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The emerging interests within the IT industry on utility computing and
virtualization technologies have created a need for more effective
workload management tools, one that dynamically controls resource
allocation to a hosted application to achieve quality of service (QoS)
goals. These goals can in turn be driven by the utility of the service
provided, typically based on the application’s service level agreement 
(SLA) as well as the cost of resources allocated to the application. In this
paper, we build on our earlier work on dynamic CPU allocation to
applications on shared servers, and present a feedback control system 
consisting of two nested integral control loops for managing the QoS 
metric of the application along with the utilization of the allocated CPU
resource. The control system was implemented on a lab testbed using the
Apache Web server as the application and the 90th percentile of the
response times as the QoS metric. By testing the system using a synthetic
workload based on an industry benchmark, we validate the two important
features of the nested control design. First, compared to a single loop for
controlling response time only, the nested design is less sensitive to the 
bimodal behavior of the system resulting in more robust performance.
Second, compared to  a single loop for controlling CPU utilization only,
the new design provides a framework for dealing with the tradeoff
between better QoS and lower cost of resources, therefore resulting in
better overall utility of the service. 
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Abstract—The emerging interests within the IT industry 

on utility computing and virtualization technologies have 

created a need for more effective workload management 

tools, one that dynamically controls resource allocation to a 

hosted application to achieve quality of service (QoS) goals. 

These goals can in turn be driven by the utility of the service 

provided, typically based on the application’s service level 

agreement (SLA) as well as the cost of resources allocated to 

the application. In this paper, we build on our earlier work 

on dynamic CPU allocation to applications on shared servers, 

and present a feedback control system consisting of two 

nested integral control loops for managing the QoS metric of 

the application along with the utilization of the allocated 

CPU resource. The control system was implemented on a lab 

testbed using the Apache Web server as the application and 

the 90th percentile of the response times as the QoS metric. 

By testing the system using a synthetic workload based on an 

industry benchmark, we validate the two important features 

of the nested control design. First, compared to a single loop 

for controlling response time only, the nested design is less 

sensitive to the bimodal behavior of the system resulting in 

more robust performance. Second, compared to a single loop 

for controlling CPU utilization only, the new design provides 

a framework for dealing with the tradeoff between better 

QoS and lower cost of resources, therefore resulting in better 

overall utility of the service. 

I. INTRODUCTION 

HE information technology (IT) industry has in the 

past few years undergone a major trend of 

infrastructure consolidation to improve utilization of IT 

resources, reduce operational cost, and increase return on 

IT investments. As a result, there has been emerging 

interest on virtualization technologies that allow common 

IT resources (such as processors, networks, storage, and 

software licenses) to be shared across multiple users, 

organizations, or applications. Examples of these 

technologies include workload management tools such as 

HP-UX workload manager [1], IBM enterprise workload 

manager [2], and virtual machine technologies such as 

VMware [3] and Xen [4]. In this paper, we present two 

approaches for improving current workload management 

tools so that they can be used more effectively.  

A. Dynamic Feedback-Driven Resource Allocation 

A typical workload management tool allows multiple 

applications to share the system resources (CPU, memory, 

disk bandwidth) of a single server, while maintaining 

performance isolation and differentiation between them. 
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The amount of resource allocated to a particular 

application can be fixed or dynamically adjusted based on 

certain policies. However, it is a challenging task for the 

data center operators to provision sufficient resources for 

enterprise applications running on shared servers using 

workload management tools. One reason is that many of 

these applications have time-varying resource demands 

with a high peak-to-mean ratio.  

Fig. 1(a) shows the measured average CPU usage of 

one server in an enterprise data center on a typical day, 

with one sample for every five minutes. Because this 

server has 6 CPUs, the first observation is that the average 

CPU utilization is very low (< 10%) most of the time. 

