization

Nested control 0.78 0.11 0.11 0.60 68%

RT control 0.90 0.03 0.07 0.84 48%

Util.control 0.94 0.03 0.03 0.65 62%

To see how sensitive the above results are to the value

of the gain K2 in the nested control loops and in the

single-loop response time control, we ran more

experiments with different values for K2. Due to the

different dynamics in the two operating regions, we set

different values (K2L/K2H) for the gain K2 for y<YL and

y>YH, respectively. Fig. 9 shows the performance of the

single-loop response time control, when K2L ((a) and (c))

or K2H ((b) and (d)) is increased from 0.1 to 0.5. We can

see that the system is more sensitive to the value of K2L

than to that of K2H. Fig. 9(a) shows that when K2L=0.5, the

system oscillates heavily between over-allocation and

under-allocation, causing the measured RT90 to swing

between large values and very small values. We observe

that it is difficult to manage the bimodal behavior by

tuning the control gain when a single loop is used for

direct control of response times. The results of the nested

control with the same setup of the gains are shown in Fig.

10, which shows less visible bi-modal behavior, and the

resource allocation is less sensitive to the gain values. In

summary, the nested control design meets QoS goals more

effectively and utilizes resources more efficiently.

0 600 1200 1800
0.01

0.2

1

10

0 600 1200 1800
0.01

0.2

1

10

0 600 1200 1800

0.1

1

1.6

2

0 600 1,200 1800

0.1

1

1.6

2
Allocation

Usuage

Allocation

Usuage

RT
90

RT
90

(c) (d)

(b)(a)

Time(sec)Time(sec)

Time(sec)Time(sec)

Fig. 9: Performance of single-loop response time control with different

gains K2=(0.5, 0.1) ((a) and (c)) and gains K2=(0.1, 0.5) ((b) and (d))

0 600 1200 1800
0.01

0.2

1

10

0 600 1200 1800
0.01

0.2

1

10

0 600 1200 1800

0.1

1

1.6

2

0 600 1200 1800

0.1

1

1.6

2
Allocation

Usuage

Allocation

Usuage

RT
90

RT
90

Time(sec)

Time(sec) Time(sec)

Time(sec)

(d)(c)

(b)(a)

Fig. 10: Performance of nested control with different gains K2=(0.5, 0.1)

((a) and (c)) and gains K2=(0.1, 0.5) ((b) and (d))

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a nested feedback control

design for effectively managing the QoS metrics of

applications hosted on virtualized servers. Experimental

8

results on a lab testbed showed benefits of using this

design over our earlier designs of single control loops for

either the QoS metric or the CPU utilization. This design

can potentially be used to create more efficient workload

management solutions for dynamic resource provisioning

on virtualized servers and to provide tradeoffs between

better QoS and lower cost of ownership.

As ongoing work, we are applying the same closed-loop

design to resource control of virtual machines where we

expect to achieve similar results. In addition, stability

analysis of the outer loop is lacking due to absence of an

analytical model for the inner loop and the gain parameter

K2 still requires hand-tuning to strike a balance between

stability and efficiency. Although for a given workload

and given utility function, an offline optimization may be

done to find the best value for K2, it may not be the

optimum for other workloads. We attempt to find a self-

adapting rule for K2 that is effective under a wide range of

system conditions.

This work only deals with one resource bottleneck

while any computer system typically has many potential

constraints that can affect an application’s QoS measures.

In our future research, we plan to develop algorithms to

determine which control knob should be turned to correct

a problem when multiple knobs are available.

REFERENCES

[1] HP-UX Workload Manager,
http://h30081.www3.hp.com/products/wlm/index.html.

[2] IBM Enterprise Workload Manager,
http://www.ibm.com/developerworks/autonomic/ewlm/.

[3] VMware, www.vmware.com.

[4] Xen Virtual Machine,
http://www.xensource.com/xen/about.html.

[5] J.L. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury, Feedback
Control of Computing Systems. Wiley-Interscience, 2004.

[6] T.F. Abdelzaher, K.G. Shin, and N. Bhatti, “Performance
guarantees for Web server end-systems: A control-theoretical
approach,” IEEE Transactions on Parallel and Distributed
Systems, vol. 13, 2002.

[7] J. L. Hellerstein, “Challenges in Control Engineering of
Computing Systems”, Proceeding of the 2004 American
Control Conference, Boston, MA, June 30-June 2, 2004.

[8] Y. Diao, N. Gandhi, J.L. Hellerstein, S. Parekh, and D.M.
Tilbury, “MIMO control of an Apache Web server: Modeling
and controller design,” American Control Conference, 2002.

[9] Y. Lu, C. Lu, T. Abdelzaher, and G. Tao, “An adaptive control
framework for QoS guarantees and its application to
differentiated caching services,” IEEE International Workshop
on Quality of Service, May, 2002.

[10] M. Karlsson, C. Karamanolis, and X. Zhu, “Triage:
Performance isolation and differentiation for storage systems,”
12th IEEE International Workshop on Quality of Service, 2004.

[11] X. Liu, X. Zhu, S. Singhal, and M. Arlitt, “Adaptive entitlement
control of resource partitions on shared servers,” 9th
International Symposium on Integrated Network Management,
May, 2005.

[12] A. Robertsson, B. Wittenmark, M. Kihl, M. Andersson,
“Design and evaluation of load control in web server systems”,
in Proceeding of the 2004 American Control Conference,
Boston, MA, June 30 – july 2, 2004.

[13] Z. Wang, X. Zhu, and S. Singhal, “Utilization and SLO-based

control for dynamic sizing of resource partitions,” 16th

IFIP/IEEE Distributed Systems: Operations and Management,

October, 2005, Barcelona, Spain, in press.

[14] C. Lu, X. Wang, and X. Koutsoukos, "Feedback Utilization
Control in Distributed Real-Time Systems with End-to-End
Tasks," IEEE Transactions on Parallel and Distributed Systems,
16(6):550-561, June 2005.

[15] L. Sha, X. Liu, Y. Lu and T. F. Abdelzaher, “Queueing Model
Based Network Server Performance Control”, the 23rd IEEE
International Real-Time Systems Symposium, Austin, Texas,
December 2002.

[16] A. Chandra, W. Gong and P. Shenoy, “Dynamic Resource
Allocation for Shared Data Centers Using Online
Measurements”, the Eleventh IEEE/ACM International
Workshop on Quality of Service (IWQoS 2003), Monterey, CA,
June 2003.

[17] D. Henriksson, Y. Lu, T. Abdelzaher, Improved Prediction for
Web Server Delay Control, 16th Euromicro Conference on
Real-Time Systems, Catania, Italy, July 2004.

[18] K. Astrom and T. Hagglund, PID Controllers: Theory, Design,
and Tuning (2nd Edition), Instrument Society of America,
1995.

[19] F. P. Kelly, “Models for a self-managed Internet”, in
Philosophical Transactions of the Royal Society, A358, 2000,
2335-2348.

[20] D. Menasce, V. F. Almeida, R. Fonsece, M. Mendes,
“Business-oriented resource management policies for e-
commerce servers”, Performance Evaluation, Sept., 2000.

[21] Y. Diao, J.L. Hellerstein, S. Parekh, “A business-oriented
approach to the design of feedback loops for performance
management”, Distributed Operations and Management, 2001.

[22] T. Kelly, “Utility-directed allocation”, in Proceedings of the
first workshop on algorithms and architectures for self-
managing systems, June 11, 2003, San Diego, CA.

[23] M. N. Bennani, D. A. Menasce, "Resource Allocation for
Autonomic Data Centers Using Analytic Performance Models,"
in Proc. 2005 IEEE International Conference on Autonomic
Computing, Seattle, WA, June 13-16, 2005.

[24] Apache Web server, http://www.apache.org/

[25] D. Mosberger and T. Jin, “Httperf --- A tool for measuring Web
server performance,” Performance Evaluation Journal, Vol.
26, No. 3, pp. 31-37, December 1998.

[26] Standard Performance Evaluation Corporation, SPECweb99

benchmark, http://www.spec.org/web99/docs/whitepaper.html.

[27] Z. Wang, X. Zhu, S. Singhal, “Utilization and SLO-Based
Control for Dynamic Sizing of Resource Partitions”, HP Labs
Technical Reportd, HPL-2005-126, July 2005.