Second, the maximum CPU usage is approximately an 

order of magnitude higher than the minimum. Therefore, 

if the application running on this server were consolidated 

onto a shared server, fixed CPU allocation based on either 

the peak or the mean would not work because the former 

would waste a lot of resource while the latter would leave 

the application overloaded during the demand surge 

between 10am and 2pm causing performance degradation. 

Dynamic CPU allocation to this application should be 

desirable. On the other hand, this application actually has 

strong periodicity where the pattern shown in Fig. 1(a) 

repeats itself daily. One might argue that the operator can 

schedule the CPU resource accordingly once this pattern 

is learned. However, not every server or application has a 

resource demand that is predictable. 
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(a)                                                          (b) 

Fig. 1.  CPU usage of server A in a data center for one day (a) and CPU 

usage of server B for ten days (b) 

Fig. 1(b) shows ten days worth of data for the CPU 

usage on another server from the same data center. Clearly 

there is no daily pattern in this trace, and spectrum 

analysis on seven weeks of data shows that no other 

periodicity is present either. For this type of applications, 

real-time feedback mechanisms are necessary to allocate 

“capacity on demand” so that the application gets what it 

needs and resources are utilized more efficiently. 
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B. Utility-driven QoS goals 

A second reason why it may be hard to configure 

workload management solutions is that, although the tools 

usually allow the users to specify goals (fixed value or a 

range) for certain quality of service (QoS) metrics, such as 

throughput or latency, operators often find it hard to 

define such goals that are sensible to a particular 

application. One way to resolve this is to relate these goals 

to a meaningful utility function. Let y be the QoS metric 

for an application, then the payoff z defined in a service 

level agreement (SLA) may be a convex or concave 

function (depending on what the metric is) or piecewise-

linear function of y. Fig. 3 shows an example where y is 

the latency, so higher value of y means poorer QoS,  and 

the payoff function }0),1(max{)( myy
eyz

−−= α . This 

means that the service provider gets a positive payoff from 

the user only when y is below a threshold ym, and the 

payoff decreases more and more rapidly as the latency 

approaches the threshold, after which the payoff becomes 

zero. Let us also assume that the cost of resources 

allocated to the application, c, is a monotonically 

decreasing function of y because higher cost is usually 

involved in providing better QoS (smaller y). Fig. 3 gives 

an example of a cost function where c(y) = β/y. Now let 

the utility of the service be h(y) = z(y) – c(y). Fig. 3 shows 

that h(y) is a concave function for y < ym. Ideally, we 

would like to find the optimum operating point for y with 

maximum utility, but it may be hard to maintain y exactly 

at the optimum. An alternative is to find a range [YL, YH] 

such that h(y) is above a threshold, or close to the 

optimum. (See Fig. 3 for an example.) In this paper, we 

assume that both the payoff function and the cost function 

are known so that such a range can be computed. We then 

focus on designing a closed-loop control system that 

maintains the QoS metric within this range.  
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Fig. 3.   Economic metrics (payoff/cost/utility) vs. quality of service 

(QoS) metric (e.g., latency) for a hosted application 

C. Related Work 

Feedback control theory has been applied to solve a 

number of performance or quality of service problems in 

computing systems in the past few years [5][6]. However, 

the intrinsic complexity of computing systems poses many 

challenges on control system designs [7].  

Much of the early work assumed that the system under 

control has linear dynamics, and the model parameters can 

be identified offline, e.g., in [8], where a MIMO controller 

was used for automatic parameter tuning of a Web server. 

However, due to the wide variation of demands observed 

in computing systems, the parameter values or even the 

structure of the models may change slowly or rapidly over 

time.  To deal with time-varying parameters in linear 

models, adaptive control theory has been applied to 

systems in the context of, for instance, caching services 

[9], storage systems [10] and resource containers [11]. 

Nevertheless, it is usually not enough to consider only the 

linear behavior since much of systems’ behavior exhibits 

strong nonlinearity, for instance, actuator saturation and 

bounded buffer sizes [12], and the nonlinear relation 

between the content adaptation level and the CPU 

utilization [6].  It is usually difficult to handle these 

nonlinearities, among which is the notoriously challenging 

problem of response time regulation. In this paper, we 

study this issue based on our prior work described in [13], 

where the nonlinear relation between the client-perceived 

response times and CPU allocation to a Web server is 

studied quantitatively. When the server is switching 

between the underload and overload operating regions 

because of the time-varying workload, this relation shows 

a strong bimodal property.  

Single-loop feedback control is usually not satisfactory 

in most cases of computing systems control. More 

complex techniques are introduced, for instance, MIMO 

control [8] and predictive control with multiple constraints 

[14]. Recently, combination of reactive and proactive 

control techniques are applied, where the workload and its 

effect on the performance metrics can be predicted so that 

the system can react proactively,  and the predictive errors 

can be corrected through feedback schemes [15][16] [17].  

In our earlier work [13], an adaptive controller was 

developed to deal with the bimodal behavior of the Web 

server, where one extra measurement, i.e., CPU usage, 

was incorporated into the response time control loop so 

that more accurate model parameters and more robust 

controllers can be obtained. In this paper, we consider the 

nested (or cascaded) control technique [18] since we have 

two measurements, the response time and the CPU usage, 

but only one actuator, the CPU allocation. This scheme 

helps to improve the robustness of response time control, 

which is in the primary (outer) loop, by controlling CPU 

utilization in the secondary (inner) loop.  

Utility functions have been used for resource sharing 

and SLA enforcement in self-managed systems. For 

instance, Internet congestion control was modeled as a 

distributed control problem to maximize the aggregate 

utility [19]. In computing systems, the low-level resource 

allocation and high-level SLA enforcement can be 

formulated as a utility optimization problem. In [20] the 

utility of e-commerce servers’ performance was defined in 
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terms of business metrics such as revenue and profit. In 

[21], the feedback control of the performance of an email 

server was designed to maximize SLA profits. Discrete 

resource allocation in a utility data center was formulated 

as a utility maximization problem in [22]. Utility functions 

for response time and throughput were defined in [23], 

based on which hierarchical control structure was 

developed to optimize the global utility of a data center.  

D. Main Contributions 

The main contributions of this paper compared to prior 

work are the following. We proposed a new design of two 

nested control loops for dynamic resource allocation to 

applications hosted on virtualized servers. The control 

target is driven by the service utility, which is in turn 

defined by certain payoff function in an SLA and cost of 

resources allocated. We implemented the new design on a 

real system and evaluated its performance through 

experiments. Compared to a single loop for controlling 

response time only, the nested design is less sensitive to 

the bimodal behavior of the system resulting in more 

robust performance. On the other hand, compared to a 

single loop for controlling CPU utilization only, the new 

design provides a framework for dealing with the tradeoff 

between better QoS and lower cost of resources, therefore 

resulting in better overall utility of the service.  

The remainder of the paper is organized as follows.  We 

describe the testbed and workloads used in Section II, and 

review the single-loop control of response time or 

utilization in Section III. In Section IV, we present the 

new design of a nested control system, performance of 

which is evaluated in Section V. Finally, we offer 

conclusions and discuss future work in Section VI. 

II. TESTBED SETUP AND WORKLOAD DESIGN 

A. Testbed Setup 

Our testbed is based on the testbed used in our earlier 

work [11][13]. Its setup is shown in figure 4.  

 
Fig. 4.  Setup of the experimental testbed 

The testbed consists of two computers connected with 

100Mbps Ethernet. One computer (dual-processor 

HP9000-L server running HP-UX B11.11) contains the 

plant to be controlled, which can be any application that is 

CPU intensive, utilizes resources on a shared server, and 

has a target range for a QoS metric as described in Section 

I. Here we choose the Apache Web Server version 2.0.52 

[24] as an example of the application, and use the HP-UX 

Workload Manager (WLM) [1] to configure one partition 

of the server for hosting the Web server, leaving the 

remaining resources for other processes on the same 

system. The WLM implements a weighted Fair Share 

Scheduler (FSS) that runs inside the HP-UX kernel and 

assigns a portion of the CPU to a process based on its 

weight relative to other competing processes. We define 

the number of CPUs (can be fractional) allocated to the 

Web server during a time interval as our control variable 

u(k). The WLM acts as the actuator in our control loop, 

which allows u(k) to be changed dynamically. It also 

serves as a sensor (Sensor B in Fig. 4) that measures the 

Web server’s average CPU usage, v(k), for each sampling 

interval. We define another variable r(k) to be the relative 

utilization of the CPU allocation, i.e., r(k) = v(k) / u(k). 

For instance, if the Web server is allocated 0.8 CPU in 

one interval but only uses 0.6 CPU on average, then u(k) 

= 0.8, v(k) = 0.6, and r(k) = 75%. 

A scalable client workload generator, httperf [25], runs 

on another computer (HP LPr Netserver running Red Hat 

Linux 7.3 with kernel version 2.4.18) to continuously send 

HTTP requests to the Web server. We modified httperf 

0.8 to record the response time of every request in a log 

file. A sensor module (Sensor A in Fig. 4) runs on the 

same machine that computes some statistical measure of 

the response times for all the requests completed during a 

sampling interval.  Here we assume that either the mean 

response time (MRT) or the p
th
 percentile of the response 

times (RTp) is the QoS metric defined in the SLA. Let 

y(k) denote its value for the k
th
 sampling interval.   

At the beginning of every sampling interval, the 

controller pulls the measurements of the QoS metric and 

the CPU usage for the last interval from both sensors, 

computes the CPU allocation for the current interval using 

some control law, and passes it on to WLM for actuation. 

B. Design of Workload 

The workload used in our experiments is chosen to create 

varying amount of CPU demand for the Web server, while 

capturing statistical properties of real-world workloads.  

Here we use the static portion of the workload model 

from the SPECweb99 benchmark [26], an industry 

standard for testing Web server performance. We 

populated our Web server with the SPECweb99 data set 

that contains 418 directories and 36 files in each directory 

with sizes ranging from 100 Bytes to 900 KB, with a total 

working data set of 2.3 GB. We use httperf to generate a 
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workload emulating many concurrent users accessing the 

Web server simultaneously. The number of user sessions 

per second is generated using a Poisson distribution with 

an average rate λ. Each session has a burst length with a 

Normal distribution N(5,3). Each file accessed is chosen 

using a combination of a series of distributions (e.g., a 

Zipf distribution for the directory accessed) specified in 

the SPECweb99 documentation [26]. The session rate 

allows us to control the average intensity of the workload, 

while the file distributions and access patterns are used to 

add stochastic fluctuations to the resource demand the 

workload places on the Web server. 

III. SINGLE-LOOP CONTROL OF UTILIZATION OR MRT 

The Web server application can be modeled as a discrete-

time input-output system that maps the CPU allocation, 

u(k), to the QoS metric, y(k), or the relative utilization of 

the allocation, r(k). Because the CPU allocation is not the 

only factor potentially affecting the QoS metric, other 

factors such as the workloads are considered as 

disturbance to the system. 

In this section, we review the results of the modeling 

experiments and the single control loops designed in our 

earlier work [13] for controlling the MRT or CPU 

utilization and discuss their features and problems.  

A. Results from Modeling Experiments 

Fig. 5 shows the static mapping between u(k), r(k), and the 

90
th
 percentile of response times, RT90, or y(k), at steady 

state. The experiments were described in detail in [13], 

where we basically set the sampling interval at 60 seconds 

(long enough to pass transients), and measured r(k) and 

the mean response time (MRT) for different values of u(k) 

with different workload intensities. We repeated the 

experiments with the workload described in Section II.B, 

in varying number of sessions per second, and measured 

RT90 instead of MRT as the output metric. 
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(a) r(k) vs. u(k)        (b) y(k) vs. u(k) 

Fig. 5.  Steady-state relation between CPU allocation u(k), its relative 

utilization r(k), and RT90 y(k) 

It is easy to see that the system displays a clear bimodal 

behavior. For example, the relative utilization r(k) can be 

approximated using the following model: 
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)(               (1)  

where V is the average number of CPUs needed for a 

given workload (unknown). When u(k) < V, the Web 

server is overloaded therefore it always uses 100% (r=1) 

of its allocated CPU; when u(k) > V, the Web server is 

underloaded, then the relative utilization is inversely 

proportional to the CPU allocation. Note that in this 

relation, the transient queueing dynamics are not 

considered.  

Similarly, the mapping between u(k) and y(k) also 

demonstrates a bimodal behavior. Extensive system 

identification experiments in [13] verified that the 

dynamic relation between u(k) and the inverse of the mean 

response time can be modeled using a first-order 

autoregressive model in the overload region. However, 

when increasing u(k) pushes the system into the underload 

region, y(k) immediately drops to very small values. 

B. Adaptive Integral Controller for regulating 

utilization 

The CPU utilization of an application is a common metric 

that is monitored to determine whether more or less CPU 

resource should be allocated to the application. To 

regulate the relative utilization r(k) of the Web server’s 

CPU allocation at around a target value rref, the following 

adaptive-gain integral (I) controller was designed in [13]: 

 )),1()(()1()( 1 −−−−= krrkKkuku ref     (2) 

where 

,20        ,/)1()(1 <<−= αα refrkvkK      (3) 

and v(k) means the measurement of CPU usage in the kth 

interval. Note that the gain parameter K1 self-tunes based 

on the resource usage in the last sampling interval. The 

intuition behind this design is from the bimodal behavior 

of the system. The controller aggressively allocates more 

CPU when the system is overloaded, and slowly decreases 

CPU allocation in the underload region. (See the technical 

report [27] version of [13] for stability analysis for this 

controller.) Experimental results in [13] showed that this 

adaptive controller resulted in lower response time and 

higher throughput with less average CPU allocation 

compared to a fixed-gain integral controller when the Web 

server was subject to a time-varying stochastic workload. 

This controller is fairly easy to implement where the 

only measurement needed is the CPU usage of the 

controlled application, which is widely available on many 

systems. Its disadvantage is that no guarantees can be 

given to SLA-related QoS metrics such as the response 

time metrics for an arbitrary workload when only r(k) is 

being controlled. The next subsection reviews another 

adaptive controller we designed in [13] for regulating the 

MRT directly. 

C. Adaptive PI controller for regulating MRT 

The existence of a first-order linear dynamic model 

between the CPU allocation, u(k), and 1/MRT, in the 

overload region makes it relatively easy to regulate the 

MRT by dynamic control of the CPU allocation when the 



 

 

 

5 

system is overloaded. The adaptive PI controller we 

presented in [11] works reasonably well in this region. In 

[13] we presented an improved version of this PI 

controller that incorporates the measured CPU usage of 

the application, v(k), so that the closed-loop control 

system can more robustly track a target value for the MRT 

in or close to the overload region. However, when the 

system is significantly underloaded (r < 0.8), the MRT 

becomes independent of the CPU allocation, therefore 

MRT is uncontrollable using u(k) in this region.  

From a practical point of view, no operators would 

allow their systems to be running in an overloaded mode 

because that usually implies degraded performance such 

as longer latency or lower throughput. In the next section, 

we present the design of a control system that keeps the 

application reasonably underloaded while meeting QoS 

goals such as bounds on response times. 

IV. A NESTED CONTROL DESIGN 

Consider the control loop in Section III.B that 

maintains the relative utilization r(k) at a target value rref. 

The relation between a given rref value and the resulting 

QoS metric y(k) varies with the workload. For example, 

rref=50% may be necessary for highly interactive and 

bursty workloads, while rref=80% may be appropriate for 

less variable workloads. It is desirable to have the rref 
value automatically driven by the application’s QoS goals 

rather than manually chosen by an operator for each 

application. Given this insight, we design another control 

loop outside of the utilization control loop to adjust the rref 

value dynamically to ensure that the QoS metric, y(k), is 

within the desirable range, [YL, YH] . Fig. 6 shows the 

block diagram of the two nested control loops in detail. 

Fig. 6(a) illustrates the inner loop as described in 

Section III.B that contains an adaptive I controller with a 

self-tuning gain parameter K1 to regulate the measured 

relative utilization, r(k), at a target value, rref, by 

dynamically adjusting the CPU allocation u(k) to the 

controlled application G(z). The workload to the 

application acts as a disturbance, d(k), to the control 

system. The block B1 implements an anti-windup rule to 

ensure that u(k) is always within the specified minimum 

(UL) and maximum (UH) CPU allocation allowed for an 

application.  

The outer loop as shown in Fig. 6(b) implements 

another I controller to periodically tune the rref value so 

that the measured QoS metric, y(k), can be maintained 

within [YL, YH]. As was discussed in Section III, if the 

inner loop is effective in regulating the relative utilization 

r(k), then the whole closed-loop subsystem can be viewed 

as a black-box. Therefore, we can model it using a 

discrete-time operator F(z) that maps the reference signal 

rref(k) to the measured the QoS metric y(k). Note that 

although the same time index k is used in the two loops, 

the functions G(z) and F(z) may not be based on the same 

sampling frequency. Typically the inner loop uses a 

shorter sampling interval than what the outer loop uses 

because the former usually has faster dynamics. The block 

E implements the following error function: 


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This means when the measured y(k) is within [YL, YH], 

rref(k) remains the same; otherwise, rref(k) is reduced when 

y(k) is too large and rref(k) is increased when y(k) is too 

small. The gain parameter K2 of the integral control law 

determines how aggressively rref(k) is adjusted. Again the 

block B2 ensures that the computed rref(k) value is always 

within a specified range [RL, RH], e.g., [50%, 90%]. The 

reason for setting the lower bound RL is to ensure that, as 

long as the QoS goal for y(k) is met, the CPU cycles 

allocated to the application should be utilized at least 

50%, if not more. On the other hand, the allocated CPU 

should never be utilized more than 90% on average so that 

there is always some headroom to prevent the application 

from becoming overloaded. We will see the impact of 

these parameters in the experimental results in the next 

section.  

 

 
 

(a)  The inner loop controls the CPU allocation u(k) to regulate the 

relative utilization r(k) 

 
(b) The outer loop controls rref to regulate the QoS metric y(k) 

Fig. 6.  Block diagrams of the two nested control loops 
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V. PERFORMANCE EVALUATION 

To evaluate the performance of the nested control loops, 

we implemented the above design on our testbed 

described in Section II.A. For comparison, we also 

implemented the single utilization control loop shown in 

Fig. 6(a) with rref being a range [RL, RH] instead of a 

single value, as well as a single integral control loop that 

regulates the QoS metric y(k) to be within [YL, YH]. The 

latter is similar to the loop shown in Fig. 6(b) except that 

the control variable is the CPU allocation u(k) (bounded 

by [UL, UH]) instead of rref(k). 

We tested the three control loops using a SPECweb99 

workload shown in Fig. 7(a), with its key parameters and 

statistical properties described in Section II.B. The 

workload lasts 30 minutes in time. The mean session rate 

was set to 50 sessions/sec in the first 10 minutes, 

increased to 90 sessions/sec in the second 10 minutes, and 

decreased to 50 sessions/sec again in the last 10 minutes. 

We attempt to use this workload to mimic the real-world 

demand pattern shown in Fig. 1 that stays at a low level 

the majority of the time but has a square-wave surge in 

demand for certain period of time. In these experiments, 

we use RT90, the 90
th
 percentile of all the response times 

during a sampling interval, as our QoS metric y(k), and 

assume that its utility-driven target range is [0.2, 1] 

seconds. We also set the bounds on the relative utilization 

r(k) to be [50%, 90%], and the bounds on the CPU 

allocation to be [0.1, 1.6] CPU (i.e., 5% to 80% of the 

CPU cycles). The parameter α  in the utilization controller 
(2)(3) is set to 1.5 in both the inner loop of the nested 

control design and the single utilization control loop. The 

gain K2 in the nested loops is 0.1, the same as that used in 

the single control loop on response time. We set the 

sampling interval of the utilization controller (in both the 

inner loop and the single loop) to be 5 seconds, and the 

sampling interval of the response time controller (in both 

the outer loop and the single loop) to be 20 seconds.  
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Fig. 7.  Performance of the nested control loops 

The performance of the nested control loops is shown 

in Fig. 7(b), (c), and (d). Fig. 7(b) shows in logarithmic 

scale the resulting QoS metric RT90 sampled at 20 seconds 

intervals. The control of the target utilization rref in the 

outer loop as shown in Fig. 7(c) presents strong fast-

decrease-slow-increase bimodal behavior. Similarly, the 

control of CPU allocation as shown in Fig. 7(d) shows a 

clear fast-increase-slow-decrease pattern. (All the 

horizontal dash-dot lines in each figure indicate the 

respective bounds on that variable.) As a result, the Web 

server is underloaded most of the time, where RT90 is 

below the 0.2 second lower bound (YL). In this case, the 

outer loop controller is activated and starts pushing up rref 

(shown in Fig. 7(c)), which in turn causes the inner loop to 

reduce the CPU allocation (shown in Fig. 7(d)). However, 

the increase of rref in each control interval is bounded by 

the product of the gain K2 and the bound YL, which is 

0.02 in this case. This causes the value of rref to increase 

gradually so that the system does not fall into the overload 

region immediately. Eventually, whenever rref gets closer 

to 90%, the relative utilization r(k) may become 100% 

sometimes causing the application to be overloaded, then 

the response time measure RT90  increases rapidly due to 

heavy queueing in the system,  Once RT90 exceeds the 1 

second upper bound (YH), the outer loop controller starts 

to reduce rref sharply so that the inner loop can allocate 

significantly more CPU to the application to bring it out of 

the overload region. 

The result from the single-loop response time control is 

shown in Fig. 8(a) and (c). This controller is clearly even 

more aggressive in quickly allocating more CPU under 

overload conditions, which immediately pushes the 

response time measure RT90 below the 0.2 seconds lower 

bound. It then takes a long time to recover because it 

reduces allocation very slowly in the underload region. As 

a result, the Web server spends even more time producing 

lower-than-needed response times due to significant over-

allocation by the control system. By comparing these 

results with those in Fig 7(b) and (d), we observe that by 

placing a 50% lower bound on the relative utilization, the 

nested control design is able to reduce overshooting of the 

controller therefore increasing resource utilization. 

The performance of the single-loop utilization control 

with a fixed target utilization range is shown in Fig 8(b) 

and (d). Fig. 8(b) shows the resulting RT90 values that are 

below the lower bound of 0.2 seconds most of the time. A 

spike reaching 4 seconds occurred at around 600 seconds 

due to the surge in the workload intensity, but then the 

controller quickly increased CPU allocation to 

accommodate the increased demand. This controller 

shows the same fast-increase-slow-decrease behavior that 

results in lower response times in general, which is 

desirable without considering the cost of resource 

allocation. In comparison, the added outer loop in the 

nested control design compares the measured RT90 with 
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its target and adjusts the target utilization level 

accordingly, thereby providing a tradeoff between better 

QoS and lower infrastructure cost.  
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Fig 8: Performance of single-loop response time control ((a) and (c)) and 

single-loop utilization control ((b) and (d))  

This tradeoff is more visible in the overall statistics of 

these experimental results shown in Table 1. To compare 

the three designs, we computed the following five metrics: 

the percentages of time when RT90 is below YL (Plow), 

within [YL, YH] (Pgood) and above YH (Phigh), as well as the 

average CPU allocation and the average utilization of the 

allocated CPU cycles. As we can see, the single-loop 

response time control allocates 24% more CPU cycles to 

the Web server than the nested control does (0.84 vs. 0.60 

CPU), resulting in the system spending 90% of the time in 

the low response time, high cost region, and only 3% of 

the time in the good response time, lower cost region. On 

the other hand, the single-loop utilization control spends 

even more time (94%) in the low response time, high cost 

region, but requires only 0.65 CPU on average. In 

comparison, the nested control implementation guides the 

system to spend more time (11%) in the good response 

time, lower cost region, requires the minimum CPU 

allocation (0.6 CPU), and results in the maximum CPU 

utilization (68%) overall.  

Table 1: Overall statistics of results from the three control systems 

Control 

system design 
Plow Pgood Phigh mean 

allocation 

mean 

utilization 

Nested control 0.78 0.11 0.11 0.60 68% 

RT control 0.90 0.03 0.07 0.84 48% 

Util.control 0.94 0.03 0.03 0.65 62% 

 

To see how sensitive the above results are to the value 

of the gain K2 in the nested control loops and in the 

single-loop response time control, we ran more 

experiments with different values for K2. Due to the 

different dynamics in the two operating regions, we set 

different values (K2L/K2H) for the gain K2 for y<YL and 

y>YH, respectively. Fig. 9 shows the performance of the 

single-loop response time control, when K2L ((a) and (c)) 

or K2H ((b) and (d)) is increased from 0.1 to 0.5. We can 

see that the system is more sensitive to the value of K2L 

than to that of K2H. Fig. 9(a) shows that when K2L=0.5, the 

system oscillates heavily between over-allocation and 

under-allocation, causing the measured RT90 to swing 

between large values and very small values. We observe 

that it is difficult to manage the bimodal behavior by 

tuning the control gain when a single loop is used for 

direct control of response times.  The results of the nested 

control with the same setup of the gains are shown in Fig. 

10, which shows less visible bi-modal behavior, and the 

resource allocation is less sensitive to the gain values. In 

summary, the nested control design meets QoS goals more 

effectively and utilizes resources more efficiently. 
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Fig. 9: Performance of single-loop response time control with different 

gains K2=(0.5, 0.1) ((a) and (c)) and gains K2=(0.1, 0.5) ((b) and (d))  
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Fig. 10: Performance of nested control with different gains K2=(0.5, 0.1) 

((a) and (c)) and gains K2=(0.1, 0.5) ((b) and (d)) 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we have presented a nested feedback control 

design for effectively managing the QoS metrics of 

applications hosted on virtualized servers. Experimental 
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results on a lab testbed showed benefits of using this 

design over our earlier designs of single control loops for 

either the QoS metric or the CPU utilization. This design 

can potentially be used to create more efficient workload 

management solutions for dynamic resource provisioning 

on virtualized servers and to provide tradeoffs between 

better QoS and lower cost of ownership.  

As ongoing work, we are applying the same closed-loop 

design to resource control of virtual machines where we 

expect to achieve similar results. In addition, stability 

analysis of the outer loop is lacking due to absence of an 

analytical model for the inner loop and the gain parameter 

K2 still requires hand-tuning to strike a balance between 

stability and efficiency. Although for a given workload 

and given utility function, an offline optimization may be 

done to find the best value for K2, it may not be the 

optimum for other workloads.  We attempt to find a self-

adapting rule for K2 that is effective under a wide range of 

system conditions. 

This work only deals with one resource bottleneck 

while any computer system typically has many potential 

constraints that can affect an application’s QoS measures. 

In our future research, we plan to develop algorithms to 

determine which control knob should be turned to correct 

a problem when multiple knobs are available. 
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